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ABSTRACT
The routing and spectrum assignment problem is an NP-hard prob-

lem that has received increasing attention during the last years.

The majority of existing models for the problem uses edge-path for-

mulations where variables are associated with all possible routing

paths so that the number of variables grows exponentially with the

size of the instance. To bypass this difficulty, precomputed subsets

of all possible paths per demand are typically used, which cannot

guarantee optimality of the solutions in general. Our contribution

is to provide a framework for the use of edge-path formulations to

minimize the spectrum width of a solution. For that, we select an

appropriate subset of paths to operate on with the help of combina-

torial properties in such a way that optimality of the solution can

be guaranteed. Computational results indicate that our approach

is indeed promising to solve the routing and spectrum assignment

problem.

1 INTRODUCTION
Optical networks represent a crucial infrastructure for our infor-

mation society and use light as a communication medium between

sending and receiving nodes. For over two decades, Wavelength-
Division Multiplexing (WDM) has been the most popular technology

used in fiber-optic communications. WDM combines multiple wave-

lengths to simultaneously transport signals over a single optical

fiber, but has to select the wavelengths from a rather coarse fixed

grid of frequencies specified by the International Telecommunica-

tion Union (ITU) and leads to an inefficient use of spectral resources.

In response to the sustained growth of data traffic volumes in com-

munication networks, so-called flexgrid optical networks have been

introduced to enhance the spectrum efficiency and enlarge the net-

work capacity. In such networks, the frequency spectrum of an

optical fiber is divided into narrow frequency slots and any se-

quence of consecutive slots can form a channel on optical fibers

to create an optical connection, called lightpath, and thus enables

capacity gain by allocating minimum required bandwidth [8].
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The Routing and Spectrum Assignment (RSA) problem consists

of establishing the lightpaths for a set of traffic demands, given as

sending and receiving nodes and frequency slot numbers. Since

lightpaths are determined by a route and a channel, the RSA prob-

lem involves finding a route and assigning a channel of frequency

slots for each demand. To comply with ITU recommendation, the

following constraints need to be respected:

• slot continuity: the slots remain the same on all the links of

a route;

• slot contiguity: the slots allocated to a demand must be con-

tiguous;

• non-overlapping slot: on each link, a slot can be allocated to

at most one demand.

More precisely, we are given an optical network G = (V ,E) with
edge length le for all e ∈ E, an optical spectrum S = {1, . . . , s̄}, and a
setD of demands between pairs ok ,dk of nodes inG specifying the

maximum length
¯lk of a route and the numberwk of required slots.

The routing selects, for each demand k = (ok ,dk , ¯lk ,wk ) ∈ D,

an (ok ,dk )-path Pk of length at most
¯lk as route from ok to dk

throughG . The spectrum assignment consists of selecting, for each

k ∈ D, a channel Sk ⊆ S of wk consecutive frequency slots that

satisfies the three above constraints. We denote a routing of D by

P = {Pk : k ∈ D}, and a spectrum assignment byS = {Sk : k ∈ D}
so that any pair (P,S) is a solution to the RSA problem.

In addition, the selected set of lightpaths is supposed to minimize

a chosen objective function, e.g. minimize the number of edges in

the routing paths Pk [19], minimize the number of edges from the

network used to route the demands [17], or minimize the spectrum

width (and, thus, the width of the subspectrum of S used for the

spectrum assignment) [2].

The RSA problem has been shown to be NP-hard [3, 18]. In

fact, if all routes are already known or uniquely determined (e.g.

if the optical network is a tree), then the RSA problem reduces

to the spectrum assignment and only consists of determining the

demand’s channels. It is NP-complete to decide whether there is

a feasible spectrum assignment within a given optical spectrum,

even if the optical network is a path, see e.g. [16]. This makes

the RSA problem much harder than the WDM problem which is

polynomially solvable on paths, see e.g. [5].

To solve the RSA problem, various approaches have been studied

in the literature, based on different Integer Linear Programming

(ILP) models. Few models use edge-node formulations which are
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compact in terms of the number of variables and constraints, see e.g.

[2, 17, 19] and [1] for an overview, but have the disadvantage that

the routing is rather involved. As noticed in [7], the models from

[2, 17, 19] are incomplete as their feasible region is a superset of all

feasible solutions to the RSA problem. The first complete edge-node

formulation presented in [7] exactly encodes the feasible solutions,

but requires an exponential number of constraints.

The majority of the existing models uses an edge-path formula-
tion where for each demand, variables are associated with all pos-

sible routes for this demand, leading to an exponential number of

variables issued from the total number of all feasible paths between

origin-destination pairs in the network, which grows exponentially

with the size of the network. To bypass the exponential number of

variables, edge-path formulations with a restricted precomputed

subset of all possible paths per demand have been studied, e.g. in

[10, 12, 17, 19], see [19] for an overview. However, such formula-

tions cannot guarantee optimality of the solutions in general (as

only a subset of paths is considered and, thus, a restricted problem

is solved). In order to find optimal solutions to the RSA problem

w.r.t. any objective function with the help of an edge-path formu-

lation, all possible paths have to be taken into account. As the

explicit models are far too big for computation, it is in order to

apply column-generation methods. However, computational results

from [11, 13, 15] show that the size of the instances that can be

solved that way is rather limited
1
.

Our goal is to compute the minimum spectrum width which has

turned out to be particularly difficult, see e.g. [2, 7]. For that, we

provide a framework for the use of edge-path formulations that

selects an appropriate subset of paths to operate on with the help of

combinatorial properties in such a way, that it is neither necessary

to enumerate all possible routing paths nor to apply generic column

generation techniques, but that optimality of the solution can still

be guaranteed.

The idea is to iterate twomajor steps: on the one hand, a min-cost

multi-commodity flow computes a lower bound on the minimum

spectrum width and provides us with routing paths, on the other

hand, solving an edge-path formulation using the already generated

subset of routing paths provides a solution and an upper bound on

the minimum spectrum width. As long as there is a gap between

the lower and upper bounds, we add constraints to forbid (partial

or full) routings that cause the use of a larger spectrum than the

current lower bound, and iterate both major steps until the lower

bound equals the upper bound and, thus, an optimal solution has

been found (or infeasibility of the instance has been detected).

In the following, we present details on all steps involved in

the framework in Section 2, we provide computational results in

Section 3, and close with some concluding remarks and lines of

future research.

1
An exception is an edge-path formulation from [4] that seems to be scalable to real-size

instances by using column-generation methods. However, the authors of [4] consider

an asymmetric version of the RSA problem where each link of the optical network is

composed by two optical fibers to be used to transmit signals in one direction only.

This makes the spectrum assignment easier (as less restrictions have to be taken into

account), but is not used very often in practice by network operators as that way it is

not possible to use the full spectral resources of the optical links.

2 FRAMEWORK TO COMPUTE THE
MINIMUM SPECTRUMWIDTH

In order to compute the minimum spectrum width, we adopt a

reinterpretation of the spectrum assignment as interval coloring of

the edge intersection graph I (P) of the routing P [9]. Each path

Pk ∈ P becomes a node of I (P), two nodes are joined by an edge

if their corresponding paths in G are in conflict as they share an

edge. An interval coloring in I (P) corresponds to the spectrum

assignment: assign a frequency interval Sk ofwk consecutive fre-

quency slots (slot contiguity) to every node k and, thus, to every

path Pk (slot continuity) such that the intervals of adjacent nodes

are disjoint (non-overlapping slots).
Letw ∈ Z |D |+ be the vector whose entrieswk are the slot require-

ments associated with the demands k ∈ D. The interval chromatic

number χI (I (P),w) is the smallest size of a spectrum such that

I (P) weighted withwk for each path Pk has a proper interval color-

ing. Given G and D, the minimum spectrum width of any solution

to the RSA problem thus equals

χI (G,D) = min{χI (I (P),w) : P ∈ R}
where R denotes the set of all possible routings of the demands D
in G. Our goal is to compute χI (G,D) which has turned out to be

particularly difficult, see e.g. [2, 7].

Lower bounds on χI (G,D). Consider the following two lower

bounds of χI (G,D) that are exclusively related to the routing as-

pect of the problem (not yet taking the spectrum assignment into

account).

We denote by ℓ(G,D) the minimum number of slots that need

to be installed on all edges of the optical network G to allow a

routing of all demands in D. The value ℓ(G,D) corresponds to
the maximum edge load w (P) = max{∑Pk ∋e wk : e ∈ E} in the

most balanced routing P, i.e., to the minimum maximum edge load,

taken over all possible routings: we call

ℓ(G,D) = min{w (P) : P ∈ R}
the load bound. Due to the non-overlapping slot condition, all chan-
nels Sk of paths routed along a same edge of G need to be disjoint,

thus, ℓ(G,D) is a lower bound of χI (G,D).
We further consider the weighted clique number ω (I (P),w)

of the edge intersection graph I (P) of the routing P (that is the

maximum weight of a clique, a set of pairwise adjacent nodes, in

I (P), taking the node weights w into account). We denote by

ω (G,D) = min{ω (I (P),w) : P ∈ R}
the clique bound, i.e., the minimum over all maximum weighted

cliques in I (P), taken over all possible routings P. On the one

hand, all paths in a routing P passing through a same edge e of G
are mutually in conflict and form a clique in I (P), which shows

that ℓ(G,D) is a lower bound of ω (G,D). On the other hand, all

channels Sk of paths Pk forcing a clique in I (P) need to be disjoint

due to the non-overlapping slot condition such that ω (I (P),w) ≤
χI (I (P),w) holds for any I (P) and, thus,ω (G,D) is a lower bound
of χI (G,D):

ℓ(G,D) ≤ ω (G,D) ≤ χI (G,D). (1)

There are instances of the RSA problem where there is a gap

between any two parameters from this chain, see Exp. 2.1.
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Example 2.1. Consider the following instance of the RSA problem

with the optical network G shown in Fig. 1 and the following set

D of demands:

k ok → dk ¯lk wk path Pk channel Sk
1 a → c 3 1 a → b → c 1 2 3

2 c → e 3 2 c → b → d → e 1 2

3 e → f 3 2 e → d → f 1 2 3 4

4 f → д 3 2 f → d → д 1 2

5 д → h 3 2 д → d → h 1 2 3 4

6 h → a 3 2 h → d → b → a 1 2 3 4 5 6

As the networkG is a tree, there is a unique routing P, as indicated
in the table above.

b

a c

eh

d

fg

1

3

4

26

5

Figure 1: A network G and I (P) of the routing.

Since the load of all edges incident to node d equals 4, ℓ(G,D) =
4 follows. The edge intersection graph I (P) of the routing is also
shown in Fig. 1. The nodes 1, 2, 6 form a clique of weight 5, hence

we haveω (G,D) = 5. Any interval coloring of I (P) needs at least 6

colors, as indicated in the table above. Hence, there is a gap between

any two parameters from the chain (1).

We call a clique Q in I (P) a non-edge clique if the routing paths

composing Q pairwise intersect, but do not all meet in a same edge

(like the clique formed by nodes 1, 2, 6 in the above example). Only

non-edge cliques can cause a gap between ℓ(G,D) and ω (G,D).
A graph is superperfect if and only if the weighted clique number

and the interval chromatic number coincide for all possible non-

negative integral node weights, see e.g. [6]. Only non-superperfect

subgraphs of I (P) can cause ω (I (P),w) < χI (I (P),w) for the
given weight w (as the 5-hole formed by nodes 2, 3, 4, 5, 6 in the

above example), and, thus a gap between ω (G,D) and χI (G,D).
We here restrict to the search for cliques as it has been shown in

[9] that there are too many different non-superperfect subgraphs

that may occur in I (P) and thus, it is questionable whether the

time spent for their analysis is a gain for the overal running time.

Multi-commodity flows (MCF). We use multi-commodity flows

in an auxiliary networkGf constructed fromG to handle the lower

bound and to determine routings P.
We denote by Gf = (V ,A) the directed graph obtained from the

optical network G = (V ,E) by replacing every edge e = uv of G by

a pair of oppositely-directed arcs a = (u,v ), ā = (v,u). We say that

a = (u,v ) is the arc outgoing from u and incoming to v and denote

by δ− (v ) the set of arcs incoming to v and by δ+ (v ) the set of arcs
outgoing from v .

Each demand k ∈ D corresponds to a commodity fk with source

ok ∈ V and sink dk ∈ V in Gf . The ILP to determine the minimum

number cap of slots needed on all edges of G to allow the routing

of all demands k ∈ D is as follows:

min cap∑
a∈δ+ (ok ) fk (a) = 1 ∀k∑
a∈δ− (ok ) fk (a) = 0 ∀k∑
a∈δ− (dk ) fk (a) = 1 ∀k∑
a∈δ+ (dk ) fk (a) = 0 ∀k∑
a∈δ− (v ) fk (a) −

∑
a∈δ+ (v ) fk (a) = 0 ∀k,∀v , ok ,dk∑

a∈δ− (v ) fk (a) ≤ 1 ∀k,∀v , ok ,dk∑
a∈δ− (v ) la fk (a) ≤ ¯lk ∀k∑
k ∈D wk fk (a) +

∑
k ∈D wk fk (ā) ≤ cap ∀ pairs a, ā ∈ A

fk (a) ∈ {0, 1}∀k,a

(2)

As the sum of flow values on each pair of oppositely-directed

arcs a = (u,v ), ā = (v,u) (and, thus, on each edge e = uv of G) is
bounded by cap and the value of cap is minimized, ILP (2) indeed

computes the load bound by

ℓ(G,D) = cap.

This happens in the initial run of the multi-commodity flow. If

ℓ(G,D) > s̄ , the considered instance (G, s̄,D) is infeasible. Oth-
erwise, the computed multi-commodity flow provides us with a

routing P which allows us to continue with solving an edge-path

formulation.

In later runs of the multi-commodity flow, we have to take forbid-

den cliques Q (of weightw (Q ) > ℓ(G,D)) and forbidden routings

(to never consider a same routing twice) into account. For that,

ILP (2) is enhanced by the following constraints: forbidden routing

constraints associated with a routing P
∑

k ∈D

∑

a∈AkP
fk (a) ≤

∑

k ∈D
|AkP | − 1 (3)

where AkP denotes the subset of arcs with fk (a) > 0 in P and

forbidden clique constraints associated with a clique Q
∑

k ∈Q

∑

a∈AkQ
fk (a) ≤

∑

k ∈Q
|AkQ | − 1 (4)

whereAkQ is the subset of arcs a corresponding to edges inG where

two paths from Q meet.

The objective function value cap computed by ILP (2) enhanced

by constraints (3) and (4) does not necessarily equal the load bound

ℓ(G,D) anymore, but corresponds to the maximal edge load of

a most-balanced routing, taking forbidden cliques and forbidden

previous routings into account.

That way, it is possible to increase the lower bound towards a

match with the current upper bound, coming from the spectrum

width of the best solution found so far.

An edge-path formulation (EPF). For the framework to compute

χI (G,D), any edge-path formulation to solve the RSA problem can

be used. Here we make use of the edge-path formulation related

to the novel edge-node model from [7], i.e., we will adopt the way

to encode the spectrum assignment from [7], but will simplify the

routing as follows.

Let
¯P be the set of currently-considered routing paths, parti-

tioned into
¯P = ¯P1 ∪ . . . ∪ ¯P |D | where ¯Pk = {P1

k , . . . , P
mk
k }

denotes the subset of routing paths currently available for demand

7
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k ∈ D. To find a routing P, we use path selection variables

yik =

{
1 if path P ik ∈ ¯Pk is selected for P,
0 otherwise,

and have to ensure that one path per demand is taken.

For the spectrum assignment, we adopt the following sets of

binary variables from [7]: For each demand k ∈ D and each edge

e ∈ E, variable xke ∈ {0, 1} indicates whether or not demand k
is routed through edge e . For each demand k ∈ D and each slot

s ∈ S , variable zks ∈ {0, 1} encodes the fact of whether or not the
slot s is the last slot of the channel assigned to demand k . For each
demand k ∈ D, each slot s ∈ S and each edge e ∈ E, variable

tske ∈ {0, 1} indicates whether or not demand k uses the slot s
on edge E. Moreover, a variable smax ∈ S is used to express the

maximum slot used.

Letblow be the current lower bound andbup be the current upper
bound on χI (G,D), then the edge-path formulation based on the

edge-node model from [7] reads as minimum violation problem:

min |D|smax +
∑
blow<s<bup,k ∈D zsk∑

P ik ∈ ¯Pk y
i
k = 1 ∀k

∑
P ik ∈ ¯Pk ,e ∈P ik y

i
k = xek ∀k, e∑

1≤s<wk z
s
k = 0 ∀k∑

wk ≤s<bup z
s
k = 1 ∀k

∑
1≤j≤wk z

s+j
k + xek ≤ te,sk + 1 ∀k, e, s ∈ {1, . . . ,bup − 1}∑

1≤s<bup t
e,s
k = wkx

e
k ∀k, e∑

k ∈D te,sk ≤ 1∀e, s ∈ {1, . . . ,bup − 1}∑
wk ≤s<bup sz

s
k ≤ smax ∀k

smax ≤ bup − 1

yik ,x
e
k , z

s
k , t

e,s
k ∈ {0, 1}

(5)

The objective function ensures that a span-minimal solution is

found and that the use of frequency slots within {blow +1, . . . ,bup−
1} is penalized. The path selection constraints ensure that one path

per demand is selected, the remaining constraints are adopted from

[7] where it was shown that they correctly encode a solution (when

all demands have to be served).

Note that for the first run of the edge-path formulation, the

intitial values areblow = ℓ(G,D) andbup = s̄+1 so that we operate

on the full spectrum {1, . . . , s̄}; each subset
¯Pk contains exactly one

path, obtained from the initial routing P. If the first run of the edge-

path formulation does not result in a solution, we have to go back

to the multi-commodity flow to find another routing. If a solution

(P,S) with span smax has been found, we proceed as follows: if

smax equals blow , then (P,S) is clearly optimal; otherwise, we

have blow < smax < bup , update bup = smax and keep (P,S) as
currently best solution.

To analyze the solution (P,S) in terms of cliques of weight

greater than blow , we proceed as follows. Determine from (P,S)
the subset Dc ⊂ D of critical demands k whose channel Sk ∈ S
uses frequency slots within {blow +1, . . . ,bup−1}. Critical demands

k may be contained in a clique Q of weightw (Q ) > blow , and this

clique Q must be contained in the closed neighborhood N [k] =

N (k )∪{k } of k in the edge intersection graph I (P) of the routing P.
Hence, for each critical demand k ∈ Dc , we construct the subgraph

Hk of I (P) induced by N [k], enumerate in Hk all cliques Q of

weight w (Q ) > blow and include them in a set Q of forbidden

cliques as triples (PQ ,EQ ,w (Q )) with PQ = {Pk ∈ P : k ∈ Q } and
EQ subset of edges of G where paths from PQ meet.

In later runs of the edge-path formulation, the use of the spec-

trum {1, . . . ,bup − 1} ensures that every new solution improves the

current upper bound. In addition, we have to take forbidden cliques

Q (of weightw (Q ) > blow ) and forbidden routings (to never con-

sider a same routing twice) into account. For that, (5) is enhanced

by forbidden (partial or full) routing constraints: for a forbidden

clique or a forbidden routing P ′,
∑

P ik ∈P′
yik ≤ |P ′ | − 1 (6)

ensures that not all paths P ik ∈ P ′ can be selected together again.

Note that if P ′ corresponds to a clique, then all routings containing

this subset of paths are forbidden, to exclude all routings P with

ω (I (P),w) > blow . If in later runs of the edge-path formulation,

the current lower bound blow is larger than the weight of a forbid-

den clique Q , then the clique Q has to be reallowed to operate on

the whole set of routings with blow as lower bound. For that, an in-

termediate value bq indicating the weight of the lightest forbidden

clique will be used.

Framework to compute χI (G,D). Here, we summarize the results

from the previous sections to formulate a framework to compute

χI (G,D).

Input: We take as input an instance (G, s̄,D).
Output: The output will be a solution (P∗,S∗) with span χI (G,D)
or a certificate for infeasibility.

Initialization: We initialize

• an upper bound by bup = s̄ + 1, a clique bound by bq = s̄ + 1,

• a set of previously used routings by F = ∅, and a set of

critical non-edge cliques by Q = ∅.
We construct the auxiliary network Gf from G and compute in

Gf a multi-commodity flow f using ILP (2) with the objective to

minimize cap.

If no feasible solution has been found then

• return “instance infeasible (due to transmission reach)”

Else (flow f with capacity cap has been found):

• if cap > s̄ return “instance infeasible (as ℓ(G,D) > s̄)”
• else set lower bound blow = cap
determine from f the according routing Pf
initialize a set of considered paths by

¯P = Pf .
Edge-Path Formulation (EPF): Launch the edge-path formula-

tion (5) with
¯P as set of paths, enhanced by forbidden (partial or

full) routing constraints (6) for all P ′ ∈ Q ∪ F as a minimum

violation problem where the objective is to minimize the span of

the solution and penalties.

If no feasible solution has been found:

• Let F := F ∪ {Pf } and continue with MCF.

Else (i.e. a solution (P,S) with span smax has been found):

• If smax = blow , then return (P,S) as optimal solution.

8
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• Else update bup = smax and keep (P,S) as currently best

solution.

Determine from (P,S) the subset Dc ⊂ D of critical de-

mands k whose channel Sk ∈ S uses frequency slots within

{blow + 1, . . . ,bup − 1}. For each critical demand k ∈ Dc :

– Construct the subgraph Hk of I (P) induced by N [k], find

in Hk all cliques Q of weightw (Q ) > blow .

– Include them in Q; ifw (Q ) < bq then update bq = w (Q ).
Let F = F ∪ {Pf ,P} and continue with MCF.

Multi-Commodity Flow (MCF): Compute a multi-commodity

flow f minimizing cap using ILP (2), enhanced by forbidden rout-

ing constraints (3) associated with P ∈ F and forbidden clique

constraints (4) associated with Q ∈ Q. If no flow has been found:

• if bq = bup = s̄ + 1, return “instance infeasible (χI (G,D) >
s̄)”
• else if bup ≤ bq , s̄ , return (P∗,S∗) as optimal solution

• else (i.e. we have blow < bq < bup ≤ s̄): remove from Q
all cliques Q of weightw (Q ) = bq , update bq to min(w (Q ) :

Q ∈ Q) or to s̄ + 1 if Q = ∅, continue with MCF.

Else (i.e. a flow f with capacity cap has been found):

• if bq = bup = s̄ + 1 ≤ cap, return “instance infeasible

(χI (G,D) > s̄)”
• else if (bq = bup ≤ s̄ and bup ≤ cap) or (bup < bq and

bup ≤ cap), return (P∗,S∗) as optimal solution

• else (we make some updates and continue):

if (cap < bq and cap < bup ), set blow = cap,
if (bq ≤ cap and bq < bup ), set blow = bq , remove from Q
all cliques Q of weightw (Q ) = bq ,
update bq to min{w (Q ) : Q ∈ Q} or to s̄ + 1 if Q = ∅,
determine from f the routing Pf , add the paths from Pf to

¯P and continue with EPF.

With the help of the above given arguments and a case analysis

of the possible situations after running the multi-commodity flow,

we can show:

Theorem 2.2. Given an instance (G, s̄,D) of the RSA problem, the
above described framework correctly computes a solution (P∗,S∗)
with span χI (G,D) or certifies infeasibility.

3 COMPUTATIONAL RESULTS
In this section, we present some preliminary computational results

to evaluate the computational performances achieved with the

herein proposed framework for the use of edge-path formulations

in comparison with the related edge-node formulation from [7] (i.e.,

where both formulations use the same way to encode the spectrum

assignment).

For that, we use two different sets of test instances. On the one

hand, we use artificially constructed test instances (G, s̄,D) with
networks having up to 14 nodes and only few demands, some of

them having the property that ℓ(G,D) < χI (G,D), some being

infeasible due to s̄ < χI (G,D), indicated by “inf.” in Table 1.

On the other hand, three network topologies from the litera-

ture are investigated: Spain, NSF and German [14, 17]. The Spain

topology has 21 nodes, 35 edges and 50 slots; the NSF topology

has 14 nodes, 21 edges and 60 slots; the German topology has 17

nodes, 25 edges and 60 slots. For each network topology, three sets

of randomly generated demands are evaluated. Each considered

demand requires either 3, 5 or 6 slots and supports, respectively,

100 Gb/s (3000 km reach), 200 Gb/s (1500 km reach), or 400 Gb/s

(600 km reach). The computational results are listed in Table 2.

Network s̄ ℓ(G, D) χI (G, D) # FWK (ms) ENF (ms)

Test net 1 5 3 4 2 58 95

Test net 2 5 - inf. 0 4 15

Test net 2 8 6 6 2 36 137

Test net 3 16 11 13 3 368 1182

Test net 4 20 11 16 9 1247 17738

Test net 5 16 12 14 4 454 1425

Test net 6 12 8 10 3 227 233

Test net 7 7 - inf. 0 7 151

Test net 7 8 - inf. 1 50 211

Test net 7 9 8 9 2 61 251

Test net 7 10 7 9 3 245 654

Table 1: Comparison between the two approaches on artifi-
cially constructed test instances.

Network s̄ |D | ℓ(G, D) χI (G, D) # FWK (ms) ENF

Spain 50 10 4 4 2 20523 n.t.

Spain 50 20 7 7 9 647694 n.t.

Spain 50 30 8 n.t. n.t.

German 60 10 12 12 4 241565 n.t.

German 60 20 23 23 2 190286 n.t.

German 60 30 32 n.t. n.t.

NSF 60 30 32 32 2 100851 n.t.

NSF 60 60 38 38 2 60650 n.t.

NSF 60 90 50 50 2 2135706 n.t.

Table 2: Comparison between the two approaches on net-
works from the literature.

All experiments are performed using the state-of-the-art MIP

solver CPLEX 12.10 on the high performance platform available at

LIMOS. For each instance, the lower bound ℓ(G,D) and the mini-

mum spectrumwidth χI (G,D) are given, followed by the number #

of iterations needed by the framework FWK. For both formulations,

the herein proposed framework (FWK) and the related edge-node

formulation (ENF), the total time in milliseconds required for the op-

timization is displayed. A closer analysis of the overall running time

spent by our framework FKW shows moreover that the percentage

of the time spent solving the subproblems with the edge-path for-

mulation increases with the number of demands (up to 99 % for the

last instance in Table 2).

A time limit of 100 hours was imposed in each run. The absence

of results for some instances indicates that the computation could

not terminate within this time limit
2
, indicated by “n.t.” in Table 2.

We clearly see that, for all artificially constructed test instances,

the computation time of the herein proposed framework is cer-

tainly smaller than for the related edge-node formulation from [7].

Moreover, the herein proposed framework could solve substantially

more instances to optimality within the time limit than the related

edge-node formulation, see Table 2.

2
Unfortunately, the high performance platform does not return any information (e.g.

on the objective function value of the best solution found) when the process exceeds

the time limit so that no information about the remaining gap can be provided.
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4 CONCLUDING REMARKS
In this paper, we studied the routing and spectrum assignment

problem. The majority of existing models for the problem uses edge-

path formulations where variables are associated with all possible

routing paths so that the number of variables grows exponentially

with the size of the instance. Therefore, either precomputed subsets

of all possible paths per demand are used (which cannot guarantee

optimality of the solutions) or column-generation methods have to

be applied (as the explicit models are far too big for computation).

However, computational results show that the size of the instances

that can be solved to optimality that way is rather limited, see e.g.

[2, 7, 11, 13, 15].

Our contribution is to provide a framework for the use of edge-

path formulations to minimize the spectrum width of a solution.

For that, we select an appropriate subset of paths to operate on with

the help of combinatorial properties in such a way that optimality

of the solution can be guaranteed due to a match of a lower bound

(derived from the edge load of the routings) and an upper bound

(coming from the span of the best solution found so far).

First computational results suggest that the herein proposed

framework for the use of edge-path formulations is competitive in

comparison with the related edge-node formulation from [7] (i.e.,

where both formulations use the same way to encode the spectrum

assignment).

Our future work includes comparing different edge-path for-

mulations from the literature (or edge-path formulations derived

from edge-node formulations) to see which one behaves best in the

context of our framework.

Moreover, there are different directions to further improve the

current framework. On the one hand, we observe that two demands

k,k ′ ∈ D with the same origin-destination pair operate on the

same set of routing paths
¯Pk = ¯Pk ′ . If, in addition, wk = wk ′

holds, then both the routes and the channels assigned to k and k ′
can be exchanged while keeping the same physical solution in the

network. With an increasing number of demands, this effect causes

a large number of symmetric solutions so that applying symmetry

breaking techniques seems to be advantageous.

On the other hand, the cliques Q ∈ Q are used to prevent that

all routings containing them are explored during the process. We

note that all forbidden clique contraints (4) for MCF and (6) for EPF

are redundant if they are associated with cliques Q ∈ Q properly

contained in another clique Q ′ ∈ Q. This observation shall be used

to reduce the number of redundant constraints in order to speed

up the computation.

Finally, our future work includes proposing similar frameworks

to handle the RSA problem w.r.t. other objectives like minimizing

the number of edges in routing paths, the lengths of the routing

paths, or the number of edges from the network used to route the

demands.
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