
Rooted MaximumWeight Connected Subgraphs with Balancing
and Capacity Constraints

Ralf Borndörfer
Zuse Institute Berlin
Berlin, Germany

borndoerfer@zib.de

Stephan Schwartz
Zuse Institute Berlin
Berlin, Germany
schwartz@zib.de

William Surau
Zuse Institute Berlin
Berlin, Germany
surau@zib.de

ABSTRACT
Finding connected subgraphs of maximum weight subject to addi-
tional constraints on the subgraphs is a common (sub)problem in
many applications. In this paper, we study the Maximum Weight
Connected Subgraph Problem with a given root node and a lower
and upper capacity constraint on the chosen subgraph. In addi-
tion, the nodes of the input graph are colored blue and red, and
the chosen subgraph is required to be balanced regarding its cu-
mulated blue and red weight. This problem arises as an essential
subproblem in district planning applications. We show that the
problem is NP-hard and give an integer programming formulation.
By exploiting the capacity and balancing condition, we develop a
powerful reduction technique that is able to significantly shrink the
problem size. In addition, we propose a method to strengthen the
LP relaxation of our formulation by identifying conflict pairs, i.e.,
nodes that cannot be both part of a chosen subgraph. Our computa-
tional study confirms the positive impact of the new preprocessing
technique and of the proposed conflict cuts.

1 INTRODUCTION
The Maximum Weight Connected Subgraph Problem (MWCS) is
to find a node set of maximum cumulated weight that induces
a connected subgraph in a given node-weighted graph. Popular
variants of the MWCS include a given set of roots that have to be
included in the chosen subgraph, and a capacitated (or budgeted)
variant where additional node weights and lower and upper weight
bounds for the chosen subgraph are specified. These variants occur
in various applications, and have been the subject of a number of
studies, see e.g. [2, 3, 11, 18].

In this paper, we study a variant of the rooted and capacitated
MWCS where additional balancing constraints are imposed. Emerg-
ing from an application in district planning, the nodes are divided
into blue and red nodes, and the chosen subgraph has to be bal-
anced with respect to the color weights. The problem of balancing
blue and red nodes in a connected subgraph has been studied, for
instance, in [4, 20]. The combination of balanced, rooted, and capac-
itated MWCS, however, is new and interesting in its own right. It
turns out that the combination of weight bounds and balancing con-
straints imposes a combinatorial structure that can be exploited to
shrink the problem substantially and to derive logical implications
on the shape of the subgraph.

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th
International Network Optimization Conference (INOC), June 7-10, 2022, Aachen,
Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Exemplary BRCMWCS instance. The root node is
depicted as a yellow square, circles represent nodes inVb and
triangles nodes in Vr , node sizes correspond to weights and
colors to node profits.

The problem studied in this paper occurs as a subproblem when
designing control districts for toll enforcement inspectors on mo-
torways, see [6]. By a transition to the line graph of the motorway
network, highway sections become nodes, whose lengths then cor-
respond to node weights, and control districts are designed subject
to lower and upper length bounds. In addition, the districts are
desired to be homogeneous with respect to the traffic on its motor-
ways, and homogeneity is measured as the cumulated difference to
the median traffic of the district. Districts are generated dynami-
cally in [6] and when fixing a root as potential median traffic node,
all other nodes can be colored blue or red, representing motorways
with less or, respectively, more traffic than the root node. Enforc-
ing that the root has indeed the median traffic corresponds to the
balancing condition of the BRCMWCS. The node profits stem from
the duals of the restricted master problem, and are the only data
that changes in each pricing round.

The contributions and the structure of this paper are as follows.
In Section 2 we formalize the problem, review the literature, and
present an IP formulation. In Section 3 we propose preprocessing
methods that can drastically reduce the problem size. Section 4 is
concerned with conflict pairs, i.e., pairs of vertices that cannot be
both part of a feasible solution. Adding the resulting inequalities to
the IP can considerably strengthen the LP relaxation. We conclude
with a computational study in Section 5 that shows the strong effect
of the preprocessing and the potential of the conflict cuts.

Series ISSN: 2510-7437 63 10.48786/inoc.2022.12

https://OpenProceedings.org/
http://dx.doi.org/10.48786/inoc.2022.12

INOC 2022, June 7-10, 2022, Aachen, Germany

2 THE PROBLEM
For the Balanced, Rooted, and Capacitated Maximum Weight Con-
nected Subgraph Problem (BRCMWCS), we consider a graph G =
(V ,E) with a bipartition of the nodes V = Vb Û∪Vr into blue and
red nodes, node weights w ∈ RV

≥0 and profits p ∈ RV , as well as
numbers 0 ≤ WL ≤ WU , ∆ ≥ 0, and a root node r ∈ V . The BR-
CMWCS is to find a treeT = (VT ,ET) of weightw(VT) ∈ [WL ,WU],
such that r ∈ VT and |w(VT ∩Vb) −w(VT ∩Vr)| ≤ ∆, and such that
p(VT) is maximized. Here and in the following, we use the short
notationw(V ′) :=

∑
v ∈V ′ wv for a subsetV ′ ⊆ V , and, accordingly,

for p(V ′).

Complexity. The BRCMWCS is NP-hard and the reduction can
come frommultiple angles. For instance, evenwithout the balancing
and capacity constraints, i.e., by setting ∆ andWU sufficiently large,
a reduction from the rooted MWCS (which is NP-hard due to [2]) is
possible. On the other hand, since the balanced connected subgraph
problem is NP-hard (see [4]), a reduction is also possible without
the root or capacity constraints. Note that if the rooted case could
be solved in polynomial time, the unrooted version can be solved
in polynomial time by considering every vertex as potential root
node. Finally, the capacity contraints alone make the problem NP-
hard. A reduction from the number partition problem is possible by
considering a star graph where the leaf weights are the numbers of
the partition instance and the center has weight 0. By settingWL =

WU to half of the sum of all weights, we see that the BRCMWCS is
NP-hard even without the root or balancing condition.

2.1 Related Work
The MWCS is a classical optimization problem with close rela-
tions to the family of Steiner tree problems, see e.g. [12, 19, 22]
for transformations and context. A number of papers from the
last decade study preprocessing techniques [13, 22, 23], exact ap-
proaches [1, 14, 21], or applications [3, 8, 9] for the MWCS. The
standard preprocessing approaches, however, do not carry over to
the budgeted variant, since the bounds might require the inclusion
of nodes with negative profit or the exclusion of nodes with posi-
tive profit in the optimal solution. Our paper adresses exactly this
situation.

The budgeted MWCS with a lower bound has been considered
in [15, 17, 18], but the nodes bear unit weights andWL =WU = k ,
i.e., the goal is a maximum weight connected subgraph with exactly
k nodes. While Hochbaum and Pathria [15] propose a dynamic pro-
gram that finds the optimal solution on trees and a 1

k -approximation
on general graphs, the authors of [18] reduce the problem to the
single-rooted case which is heuristically solved in [17].

The rooted and budgeted MWCS has been studied in [2, 11], but
only with an upper weight bound, i.e.,WL = 0. Both of these works
focus on the comparison of different connectivity formulations. The
results of Dilkina and Gomes [11] indicate that a single-commodity
flow is best if the upper weight bound is impractically large, while
in the other case, a formulation based on arc separation is preferred.
Álvarez-Miranda et al. [2] propose a node separator formulation,
and find that this formulation is favorable for denser graphs, com-
pared to the arc separation. Comparisons of different connectivity
formulations for the pricing problem in [6] strongly suggest that a
single-commodity flow is best suited for the BRCMWCS.

For the Balanced Connected Subgraph Problem (BCS) we are
given a graph G = (Vb Û∪Vr ,E) with nodes colored either blue or
red, and seek a maximum-cardinality subgraph that contains an
equal number of blue and red nodes. The problem was introduced
in [4] and shown to be NP-hard, even on planar, bipartite, and
chordal graph, or when a single root node is specified. When the
graph is a tree, however, Bhore et al. [4] give a labelling algorithm
to solve the BCS in time O(|V |4). Kobayashi et al. [16] improve the
runtime toO(|V |2) by running a dynamic program on a transformed
rooted binary tree with possibly additional uncolored nodes. The
authors also briefly study a weighted version of BCS and give
complexity results for special graph classes. Further complexity and
inapproximability results as well as polynomial-time algorithms for
the BCS on other special graph classes are provided in [4, 5, 10, 20].
We are not aware of any preprocessing or cutting plane approaches
to the BCS.

2.2 IP Formulation for BRCMWCS
We use a flow formulation to ensure the connectivity of the chosen
subgraphT . The idea is to construct a flow that emerges at the root
node. Each node of the chosen subgraph consumes one unit of flow,
while all other nodes satisfy flow conservation. To this end, we
consider the bidirected version D = (V ,A) ofG and introduce the
variables

• yv ∈ {0, 1} for v ∈ V indicating whether v ∈ T ,
• xa ≥ 0 for a ∈ A specifying the flow on arc a ∈ A.

The IP formulation of the BRCMWCS can then be stated as
follows.

max
x, y

∑
v ∈V

pv yv (1a)

s.t. WL ≤
∑
v ∈V

wv yv ≤ WU (1b)∑
v ∈Vr

wv yv −
∑
v ∈Vb

wv yv ≤ ∆ (1c)∑
v ∈Vb

wv yv −
∑
v ∈Vr

wv yv ≤ ∆ (1d)

yr = 1 (1e)∑
a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = yv ∀v ∈ V \ {r } (1f)

xuv ≤ M yv ∀(u,v) ∈ A (1g)
xa ≥ 0 ∀a ∈ A (1h)
yv ∈ {0, 1} ∀v ∈ V (1i)

The objective (1a) is to maximize the profit of the chosen sub-
graph. The budget constraints are specified in (1b), and the balanc-
ing constraints in (1c) and (1d). The flow conservation is ensured by
equalities (1f). Inequalities (1g) are necessary to activate every node
that is used by the flow. The use of a bigM parameter is bad for the
LP relaxation, but necessary. It should be chosen as small as possi-
ble, and following [24],M = maxV ′⊆V {|V ′ | : w(V ′) ≤WU } − 1 is
a valid choice that can be computed with a greedy algorithm.

64

Rooted Maximum Weight Connected Subgraphs with Balancing and Capacity Constraints INOC 2022, June 7-10, 2022, Aachen, Germany

3 PREPROCESSING
Computational studies show that preprocessing methods for the
MWCS generally have a huge impact on the solution time [13, 22,
23]. While the general methods for the MWCS do not carry over to
the BRCMWCS, we propose an effective approach that significantly
reduces the problem size and computation times for our problem.

The capacity constraints in combination with the balancing con-
dition allow for different reduction techniques for the BRCMWCS.
In particular, we can derive the following weight range for the
chosen blue vertices VT ∩Vb :

WL − ∆

2
≤ w(VT ∩Vb) ≤ min

(
WU + ∆

2
, w(Vr) + ∆

)
. (2)

The weight range for the red color class is defined accordingly,
and we denote the respective upper weight bounds byW b

U and
W r
U . A method to discard nodes based on these color weight ranges

was proposed in [6]: For each color, we determine the color radius,
i.e., the set of nodes that can be reached from the root on a path
that satisfies the upper weight bound of the according color. The
color radius can be determined with a single shortest path tree
computation in the bidirected version of G using arc weights

w̃b
(u,v) :=

{
wv , if v ∈ Vb ,
0 , else,

and w̃r defined accordingly. Every node that is outside of the color
radius cannot be part of any feasible solution and can be removed.

Here, we propose a complementary preprocessing approach to
discard even more nodes. The bicolor radius is the set of nodes
that can be reached from the root on a path that satisfies the upper
weight bound of both color classes. Unfortunately, the bicolor radius
cannot be computed via a shortest path tree. In fact, it is essentially
a constrained shortest path problem to determine if a specified
node is inside the bicolor radius. We solve the problem with a
Bellman-Ford-like labelling algorithm. The approach is detailed
in Algorithm 1 and uses two-dimensional arc weights and node
labels (for the blue and red cumulated weight, respectively). The
upper weight bounds, given as a pair ℓmax = (W b

U ,W
r
U), are part

of the input. We use the usual notion of domination, i.e., label ℓ1
dominates label ℓ2 if each weight in ℓ1 is less than or equal to the
corresponding weight in ℓ2 and if at least one of the inequalities is
strict. The algorithm is closely related to constrained shortest path
labelling approaches and runs in pseudo-polynomial time.

The effect of the bicolor radius preprocessing can be substantial,
and goes far beyond the single color radii. For the instance depicted
in Figure 2, the single color radii cannot exclude a single node. The
bicolor radius, on the other hand, is able to eliminate all gray nodes,
essentially eliminating half of the graph.

4 CONFLICT PAIRS
In this section, we propose a method to identify and make use of
conflict pairs in the BRCMWCS. A conflict pair consists of two
nodes u,v ∈ V that cannot be both part of a feasible solution, i.e.,
u ∈ T =⇒ v < T for any feasible solution T . For any conflict pair
(u,v) we can potentially tighten the LP relaxation of (1) with the
inequality yu + yv ≤ 1.

Algorithm 1: BicolorRadius
Input: G = (Vb Û∪Vr ,E),w, r , ℓmax
Output: set of nodes within the bicolor radius

1 Consider arc weights ω in the bidirected version of G with

ω(u,v) ←
(
w̃b
(u,v), w̃

r
(u,v)

)
;

2 ℓr ←

{
(wr , 0) , if r ∈ Vb ,
(0,wr) , else

3 labels[v]←

{
{ℓr } , if v = r ,
� , else

;

4 L← {(r , ℓr)} ;
5 repeat
6 L′ ← � ;
7 for (u, ℓu) ∈ L do
8 for each neighbor v of u in G do
9 ℓ′ ← ℓu + ω(u,v) ;

10 if ℓ′ respects ℓmax and is not dominated by any
label at v then

11 Add ℓ′ to labels[v] ;
12 Add (v, ℓ′) to L′ ;
13 Remove dominated labels in labels[v] ;
14 L← L′ ;
15 until L = �;
16 return all nodes with at least one label ;

The idea of analyzing conflicting pairs (or even larger sets), and
deriving stronger constraints has been proven to be very useful in
different set packing problems, such as knapsack or matching prob-
lems. The proposed idea also translates to the rooted and budgeted
MWCS, i.e., without the colors and balancing condition.

4.1 Finding Conflict Pairs
In order to identify conflict pairs, we can make use of the upper
capacity bounds introduced in Section 3 again. If for two nodes u

Figure 2: Effect of bicolor radius preprocessing. The root
node is depicted as a yellow square, the gray nodes are out-
side of the bicolor radius and can be removed.

65

INOC 2022, June 7-10, 2022, Aachen, Germany

Algorithm 2: SteinerTreeConflictPairs

Input: D = (V ,A), r , w̃ ∈ RA
≥0, wmax

Output: set C of conflict pairs

1 C ← � ;
2 len ← all pairs shortest path lengths in D w.r.t. w̃ ;
3 for all node pairs u,v ∈ V \ {r } do
4 for c ∈ V do
5 weiдht ← len[(r , c)] + len[(c,u)] + len[(c,v)] ;
6 if weiдht ≤ wmax then
7 // there is a feasible Steiner tree
8 Go to line 3 and check the next node pair ;
9 Add (u,v) to C ;

10 return C ;

and v and for every tree T = (VT ,ET) containing r ,u, and v , we
know thatw(VT) >WU orw(VT ∩Vb) >W b

U orw(VT ∩Vr) >W r
U ,

then (u,v) is a conflict pair. Deciding if there exists a tree connecting
a given set of terminal vertices at some cost, is a Steiner tree problem.
Fortunately, an elegant combinatorial approach is known for the
Steiner tree problem with three terminals. It is based on the insight
that any Steiner tree with three terminals is a union of paths from
a common center node (that is possibly a terminal itself) to the
terminals.

Building on this, Algorithm 2 describes our procedure to identify
conflict pairs. As input, we use the bidirected version D of G, the
root node r , and one of the following three weight combinations:
• w̃ with w̃(u,v) = wv , wmax =WU −wr ,
• w̃b , wmax =W b

U −wr · 1Vb (r),
• w̃r , wmax =W r

U −wr · 1Vr (r) ,
where 1 is the indicator function. The union of the three respective
return values of Algorithm 2 constitutes our set of conflict pairs.
The proposed algorithm runs in time O(|V |3), and for all tested
instances, it is able to identify a large number of conflict pairs.
In fact, in most cases there are so many conflict pairs that some
strategy is needed to exploit this information. We will discuss two
approaches: Deriving large conflict sets and identifying essential
conflicts.

4.2 The Conflict Graph
The individual conflict pair inequalities yu + yv ≤ 1 can be too
weak to effectively strengthen the LP relaxation. We construct the
conflict graph on the vertex set V by introducing an edge for every
conflict pair. Analogously to the set packing problem (see [7] for
details), we can derive stronger inequalities from the conflict graph:
Given an odd cycle C of length 2k + 1 in the conflict graph, the
inequality

∑
v ∈C yv ≤ k is known to be stronger than the ordinary

conflict pair inequalities. These odd-cycle cuts, however, usually
do not help the optimization process. The situation is different
when considering a clique C in the conflict graph. The clique cuts∑
v ∈C yv ≤ 1 are known to be often beneficial for the LP relaxation.
We experimented with including clique cuts to formulation (1).

Since the number of cliques is even much larger than the number
of conflict pairs, we determined an edge covering with cliques, and

only added the respective clique cuts. These additional inequalities,
however, showed to have a negative effect on the solution time in
our tests. A typical conflict clique together with an optimal solution
for the BRCMWCS instance is depicted in Figure 3. One can see that
the conflicting nodes are quite far apart and located at the boundary
of the graph. Depending on the node profits of the instance, such
clique cuts are rarely violated by the optimal LP relaxations. Hence,
we shift our focus to identifying more meaningful conflict pairs.

4.3 Essential Conflicts
Our experiments showed that the addition of all conflict cuts results
in significantly longer solution times. The same holds true if only
violated cuts are added dynamically to the program. Hence, it is
necessary to identify essential conflicts that actually facilitate the
solution process. Such conflicts presumably involve nodes that are
closer to the root node or have a high profit.

In order to specify these nodes, we define a scoring function that
assigns a value from the interval [−1, 1] to every vertex. A positive
profit as well as a small ratio between the shortest r -v-path length
andWU increase the score of node v . Essential conflicts are then
defined as all conflict pairs between nodes with a positive score.
Figure 4 shows the node scores and all resulting essential conflicts
for an exemplary instance. Observe that the conflict sets are now
much more central. Again, we determine an edge clique cover of
the essential conflict graph and only added the respective clique
cuts.

5 COMPUTATIONAL RESULTS
In our computational study, we evaluate the impact of the bicolor
preprocessing and the conflict pair cuts. We ran the experiments
on machines equipped with Intel Xeon E3-1234 CPUs with 3.7GHz
and 32GB RAM. The code is written in Python 3.6 and to solve
IPs Gurobi 9.1 is used. The instances stem from a transit network
generator used in [6]. These networks are edge weighted with a
length and a traffic value. We transform the transit networks into
node weighted graphs. The weight of a node represents the length
of the corresponding edge. As a root we chose a random node and

Figure 3: The nodes of an exemplary conflict clique are col-
ored red, an optimal solution is colored blue.

66

Rooted Maximum Weight Connected Subgraphs with Balancing and Capacity Constraints INOC 2022, June 7-10, 2022, Aachen, Germany

Table 1: Reduction effect of the preprocessing and numbers
of (essential) conflict pairs for instances grouped with re-
spect to the four different weight bounds W1-W4.

group rp cp1 ecp1 cp2 ecp2

W1 227.7 13624.1 110.0 30426.5 146.6
W2 95.2 11132.1 103.0 46410.6 175.9
W3 25.3 4033.5 56.7 38420.7 146.0
W4 3.7 156.1 6.8 18688.0 78.2

the color of a node depends on whether the traffic value is higher
or lower than the traffic at the root. Finally, ∆ is set to the weight
of the root node.

We constructed 5 such network instances where the number of
nodes ranges from 563 to 569 and the number of edges from 845 to
885. For each network, we consider 9 different profits: 3 are actual
reduced costs from the pricing problem from [6], 3 are distributed
uniformly at random in the interval [−1, 1], and 3 are based on the
normal distribution to thin out extreme profits. For one instance
per profit class, we also used a random partition into red and blue
vertices. Finally, we consider 4 different upper weight bounds that
lie between 40% and 75% of the graph diameter, and are motivated
by our application. The lower bounds were set to half of the upper
bounds but showed no effect in any computation. Altogether we
have 5 · 12 · 4 = 240 test instances.

The base variant of the study is the formulation without pre-
processing and conflict cuts, which is denoted by 00. To assess the
impact of the proposed preprocessing, we consider the variant 10.
For a broader perspective, we consider two sets of conflict pairs
generated by Algorithm 2: The set cp1 is the union of the return
values for the input w̃b and w̃r . The set cp2, on the other hand, is
the combined output of all three weight combinations. The essen-
tial conflict sets ecp1 and ecp2 are formed by the presented scoring
function. To evaluate the impact of the conflict pairs, we consider
the variant 11 where, in addition to the preprocessing, conflict cuts

Figure 4: Essential conflicts and node scores of an exemplary
instance.

Table 2: Comparison of average computation times (in sec-
onds) for different variants and instance groups.

group 00 10 11 12 1*

small 42.3 22.7 23.8 23.9 21.6
medium 255.8 170.3 171.3 176.2 149.8
large 1996.7 1775.9 1527.6 1478.1 1188.0

to the set ecp1 are added, and the variant 12 defined accordingly
with the set ecp2.

Table 1 shows the impact of the preprocessing and the number
of generated (essential) conflict pairs. The instances are partitioned
into four groups corresponding to the upper weight bounds. We
report on the average numbers of removed nodes by the preprocess-
ing and of (essential) conflict pairs for the two described variants.
Overall, we observe that with increasing upper weight bound, the
effect of the preprocessing and the number of conflict pairs decrease.
Also observe that most conflict pairs are found with respect to w̃ ,
and that the reduction to essential conflict pairs is significant in
either case. Finding a decent subset of conflict pairs that support the
solution process is a big challenge. We proposed a scoring function
to determine a set of essential conflicts. While our computational
results show that this approach is already beneficial in many in-
stances, we like to point out that the potential of the conflict cuts is
even larger. To this end, we consider another hypothetical variant,
1*, that assumes for every instance the preferred cuts from ecp1
or ecp2. Consequently, the variant 1* is attributed the minimum
runtime of 11 and 12 for each instance. This variant essentially
simulates a superior way to determine essential conflicts.

In order to compare the variants, we partition the 240 instances
into three groups based on the magnitude of the computation time
for the base variant: small (123 instances), medium (91 instances),
and large (26 instances). All instances and instance-wise computa-
tional results are available in an online supplement1 to this article.
Table 2 contains the cumulated results. We report the geometric
mean of the runtimes in seconds for the respective groups and
variants. We opt for the geometric instead of the arithmetic mean
to lessen the impact of outliers. In particular, there is one large
instance that profits immensely from the additional cuts (speed-up
factor 40).

We can observe that the preprocessing clearly helps to reduce
the average computation times. While there are also instances
where the preprocessing has a smaller or even a negative effect, the
positive impact of the proposed method prevails in all groups. In
terms of the conflict cuts, the impact is not so obvious. On average,
for the small and medium instances, the cuts together with the
preprocessing are slightly worse than the preprocessing alone. For
the large instances, most of the positive impact admittedly stems
from the single outlier instance. Nevertheless, a smaller positive
effect remains when excluding this instance.

The average values, however, do not paint the whole picture.
On many instances, one of the conflict cut variants is significantly
better than variant 10, on many other instances, the reverse is true.
Interestingly, the variants 11 and 12 are often complementary, i.e.,
1https://github.com/stephanschwartz/brcmwcs

67

INOC 2022, June 7-10, 2022, Aachen, Germany

one set of essential cuts is much more favorable than the other. In
order to assess the potential of the conflict cuts, variant 1* serves
as an oracle that always chooses the better of the two essential
conflict sets. Indeed, we find that on average, this variant performs
best in all groups. Furthermore, the positive impact increases for
harder instances.

When considering the different variants over all instance classes,
there is no clear indication on which classes some variant performs
better than another. We cannot observe that a certain variant is
dominant on a specific network instance. The same holds true for a
specific profit class or weight bound. Even for the 15 instances that
have a sibling only varying in node colors, the performance of the
variants is vastly different for the pairs. Thus, it remains open in
which cases the single variants are best. As one can expect, however,
the computation time increases with larger (upper) weight bounds,
since the number of feasible subgraphs drastically increases.

6 CONCLUSIONS AND OUTLOOK
In this paper, we studied a variant of the Maximum Weight Con-
nected Subgraph problem that arises as a subproblem in a districting
application. A distinct feature of the problem is that the chosen sub-
graph has to meet a given cumulated weight range and is required
to have a similar weight of red and blue nodes. We use these fea-
tures to develop a preprocessing method that is able to considerably
reduce the average problem size and computation time.

In addition, we propose a method to identify node pairs that can-
not be both part of a feasible solution. By considering the emerging
conflict graph, we can strengthen the packing condition. The main
problem, however, is to identify an appropriate subset of conflict
pairs to add. To this end, we introduce a node scoring function
that favors nodes close to the root and nodes with positive profit.
Employing this scoring function, we generate two different sets of
essential conflicts that are added to the IP formulation. Our compu-
tational results show that each of the sets individually has a positive
impact on a number of instances. If we artificially choose the better
set for each instance, the advantage of the conflict cuts becomes
obvious. This suggests that the conflict cut approach is well suited
for this problem, and that future work should aim to discover which
conflict sets are essential for a given instance.

REFERENCES
[1] Eduardo Álvarez-Miranda, Ivana Ljubić, and Petra Mutzel. 2013. The maximum

weight connected subgraph problem. In Facets of Combinatorial Optimization.
Springer, 245–270.

[2] Eduardo Álvarez-Miranda, Ivana Ljubić, and Petra Mutzel. 2013. The rooted max-
imum node-weight connected subgraph problem. In International Conference on
AI and OR Techniques in Constriant Programming for Combinatorial Optimization
Problems. Springer, 300–315.

[3] Christina Backes, Alexander Rurainski, Gunnar W Klau, Oliver Müller, Daniel
Stöckel, Andreas Gerasch, Jan Küntzer, Daniela Maisel, Nicole Ludwig, Matthias
Hein, Andreas Keller, Helmut Burtscher, Michael Kaufmann, Eckart Meese, and
Hans-Peter Lenhof. 2012. An integer linear programming approach for finding
deregulated subgraphs in regulatory networks. Nucleic acids research 40, 6 (2012),
e43.

[4] Sujoy Bhore, Sourav Chakraborty, Satyabrata Jana, Joseph SB Mitchell, Supantha
Pandit, and Sasanka Roy. 2019. The balanced connected subgraph problem. In
Conference on Algorithms and Discrete Applied Mathematics. Springer, 201–215.

[5] Sujoy Bhore, Satyabrata Jana, Supantha Pandit, and Sasanka Roy. 2019. Balanced
connected subgraph problem in geometric intersection graphs. In International
Conference on Combinatorial Optimization and Applications. Springer, 56–68.

[6] Ralf Borndörfer, Stephan Schwartz, and William Surau. 2021. Vertex Covering
with Capacitated Trees. Technical Report 21–25. Zuse Institute Berlin.

[7] Ralf Borndörfer and Robert Weismantel. 2000. Set packing relaxations of some
integer programs. Mathematical Programming 88, 3 (2000), 425–450.

[8] Rodolfo Carvajal, Miguel Constantino, Marcos Goycoolea, Juan Pablo Vielma, and
Andrés Weintraub. 2013. Imposing connectivity constraints in forest planning
models. Operations Research 61, 4 (2013), 824–836.

[9] Chao-Yeh Chen and Kristen Grauman. 2012. Efficient activity detection with
max-subgraph search. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 1274–1281.

[10] Benoit Darties, Rodolphe Giroudeau, König Jean-Claude, and Valentin Pollet. 2019.
The Balanced Connected Subgraph Problem: Complexity Results in Bounded-
Degree and Bounded-Diameter Graphs. In International Conference on Combina-
torial Optimization and Applications. Springer, 449–460.

[11] Bistra Dilkina and Carla P Gomes. 2010. Solving connected subgraph problems in
wildlife conservation. In International Conference on Integration of Artificial Intel-
ligence (AI) and Operations Research (OR) Techniques in Constraint Programming.
Springer, 102–116.

[12] Marcus T Dittrich, Gunnar W Klau, Andreas Rosenwald, Thomas Dandekar,
and Tobias Müller. 2008. Identifying functional modules in protein–protein
interaction networks: an integrated exact approach. Bioinformatics 24, 13 (2008),
223–231.

[13] Mohammed El-Kebir and Gunnar W Klau. 2014. Solving the maximum-weight
connected subgraph problem to optimality. 11th DIMACS Implementation Chal-
lenge Workshop. (2014).

[14] Matteo Fischetti, Markus Leitner, Ivana Ljubić, Martin Luipersbeck, Michele
Monaci, Max Resch, Domenico Salvagnin, and Markus Sinnl. 2017. Thinning
out Steiner trees: a node-based model for uniform edge costs. Mathematical
Programming Computation 9, 2 (2017), 203–229.

[15] Dorit S Hochbaum and Anu Pathria. 1994. Node-optimal connected k-subgraphs.
manuscript, UC Berkeley (1994).

[16] Yasuaki Kobayashi, Kensuke Kojima, Norihide Matsubara, Taiga Sone, and Ak-
ihiro Yamamoto. 2019. Algorithms and Hardness Results for the Maximum
Balanced Connected Subgraph Problem. In International Conference on Combina-
torial Optimization and Applications. Springer, 303–315.

[17] Heungsoon Felix Lee and Daniel R Dooly. 1996. Algorithms for the constrained
maximum-weight connected graph problem. Naval Research Logistics (NRL) 43, 7
(1996), 985–1008.

[18] Heungsoon Felix Lee and Daniel R Dooly. 1998. Decomposition algorithms for
the maximum-weight connected graph problem. Naval Research Logistics (NRL)
45, 8 (1998), 817–837.

[19] Ivana Ljubić. 2020. Solving Steiner trees: Recent advances, challenges, and
perspectives. Networks (2020), 177–204.

[20] TMartinod, V Pollet, B Darties, R Giroudeau, and J-C König. 2021. Complexity and
inapproximability results for balanced connected subgraph problem. Theoretical
Computer Science (2021).

[21] Daniel Rehfeldt, Henriette Franz, and Thorsten Koch. 2020. Optimal Connected
Subgraphs: Formulations and Algorithms. Technical Report 20–23. Zuse Institute
Berlin.

[22] Daniel Rehfeldt and Thorsten Koch. 2019. Combining NP-hard reduction tech-
niques and strong heuristics in an exact algorithm for the maximum-weight
connected subgraph problem. SIAM Journal on Optimization 29, 1 (2019), 369–
398.

[23] Daniel Rehfeldt, Thorsten Koch, and Stephen J Maher. 2019. Reduction techniques
for the prize collecting Steiner tree problem and the maximum-weight connected
subgraph problem. Networks 73, 2 (2019), 206–233.

[24] Hamidreza Validi and Austin Buchanan. 2021. Political districting to minimize
cut edges. (2021). http://www.optimization-online.org/DB_HTML/2021/04/8349.
html

68

