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ABSTRACT
Medical knowledge bases (KBs) are known to be vital for tasks like
clinical decision support and medical question answering, since
they provide well-structured relational information between en-
tities. One of the main challenges for querying a medical KB is
the mismatch between the terms in the KB and the colloquial
and imprecise terminology used in user queries. To address this
challenge, we propose a domain-specific query relaxation ap-
proach that leverages rich medical domain vocabularies and their
semantic relationships from external knowledge sources, such as
taxonomies, ontologies, and semantic networks, to expand the
vocabulary of KBs. Our main goal is to expand both the set of
queries that we can answer, as well as the set of answers to the
queries, over the medical KB. We introduce a lightweight adapta-
tion method to customize and incorporate external knowledge
sources to work with the existing KB, and propose a novel simi-
larity metric to leverage the information content in the KB, the
structural information in the external knowledge source, and the
contextual information from user queries. We implement our pro-
posed techniques for a medical KB, and use SNOMED CT as the
external knowledge source. We experimentally demonstrate the
effectiveness of our proposed method and the improved quality
of query results in terms of both precision and recall, compared
to state-of-the-art approaches. Finally, we conduct user studies to
evaluate how much a conversational interface can benefit from
our proposed method in terms of its query capability on the
medical KB.

1 INTRODUCTION
Medical knowledge bases (KBs) provide structured information
about medical entities (such as drugs and diseases) and their rela-
tionships, which are invaluable in medical applications. Such KBs
are often created from medical information sources, including
medical literature, patient data, claims data, etc, and offer deep do-
main specialization with rich and detailed information, which is
known to be vital for domain-specific tasks like clinical decision
support and medical question answering. The medical KBs are
different from cross-domain large-scale KBs such as DBpedia [5]
and Freebase [9] which provide well-structured, encyclopedic
knowledge but with less detail and precision.

When querying medical KBs, the users do not always formu-
late their queries precisely to match the terms in the KB, espe-
cially when they use natural language. For example, users are
likely to use informal words, phrases, or abbreviations of certain
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terms in their natural language queries, which makes match-
ing the mentioned entities to the medical KB a non-trivial task.
Query relaxation [18] is one of the most prominent techniques
used for query answering, allowing more domain-specific terms
in user queries. Instead of returning no or incomplete answers,
query relaxation can transform the query in a way that the user’s
intent is better represented, greatly improving the flexibility and
usability of a medical KB.

The problem of query relaxation has been extensively studied
in information retrieval and database systems with the goal of
returning information beyond what is specified by a standard
query [17, 26]. However, the techniques, traditionally designed
for formally defined query languages such as SQL, cannot handle
the complexity from natural language queries that involve com-
plex semantic constraints and logic [37, 43]. Hence, they often
fail to ensure query answering with high precision and recall.
Recent work [3, 8, 14] demonstrated that deep learning models
built at word or sentence level can be used for semantic simi-
larity estimation. However, these methods demand high-quality
training data, which is critical and expensive in reality.

In this paper, we focus on a medical KB (MED) which con-
tains medication, disease and toxicology information to support
informed diagnosis and treatment decisions for evidence-based
clinical decisions and patient education. We observe that this
and similar medical KBs can be further enriched by external
knowledge sources, such as medical ontologies, taxonomies, and
semantic networks (e.g., Unified Medical Language System [40],
SNOMED Clinical Terms [38], and Gene Ontology [12]). These
knowledge sources can be exploited by query relaxation to ex-
pand query answers.

We introduce a novel query relaxation method that leverages
rich domain vocabularies and their semantic relationships from
external medical knowledge sources, which largely consist of sub-
sumption relationships (e.g., A ⊑ B, where A and B are concepts
in the external knowledge source). We first find the concept corre-
sponding to a given query term in the external knowledge source,
and then relax the term by exploring the concept’s neighborhood
to identify semantically related concepts.

The rich domain vocabulary and structural information of
external knowledge sources empower query relaxation to gener-
alize or specialize query terms beyond syntactic matching. How-
ever, external knowledge sources such as SNOMED CT are often
not customized to the application’s requirements. Using external
knowledge sources without proper adaptation may introduce
semantically unrelated information into the results, leading to
low precision and recall. To provide high-quality results, a query
relaxation method has to address the following challenges.

External knowledge source ingestion. External knowledge
sources are often comprehensive, consisting of an excessive
amount of information describing a domain. The given KB is
often substantially smaller than the external knowledge sources.
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This makes it challenging to identify semantically related results
from the external knowledge source. For example, given a query
“what drugs treat pertussis”, there might be no drug directly as-
sociated with “pertussis” in the given KB. Instead, a generalized
clinical finding, “bronchitis”, in the KB has corresponding drug
information. However, the distance (i.e., the number of hops)
between “pertussis” and “bronchitis” in SNOMED CT is large,
making it difficult for query relaxation to identify the seman-
tic similarity between the two terms. Worse yet, many findings
closer in distance but not semantically related might be returned
as well, causing low-precision results.

Exploiting the query context. Contextual information has
significant impact on the semantic correctness of the relaxed re-
sults. For example, a user may ask “what drugs treat psychogenic
fever”, in which case the context is “treatment” and “psychogenic
fever” is a query term in the given medical KB. This term appears
in SNOMED CT as the name of a clinical finding, with both “hy-
perpyrexia” and “hypothermia” being similar findings. However,
in the context of “treatment”, drugs for “hypothermia” should not
be returned, as “hypothermia” is the opposite of “hyperpyrexia”
and “psychogenic fever”.

To address these challenges, we propose a novel two-phase
query relaxationmethod, consisting of external knowledge source
ingestion phase and the online query relaxation phase. We im-
plemented our techniques for the medical KB (MED), and used
SNOMED CT as the external knowledge source. The main con-
tributions of this paper are as follows.
•We present a lightweight, yet effective offline ingestion pro-

cess that customizes the external knowledge source to the given
KB.
•We propose a novel similarity metric to identify semantically

related concepts, leveraging (i) the information content in the
KB, (ii) the structural information in the external knowledge
source, and (iii) the contextual information from the user query.
•We introduce a programmaticway to incorporate ourmethod

into two state-of-the-art systems, a conversational system [21]
and a natural language query (NLQ) system [23, 35] for the med-
ical KB, using SNOMED CT as the external knowledge source.
• Our experiments show that our query relaxation method for

the medical KB outperforms state-of-the-art methods, including
deep learning-based ones, in precision and recall.We also conduct
a user study demonstrating how our query relaxation method
improves the response quality of a conversational system.

Outline. The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the basic concepts used in this paper, and
in Section 3, we provide an overview of our query relaxation
approach. Section 4 describes context generation, extraction, and
management. Section 5 introduces our query relaxation method
in detail. We explain how to integrate our query relaxation tech-
nique into two natural language interface systems in Section 6,
and provide experimental results in Section 7. We review related
work in Section 8, and conclude in Section 9.

2 BACKGROUND
2.1 Knowledge Base
Following the standard notation of description logic [6], we as-
sume that a KB is given in the form of TBox and ABox. In this
paper, TBox is referred to as domain ontology and ABox is referred
to as instances or data.

The domain ontology describes the concepts relevant to the
domain, and the relationships (roles) among different concepts.

The concepts associated with a relationship are provided by the
domain (i.e., source) and range (i.e., destination) constraints of
this relationship. The context of a query term used in a query can
be represented by a relationship and its associated concepts from
the domain ontology.

Figure 1 shows a fragment of a sample medical domain ontol-
ogy. The concept “Finding” connects to both concepts “Indication”
and “Risk” through the relationship “hasFinding”. This shows that
“Finding” can be potentially used in two different contexts (i.e.,
Risk-hasFinding-Finding and Indication-hasFinding-Finding). Two
example queries could be “which drugs have the risk of causing
diabetes” and “which drugs treat diabetes”, where the query term
is “diabetes”.

treat

forDrug

hasFinding

hasFinding

forIndication

Drug General 
Dosage

IndicationFinding

Risk

Contra
Indication

BlackBox
Warning

Adverse
Effect

⊑

Concept

Relationship

cause

⊑

⊑

Figure 1: Snippet of a medical ontology.

The instances (data) of the given KB are stored separately for
query answering as shown in Figure 3. For example, “fever” and
“renal impairment” are two instances of “Finding”. We assume that
our input is in the form of a query term and its associated context.
Following the previous example, the input to our query relaxation
method would be [diabetes, Risk-hasFinding-Finding] or [diabetes,
Indication-hasFinding-Finding]. Recent technologies [1, 21, 28]
have been designed to extract the contextual information from
natural language questions. In this paper, our method is inte-
grated with Watson Assistant [21] to receive the contextual infor-
mation, and finds semantically related instances for a given query
term with high precision and recall. We provide more details on
how we bootstrap the conversation space in Section 4.

2.2 External Knowledge Source
In this work, we utilize the rich medical domain vocabularies and
their semantic relationships from external knowledge sources
such as ontologies, semantic networks, and knowledge graphs.
In particular, we are interested in the subsumption relationships
in the form of A ⊑ B, where A and B are concepts in the ex-
ternal knowledge source. In this case, we say that A specializes
B, and that B generalizes A. We refer to the direct and implied
(by transitivity) specializations of a concept A, excluding A, as
the descendants of A. We assume that the external knowledge
source is a directed acyclic graph (DAG), in which a top concept
(owl:Thing in OWL) is the root and every concept is a descendant
of the root. To avoid confusion with the concepts of the domain
ontology, we refer to the concepts in the external knowledge
source as external concepts.

2.3 Semantic Similarity Measures
Semantic similarity measures estimate the similarity between
concepts, and are commonly used in various processing tasks
(e.g., entity resolution [10, 15], link prediction [27], change detec-
tion [22]). The knowledge-based approach to semantic similarity
exploits taxonomies like WordNet. Typically, path finding mea-
sures and information content (IC) measures are two common
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categories in knowledge-based approaches [19]. In addition to
a knowledge source, the IC approach can leverage a frequency
value f req(A), accounting for the number of times a concept A
is mentioned in a document corpus, to compute the similarity
between concepts. Specifically, the IC of a concept A is defined
as the inverse of the log of the concept’s frequency [25, 34]:

IC(A) = −loд(f req(A)), (1)
where f req(A) is recursively defined as:

f req(A) = |A| +
∑
Ai ⊑A

f req(Ai ), (2)

with |A| being the number of times concept A is directly men-
tioned in the document corpus, and Ai being the direct descen-
dants ofA in the taxonomy. The intuition is that the more general
a concept is, the more likely it is that the concept or its descen-
dants appear in the corpus. We describe how we compute this
equation in the next section.

The IC-based similarity measure compares the IC of a pair of
concepts to the IC of their Least Common Subsumer (LCS)1. The
greater the IC of the LCS (i.e., the more specific the LCS), the
more similar is the pair of concepts:

simIC (A,B) =
2 × IC(lcs(A,B))
IC(A) + IC(B)

. (3)

In general, the IC similarity measure is shown to outperform
other approaches on various semantic similarity benchmarks [2,
19, 29]. Hence we adopt the above IC similarity measure and
further integrate it with the structural information in the external
knowledge source, as well as the contextual information from
the natural language query.

3 APPROACH OVERVIEW
In this section, we provide an overview of our query relaxation
method, as shown in Figure 2. We propose a two-phase approach:
an offline phase, in which we construct context specifications,
as well as incorporate an external knowledge source into the
given KB, and an online phase, in which we take a query term
associated with a context, and return the semantically related
results as answers for the query.

Offline phase. In the offline phase, also called external knowl-
edge source ingestion, we perform the following tasks: (i) we
initialize a set of possible contexts based on the domain ontology,
and optionally generate training examples for context classifica-
tion (if needed by natural language interface (NLI) system), (ii)
we compute the frequency of each external concept in the ex-
ternal knowledge source with respect to the associated contexts,
and (iii) we generate mappings between instance data in the
knowledge base and external concepts in the external knowledge
source.

To initialize the set of possible contexts, we traverse the do-
main ontology and return all the relationships, along with their
source and destination concepts. Those relationships constitute
the set of possible contexts, which we provide to the NLI system.
We can also provide labeled data for training a context classifier
in the NLI system if required (described in Section 4).

To compute the frequency of each external concept, we lever-
age the document corpus from which the given knowledge base
1A LCS of two concepts always exists in the external knowledge source. When
multiple LCSs exist, we choose the one with the shortest path to the pair of concepts.
If multiple LCSs have equal distance to the pair of concepts, we use the average IC
of these LCSs for the similarity measure.

Query Relaxation

Knowledge 
Base

External Knowledge 
Source

mapping

Conversational
System

Natural Language
Query System

[query, context]answer

Natural Language Interface Systems

Figure 2: Approach overview.

is curated. Additionally, we differentiate the frequency of the
external concepts with respect to different contexts, as described
in Section 5.1.

To map the instance data from the given KB to the external
concepts in the external knowledge source, we provide three al-
ternative methods, depending on the accuracy requirement from
the application. Specifically, these methods include matching
the instance data and external concepts with exactly the same
names (exact match), very similar names in terms of edit distance,
or similar names in terms of word embeddings, as described in
Section 7.2.

Online phase. In the online phase, also called online query
relaxation, we receives as input a [query term, context] pair and
perform the following tasks: (i)we search for an external concept
Q corresponding to the query term in the external knowledge
source, and (ii) we retrieve the top-k similar external concepts
having corresponding matching instances in the KB to Q as the
answers.

To identify an external concept Q that corresponds to the
input query term, we follow a similar process used in the of-
fline external knowledge source ingestion: we identify Q as the
external concept whose name either matches with the exact
query term, or is very similar in terms of either edit distance
or word embeddings. Additionally, several knowledge sources
(e.g., SNOMED CT2, DrugBank3, DBpedia4) may offer a more
sophisticated lookup service, which we can also utilize to find
such mappings.

Finally, having identified the external concept Q that corre-
sponds to the input query term, we retrieve its top-k similar
external concepts that have corresponding instances in the given
KB. For the similarity computation, we leverage the information
content from the KB, the structural information in the external
knowledge source, as well as the contextual information from
the query, as described in Section 5.2.

2https://browser.ihtsdotools.org/
3https://www.drugbank.ca
4https://github.com/dbpedia/lookup
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4 CONTEXT SPECIFICATION
As explained in Section 2.1, the context can be represented by a
relationship and its associated concepts from the domain ontol-
ogy. In this section, we provide a brief overview of: (i) how our
method provides the necessary information that an NLI system
requires for context recognition, and (ii) how the conversational
context differs from simple question answering. We note that the
process of context recognition is orthogonal to our method, and
we refer the reader to [33] for more details.

Context generation and extraction. Context reflects the
intent or goal expressed in the user query/input5. NLI systems
typically use a learning-based model to identify the intent for a
given user query within the current conversation. As a conse-
quence, most of these systems require as input the specification
of all possible contexts expected in a given workload with labeled
query examples for training the intent classifier. These contexts
are usually based on (i) the purpose of the application and the
scope of questions that it intends to handle, (ii) the anticipated
set of questions that the users might ask within the scope of the
application.

To feed suchNLI systemwith training data, we need to follow a
two-step process. The first step is to generate all possible contexts,
based on the domain ontology. For this step, we traverse the
domain ontology and extract all relationships, along with their
associated concepts, i.e., their source and destination concepts.
Since a context can be represented by a relationship, we define
the set of possible contexts (i.e., possible labels for training data)
as the set of relationships.

The second step is to associate a query workload to the gener-
ated contexts. There are different options for this step, which go
beyond the scope of this work. One simple approach is to retrieve
an existing query workload, and ask domain experts to label each
query in the workload with the most relevant context. Once we
have such an annotated query workload, we can either stop the
process here, or we can further enrich the query workload. For
enriching the query workload, we can replace identified instances
with other instances of the same concept. For example, we can
generate more queries in our workload from a given query “what
drugs treat fever”, labeled with the context Indication-hasFinding-
Finding), by replacing “fever” with other instances of “Finding”,
such as “headache”, “sore throat”, and “pain in throat”.

The result of this two-step process is a set of queries, each
labeled with a context, which we can provide to a NLI system as
training data for context recognition.

Context management. In Figure 2, we show two alternative
NLI systems that can benefit from our query relaxation method.
The main difference between a conversational system and a nat-
ural language query system is that the latter can be stateless.
Namely, a conversational system needs to keep track of the con-
versational flow, i.e., the state of the dialogue and its history.
This way, the current context can be inferred from the previous
state, even if not explicitly mentioned in the current query. For
example, if the current query is “what about fever?”, there is no
clear context, if this query is processed individually. However, if
it is processed as part of a conversation, in which the previous
query was “which drugs treat diabetes”, then a conversational
system can infer that the previous context Indication-hasFinding-
Finding) remains unchanged. More details on that subject can
be found in [23]. On the other hand, a natural language query

5We use the terms context and intent interchangeably in this section.

system typically handles contexts in one-shot queries without
considering previously asked queries.

5 QUERY RELAXATION METHOD
Our query relaxation method has two phases, the offline external
knowledge source ingestion and the online query relaxation. In
this section, we first focus on describing how to customize and
incorporate an external knowledge source into the given KB,
and then we show how to use the adapted knowledge sources in
online query relaxation.

5.1 External Knowledge Source Ingestion
The external knowledge source ingestion addresses the following
two issues. First, we need to count the frequency f req(A) of an
external concept A (Equation 2) based on the corpus from where
the given medical KB is curated. Its frequency should reflect
the context in which the concept is used. Second, the external
knowledge source typically contains an excessive amount of
information in terms of domain vocabulary and relationships. It is
imperative to customize and incorporate the external knowledge
source in accordance with the given KB for query relaxation.

Concept frequency. First, we need to map the instances from
the given KB to their corresponding external concepts in the ex-
ternal knowledge source, as illustrated in Figure 3. A variety of
techniques can be leveraged to produce such mappings, ranging
from exact string matching, approximate string matching using
edit distance, to word embeddings. In this paper, we use these
techniques in a pluggable fashion, and we compare the effec-
tiveness of these algorithms in the experimental evaluation. If
an instance is mapped to an external concept, then this concept
is marked with a flag (the concepts in yellow in Figure 3). The
online query relaxation only returns flagged concepts as seman-
tically related results to a given query term, since the given KB
only contains information about those concepts.

Next, as mentioned earlier, a concept could be used in different
contexts depending on the natural language query, and the se-
mantic meaning can be completely different in different contexts.
For example, a condition treated by a drug is different from an ad-
verse effect (i.e., condition) caused by the same drug. In this case,
having a single frequency associated with a concept (Equation 2)
would not be sufficient to capture the semantic differences over
all possible contexts.

To resolve this issue, we identify all the contexts where an
external concept A can be used. Specifically, we use the rela-
tionships associated to a concept in the domain ontology as the
contexts ofA, if an instance of this concept is mapped toA. Then,
we compute the concept frequency with respect to each context.
The online query relaxation phase chooses the appropriate con-
cept frequency according to the query context as described later
in this section.

To compute the frequency of external concepts, we assume
that the KB is curated based on a document corpus, and we
count the number of times that each external concept name is
mentioned within this corpus. To account for the sparsity of
certain concept names in the corpus, the concept frequency is
further adjusted based on the number of documents in which the
concept name appears. For example, “asthma” is mentioned in 54
drug descriptions in DrugBank [16], whereas “lung cancer” has
only a handful of associated specialty drugs. Hence, we utilize
the commonly used tf-idf weighting to alleviate this bias.
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Figure 3: External knowledge source ingestion.

Example 1. In the medical ontology depicted in Figure 1, the
concept “Finding” is connected to both “Indication” and “Risk”.
In this case, the external concepts associated with instances of
“Finding”, have two concept frequencies corresponding to the
contexts “Indication-hasFinding-Finding” and “Risk-hasFinding-
Finding”. Depending on the query context, one of the concept
frequencies is used in query relaxation. In Figure 4, we show
a snippet of SNOMED CT with the external concept frequency
populated. The external concepts in brackets are all mapped from
different instances of “Finding” in the domain KB, so they can be
used in two different contexts (“Indication-hasFinding-Finding”
and “Risk-hasFinding-Finding”). Hence, they are associated with
two concept frequencies. For example, “headache” is the only
direct descendant of “craniofacial pain”, and the frequency of
“craniofacial pain” is the frequency of itself, together with the one
of “headache”. Accordingly, the frequency of “pain of head and
neck region” is a summation of the frequencies of “craniofacial
pain”, “pain in throat”, and itself, which is 19164 (i.e., 18878 +
283 + 3) in the context of “Indication-hasFinding-Finding” and
1656 in the context of “Risk-hasFinding-Finding”.

Craniofacial pain
<Indication-hasFinding-Finding, 18878>

<Risk-hasFinding-Finding, 1656>

[Headache]
<Indication-hasFinding-Finding, 18878>

<Risk-hasFinding-Finding, 1656>

Dental headache
<Indication-hasFinding-Finding, 0>

<Risk-hasFinding-Finding, 0>

Frequent headache
<Indication-hasFinding-Finding, 0>

<Risk-hasFinding-Finding, 0>

Head finding
<Indication-hasFinding-Finding, 18878>

<Risk-hasFinding-Finding, 1656>

[Pain of head and neck region]
<Indication-hasFinding-Finding, 19164>

<Risk-hasFinding-Finding, 1656>

[Pain in throat]
< Indication-hasFinding-Finding, 283>

<Risk-hasFinding-Finding, 0>

Figure 4: Snippet of SNOMED CT with frequencies.

Finally, all of these frequencies are normalized between [0,
1], which corresponds to the probability of a concept appear-
ing in the corpus. The root concept has the highest normalized
frequency of 1, because all concepts in the external knowledge
source are its descendants.

Sparsity of external knowledge source. The commonly
used external knowledge sources, such as SNOMED CT, are com-
prehensive, consisting of an excessive amount of information
describing the domain. They often consist of rich domain vocab-
ularies associated with deep hierarchies. On the contrary, the

given KB is often relatively smaller compared to the external
knowledge source. Therefore, only a small subset of the exter-
nal concepts may have corresponding instances in the KB. Any
pair of concepts could be connected through multiple interme-
diate ones, which makes finding semantically related concepts
prohibitively time-consuming for an online system. One straight-
forward approach would be computing the pairwise similarity
between all concepts offline. However, this leads to unnecessary
computations and space consumption, since most of these pre-
computed similarities may not even be used during the online
query relaxation.

In the offline ingestion phase, we alleviate the above issue by
introducing additional application-specific edges to the external
knowledge source. Specifically, an additional directed edge is
introduced from an external concept A to an external concept B,
if all the following conditions are satisfied: (1) A and B are not
directly connected (i.e., one-hop neighbors), (2)A is a descendant
of B, and (3) at least one of the two concepts has a corresponding
instance in the given KB. Consequently, they become one-hop
neighbors with respect to the application. The distance between
two external concepts is attached to the new edge so that the
original semantic information between two concepts is preserved.
This way, external concepts come closer, avoiding unnecessary
delays in the online query relaxation phase.

[Chronic kidney disease stage 1 due 
to benign hypertension]

Chronic kidney disease stage 1 due to 
hypertension

Chronic kidney disease stage 1

Renal impairment

[Kidney disease]

3-
ho

p

2-
ho

p
2-

ho
p

3-
ho

p

Figure 5: External knowledge source customization.

Example 2. In Figure 5, “chronic kidney disease stage 1 due to
hypertension” is 3 hops away from “kidney disease”, which has a
corresponding instance in the KB. By introducing an additional
edge (the dashed line) between these two external concepts, they
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are only 1 hop away. Therefore, more semantically related con-
cepts are within a close distance, and the semantic similarity
between two external concepts remains unchanged since the
original path information (3-hop) between them is attached to
the new edge.

Overall, the offline external knowledge source ingestion pro-
cess is summarized in Algorithm 1. The algorithm receives as
input the medical KB (as domain ontology O and instances I )
and the external knowledge source EKS , and it returns the set of
possible contexts C , the frequencies F of the external concepts
for each context, the mappingsM from instances to external con-
cepts, and the set of external concepts that are marked with a flag
FEC . The algorithm consists of 3 almost independent procedures:
context generation, mappings, and concept frequency. Addition-
ally, for efficiency, sparsity of external knowledge source is also
handled in the same loop as concept frequency, even though one
does not depend on the other.

In Lines 1-4, we create the set of possible contexts, based on the
domain ontology’s relationship, along with their domains (source
concepts) and ranges (destination concepts). In Lines 5-11, we
find an external concept A as a mapping for every instance i ∈ I ,
if such exists, based on a chosenmapping function, and return the
set of mappingsM . At the end of this loop, the set FEC contains
all the external concepts that have been marked with a flag, i.e.,
all the external concepts that have a corresponding instance in
I . In Line 12, we sort the external concepts in topological order,
such that the descendants precede their ancestors (note that EKS
is a DAG). This way, we can easily compute the frequency of
each external concept for a given context (Lines 14-18), using the
recursive function of Equation 2. Since the external concepts are
already topologically sorted, we add application-specific edges
to alleviate the sparsity of EKS in the same loop (Lines 19-23).
Specifically, in Line 21, we add an edge from external concept
A to external concept B, when all three conditions (previously
described) are satisfied, while attaching their original distance
(as |shortestPath(A,B)|) to the new edge.

Time complexity analysis. The time complexity of external
knowledge source ingestion can be broken down into the follow-
ing parts. First, creating all possible contexts requires iterating
through all relationships (|R |) in the domain ontology. Hence the
time complexity is Θ(|R |). Second, the time complexity of finding
an external concept A for every instance depends on the chosen
method. For example, using word embeddings to find mappings
requires Θ(|I | · Cost(lookup)), where |I | denotes the total num-
ber of instances and Cost(lookup) denotes the constant cost of
embedding lookup for each instance. If an approximate string
matching algorithm is used, then the time complexity becomes
O(|I | ·mn), where O(mn) denotes the time complexity of typical
approximate string matching algorithm (m and n are the lengths
of two strings). Third, topological sorting of all external concepts
requires O(|V | + |E |) time complexity, assuming that V is the
set of concepts and E is the set of relationships in the external
knowledge source. Fourth, the time complexity of computing
frequency of each external concept for all possible context is
O(|V | · AVG(contexts)), where AVG(contexts) denotes the av-
erage number of contexts per concept in the domain ontology.
Regarding adding application-specific edges to EKS , we ignore its
time complexity since the number of concepts satisfying is much
less than |V |. In summary, the total time complexity is Θ(|R |)
+ Θ(|I | · Cost(lookup)) + O(|V | + |E |) + O(|V | · AVG(contexts)).
Note that the external knowledge source ingestion is an offline
process that is executed only once.

Algorithm 1 Knowledge Source Ingestion Algorithm.
Input: Domain ontology O , Instances I , External Knowledge

Source EKS
Output: (Set of contexts C), External concept frequencies F ,

MappingsM , Flagged external concepts FEC

▷ Context generation
1: C ← ∅
2: for each r ∈ Relationships(O) do
3: C ← C ∪ {(domain(r ), r , ranдe(r ))}
4: end for

▷ Mappings
5: M ← ∅
6: FEC ← ∅ // Flagged external concepts
7: for each i ∈ I do
8: A←mappinд(i, EKS) // map i to an external concept A
9: M ← M ∪ {(i,A)}
10: FEC ← FEC ∪ {A}
11: end for

▷ Concept frequency
12: Q ← topol .Sort(Concepts(EKS)) // children before parents
13: F ← ∅ // Frequencies wrt. context
14: while Q is not empty do
15: A← Q .next()
16: for each c ∈ C do
17: F ← F ∪ {(A, c, f req(A))} // see Equation 2
18: end for

// External knowledge source customization
19: for each B ∈ ancestors(A, EKS) \ parents(A, EKS) do
20: if A ∈ FEC or B ∈ FEC then
21: EKS .addEdдe(A, |shortestPath(A,B)|,B)
22: end if
23: end for
24: Q .remove(A)
25: end while
26: return C, F ,M, FEC

5.2 Online Query Relaxation
Given a query term, the goal of online query relaxation is to
identify the semantically related instances contained in the given
KB by leveraging the external knowledge source. In this subsec-
tion, we present a novel similarity measure that leverages the
information content from the medical KB, the structural informa-
tion in the external knowledge source, as well as the contextual
information from the query.

Contextual information. As described earlier, the possible
contexts of a query term mapped to a concept in the domain
ontology, are the relationships of the concept to its adjacent
concepts. With the contextual information, the online query
relaxation phase can choose the appropriate concept frequency
to use in Equation 2.

Example 3. For the query “what are the risks of using aspirin”,
the context is “Drug-cause-Risk”. As shown in Figure 1, “Risk”
has three descendants “Black Box Warning”, “Adverse Effect”, and
“Contra Indication”. Assuming that the query term “aspirin” cannot
be found in the given KB, then the online query relaxation would
consider related conditions in the context of “Drug-cause-Risk”.
Hence, the concept frequency used for the similarity measure
should be the total frequency of all three descendants of “Risk”.
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In case the contextual information is not available for online
query relaxation, our method can aggregate the frequencies (i.e.,
all possible contexts) associated with an external concept. As
verified in the experimental evaluation section, the contextual
information greatly improves the quality of the results.

Structural (Path) information. As described above, exter-
nal knowledge sources contain generalization and specialization
relationships between concepts. Generalizing the query term in
a user query may cause information loss [24]. For example, as
shown in Figure 4, “headache” can be generalized to “craniofacial
pain”, which can in turn be generalized as “pain of head and neck
region” including “pain in throat”. Apparently, “pain in throat” no
longer describes pain in head, even if it is as close to “craniofacial
pain” as “frequent headache”.

In this case, solely relying on the IC similarity measure (Equa-
tion 3) with contextual information can be insufficient as it can-
not differentiate the semantic difference between specialization
(i.e., the opposite direction of subsumption edges in the external
knowledge source) and generalization (i.e., following the direc-
tion of subsumption edges). We tackle this challenge by assigning
different weights to generalization and specialization in the ex-
ternal knowledge source. The weight of a path connecting two
external concepts A and B is thus computed as:

pA,B =

|D |∏
i
wD−i
i , (4)

where the distance between external concepts A and B is |D |,
and wi indicates the weight of the i-th edge from A to B. The
intuition is that we penalize a generalization and the penalty is
more if it appears early on in a path from A to B. In fact, such
distinction helps us to better capture the semantic similarity
between a pair of concepts based on their relative locations in
the external knowledge source.

To learn the weights of both generalization and specializa-
tion, simple statistical regression analysis [7] such as logistic
regression can be used. In our empirical study, the weights of
generalization and specialization are set to 0.9 and 1, respectively.

Example 4. In Figure 6, the penalty associated with the path
(dashed orange lines) connecting two external concepts can be
different, depending on which concept corresponds to the query
term. In this example, there are 4 hops between “pneumonia” and
“lower respiratory tract infection”. If the query term is “pneumonia”,
it would be penalized more as the first 3 hops in the path starting
from “pneumonia” to “lower respiratory tract infection” are all
generalizations (Figure 6(a)). On the other hand, if the query
term is “lower respiratory tract infection”, it only suffers from one
generalization at the beginning (Figure 6(b)).

Putting it all together. Overall, the online query relaxation
uses a novel similarity measure, which takes as input the infor-
mation content, the contextual information, and the structural
information to find semantically related concepts.

sim(A,B) = pA,B × simIC (A,B). (5)
For a given query term, the query relaxation method first finds

the corresponding external concept A in the external knowledge
source. Then, it searches for the concepts within a distance r
from A. Last, our method retrieves the pre-computed similarity
between A and each external concept in its neighborhood. Top-
k relaxed results are returned based on their similarity scores,
where k is application-specific and defined by users. The radius r
can be set in different ways. Namely, it can be set as a fixed value

Lower respiratory 
tract infection

Disorder of lower
respiratory system

Disorder of lung

Pneumonitis

Pneumonia

generalize
(0.92)

specialize (1)

generalize
(0.93)

generalize
(0.94)

(a) Path 1: From Pneumonia (query term) to Lower respiratory tract
infection.

Lower respiratory 
tract infection

Disorder of lower
respiratory system

Disorder of lung

Pneumonitis

Pneumonia

specialize
(1)

generalize (0.94)

specialize
(1)

specialize
(1)

(b) Path 2: From Lower respiratory tract infection (query term) to
Pneumonia.

Figure 6: Example of paths between two external concepts.

by empirical studies, or dynamically decided if a fixed r cannot
provide k results.

Overall, the online query relaxation process is summarized
in Algorithm 2. The algorithm receives as input a query term
q, along with its associated context c , the instances I from the
given KB, the external knowledge source EKS , the set of external
concepts that are marked with a flag FEC , the mappingsM from
I to EKS concepts, the radius r and an integer k , and it returns
the top-k results Res from I .

Algorithm 2 Online Query Relaxation Algorithm.
Input: Query termq, Context c , Instances I , External Knowledge

Source EKS , Flagged external concepts FEC , Mappings M ,
radius r , integer k

Output: Top-k results Res ⊆ I

1: A←mappinд(q, EKS) // concept A corresponds to q in EKS

▷ candidates are flagged concepts within radius r from A
2: Candidates ← neiдhbors(A, EKS, r ) ∩ FEC
3: sort(Candidates, sim(A,B)) // Equation 5 for context c
4: Res ← ∅
5: while |Res | ≤ k and |Candidates | > 0 do
6: B ← Candidates .pop() // get next element and remove it
7: Res ← Res ∪ {i |(i,B) ∈ M}
8: end while
9: return Res

In Line 1, we retrieve the external concept A that corresponds
to the query term q, using the same mapping function as in Al-
gorithm 1. Then, we get the set of candidate external concepts
within radius r from A, which are marked with a flag, i.e., mem-
bers of FEC (Line 2), and we sort them in descending order of
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similarity to A (Line 3). Finally, we iterate through the sorted
candidates and add to the results Res the instances i that map to
those candidates, until k results have been retrieved, or there are
no more candidates (Lines 5-8).

Time complexity analysis. For online query relaxation, we
again assume that V is the set of concepts in the external knowl-
edge source and the total number of flagged external concepts
FEC is N . Then finding a corresponding external concept A cor-
responding to the query term q requiresO(|V |) time in the worst
case. Returning all flagged external concepts within radius r from
A requires O(N ) time in the worst case (i.e., r is large enough to
include all flagged external concepts). Sorting these candidates
and returning the top-k results take Θ(NloдN ) and Θ(k) time,
respectively. Hence, the total time complexity of online query
relaxation is Θ(NloдN ).

6 APPLICATIONS OF QUERY RELAXATION
Our proposed method is applicable and beneficial to various natu-
ral language interface systems, including conversational systems,
question and answer systems, as well as natural language query
systems to KBs. In this section, we describe how to integrate
the query relaxation method with two state-of-the-art systems
for the medical data set MED, that is used to support evidence-
based clinical decisions and patient education, and SNOMED
CT as the external knowledge source, since it is one of the most
comprehensive and widely used medical knowledge sources.

6.1 Integration with a Conversational System
In the following, we describe how we extended a conversational
system [33] that is built on top of IBM Watson Assistant [21], to
include query relaxation. The query relaxation method is imple-
mented in Java and is deployed on IBM Cloud™ to interact with
Watson Assistant. The medical data set is stored in IBM Db2®
Database and the external knowledge source (SNOMED CT) is
stored in a graph database (i.e., JanusGraph6).

As described in Section 4, the possible intents (i.e., contexts)
are bootstrapped based on the domain ontology, and our query
relaxation method provides training examples to Watson Assis-
tant for intent classification. At query time, Watson Assistant
provides the input to our query relaxation method in the form of
a [query term, context] pair.

In this case, the context comes from the intent classifier of
the conversational system. Regarding the query term, Watson
Assistant extracts entity mentions from an input natural language
query7 and passes the unknown entity mentions as query terms
to our relaxation method. Next, we showcase two scenarios in
which our query relaxation are used (Figures 7 and 8).

The first scenario is to expand the set of queries by using query
relaxation when there is no answer in the KB for the user query.
For example, when the query term (“pyelectasia” ) is unknown
(i.e., no matching concept in the given KB), Watson Assistant
triggers the query relaxation method to find a list of semantically
related concepts that are contained in the given KB by utilizing
the external knowledge source (i.e., SNOMED CT). As shown in
Figure 7, these additional concepts are then used as a means to
“repair” the conversation and smoothly redirect the user to the
information contained in the KB. Consequently, the conversation
can continue with follow-up questions around the expanded
result, “kidney disease”. Without our query relaxation, Watson

6https://janusgraph.org/
7For a demo, refer to https://natural-language-understanding-demo.ng.bluemix.net.

Not in the 
medical KB

Figure 7: Integration with Watson Assistant (Scenario 1).

Assistant would not be able to return any useful information
except replying messages such as “I don’t understand”. Worse yet,
it may return irrelevant and incorrect information to the user, as
illustrated in Section 7.2.

In the second scenario, we use query relaxation to expand
query answers beyond what matches to the query term in the KB
directly. As seen in Figure 8, the query term (“fever” ) is identified
by Watson Assistant as an instance of the concept (Finding) in
the medical KB. Without query relaxation, identifying “fever” as
Finding triggers one predefined intent “Indication-hasFinding-
Finding” in Watson Assistant. Hence, the information such as
syndromes and treatments for “fever” would be returned to the
user. With our query relaxation method for concept expansion,
7 additional concepts related to “fever” are returned before pro-
viding any information specific to “fever”. Hence, it offers more
opportunities for the user to explore the information contained
in the given knowledge base.

6.2 Integration with a Natural Language
Query System

Currently, we are also working on incorporating our method with
a natural language query (NLQ) system [23, 35]. The NLQ system
is different from the previously described conversational system
as it targets one-shot complex queries. In this case, the NLQ
system receives a natural language query as input and interprets
it over the domain ontology to produce a structured query such
as SQL. The proposed query relaxation method is utilized to
increase the flexibility and robustness of query interpretation.
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Figure 8: Integration with Watson Assistant (Scenario 2).

We outline the solution with a running example from the medical
domain as captured in Figure 1 for the query: “What are the risks
caused by using Aspirin with pyelectasia”.

Evidence generation. In the very first step, the NLQ system
tries to identify all the different mentions of ontology elements in
the input natural language query [35]. The NLQ system iterates
through all the word tokens in the query and collects evidences
of one or more elements which have been referenced in the input
query. These elements can be concepts or relationships in the
domain ontology, as well as the instances of those concepts in
the knowledge base.

In general, a token can match multiple elements in the ontol-
ogy. For example, the token “risks” is mapped to a concept “Risk”,
and the phrase “caused by” is mapped to “cause” relationship in
the ontology. “Aspirin” is mapped to the concept of “Drug”.

There are two types of evidence: (i) a metadata evidence is
generated by matching the token to the ontology elements (e.g.,
“Risk” ), and (ii) a data-value evidence is generated by looking up
a token in the knowledge base (e.g., “Aspirin” ). The evidence for
a token can either be metadata or data-value, but not both [35].

Due to the colloquial and imprecise terminology used in natu-
ral language queries, our query relaxation method is particularly
useful to increase the capability of query understanding. The
NLQ system relies on the semantically related results from our
query relaxation method to match a token to either a metadata
or a data-value evidence. The NLQ system associates these se-
mantically relevant results with ontology elements on the fly,
as shown in Figure 9. Again, if “pyelectasia” is not contained
in either domain ontology or knowledge base, our query relax-
ation returns semantically relevant results (e.g., “kidney disease”,
“nephropathy”, etc.), which can be then mapped to the concept of
“Finding” in the domain ontology.

Interpretation generation.Note that only one element from
the evidence set of each token corresponds to the correct query. In
this phase, the NLQ system tries all such combination of elements

What are the risks caused by using Aspirin with pyelectasia?Tokens T

Evidence
type metadata metadata instance data query term

Chosen
Element Risk cause Drug

Contexts
{Fetal pyelectasis, Congenital pyelectasia}
{Kidney disease, nephropathy}Risk-hasFinding-Finding

Drug-treat-Indication

Figure 9: Evidence set.

from each evidence set. Each such combination, called selection
set, is used to generate an interpretation, which is represented
as a sub-graph in the semantic graph connecting one evidence
for each token for each ontology element [35]. This semantically
grounds the words in the input query to specific contexts by
referring to elements in the semantic graph. Connecting these
referred elements produces a unique interpretation for the given
natural language query based on the ontology semantics.

For each selection set, a sub-tree, called Interpretation Tree,
is computed, which uniquely identifies the relationship paths
among the evidences in the selected set [35]. It is computed by
connecting all the elements in the selected set in the semantic
graph and satisfying the following constraint. The NLQ system
uses a Steiner-tree-based algorithm [35] and ranks the interpre-
tations according to their compactness to generate an interpreta-
tion of minimal size for a selected set. Note that query relaxation
returns a similarity score associated with each result value. We
are currently extending the ranking algorithm to take this rank-
ing score into account, in addition to compactness.

For example, the top ranked interpretation as found from
selected set is ITree = { (Drug→ cause→ Risk→ hasFinding→
Finding), (Drug→ treat→ Indication→ hasFinding→ Finding)
}. Two interpretations have the same compactness. In this case,
if we take into consideration the similarity scores associated
with the relaxed results, the former interpretation would be more
preferable since “Kidney disease” is the most semantically similar
concept to the search term “pyelectasia”.

7 EXPERIMENTAL EVALUATION
In this section, we describe experiments using a medical data
set (MED) to show the efficacy of our proposed query relax-
ation method in terms of precision, recall, and F1-score. We also
conduct user studies, in which we use Watson Assistant as the
conversational interface.

7.1 Experimental Setup
Data set.We use a medical data set (MED) that is used to support
evidence-based clinical decisions and patient education. The total
size of this data set is around 1.2 GB. The ontology corresponding
to MED consists of 43 concepts and 58 relationships. We chose
SNOMED CT as the external knowledge source since it consists
of comprehensive information regarding terms, synonyms, and
definitions used in clinical documentation and reporting.

Users. 20 Subject Matter Experts (SMEs) participated in our
experiments. They all have deep knowledge and understanding
of the medical domain, and are able to distinguish between a
correct and a wrong answer.

Methodologies. We conducted two sets of experiments to
evaluate the efficacy of our proposed query relaxation method
with respect to precision and recall. First, we show the superiority
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of our method compared to alternative methods. Second, a user
study demonstrates the benefit of applying our query relaxation
method in a conversational system.

7.2 Evaluation Results
Precision and recall. We chose 100 commonly used concepts
of medical conditions, and used the methods described below
to identify the semantically related concepts. The participants
were asked to evaluate whether these relaxed concepts are indeed
related to the given ones.

We first study the effectiveness of the methods used for map-
ping instances from the given KB to the external knowledge
source, including exact string matching (EXACT), approximate
string matching with an edit-distance threshold τ = 2 (EDIT), and
a variant of word embedding to support longer pieces of text [3]
(EMBEDDING). Table 1 reports Precision, Recall as well as F1-score
of these three mapping methods.

We observe that word embedding achieves the best overall
result quality. This provides our query relaxation method a solid
foundation to identify semantically related concepts in the neigh-
borhood of these concepts. On the contrary, exact and approxi-
mate string matching suffer from lower recall compared to the
word embedding method. Hence we used word embeddings in
the rest of the experiments as the matching method.

Table 1: Accuracy of mapping methods.

Methods Precision Recall F1
EXACT 100 83.33 90.01
EDIT 96.36 88.33 92.17
EMBEDDING 96.49 91.67 94.02

Next, we compare our proposed query relaxation method (QR)
against its variants as well as alternative approaches, including
our proposed method without the frequency information from
the corpus (QR-no-corpus), our proposed method without the con-
textual information (QR-no-context), a baseline IC-based semantic
measure (IC) [2], a baseline method [3, 8] using both pre-trained
embeddings [32] (Embedding-pre-trained) and embeddings we
trained on a given medical document corpus (Embedding-trained).

Table 2: Overall effectiveness.

Methods P@10 R@10 F1
QR 90.51 82.64 86.40
QR-no-context 85.45 77.27 81.15
QR-no-corpus 78.23 70.91 74.39
IC 75.55 68.18 71.68
Embedding-pre-trained 66.14 60.13 62.99
Embedding-trained 79.37 71.81 75.40

Table 2 reports Precision@10, Recall@10 as well as F1-score
against theMED data set. Precision@10 corresponds to the number
of relevant results among the top 10 returned concepts, Recall@10
is the proportion of relevant results found in the top 10 returned
concepts to the total number of relevant results, and F1-score is
the harmonic mean of Precision@10 and Recall@10. Our proposed
methods including (QR-no-corpus and QR-no-context) are more
accurate than the baseline IC. Specifically, we observe that QR-
no-context still returns higher quality results than the baseline IC.

This shows that differentiating specialization and generalization
relationships helps capturing the semantic similarity between a
pair of concepts. It is not surprising that QR-no-context further
improves the result quality when the frequency information is
available from the corpus. Regarding Embedding-pre-trained, we
observe that it achieves the lowest precision and recall among all
methods. This is expected as the model was trained on a different
medical corpus and many of the words contained in SNOMED CT
are out of its vocabulary. For the embedding of multi-word query
terms, we used the average its words’ embeddings. The result
quality of Embedding-trained is much improved as we trained
the embedding model on our medical document corpus, and the
embedding of a (multi-word) query term is further computed
based on [3]. However, without the contextual information from
the query, many concepts in the given KB are cluttered with the
query term in the low-dimensional vector space. Hence the qual-
ity of Embedding-trained is still not as good as QR. In summary,
our method QR, which incorporates both the frequency infor-
mation from the corpus, as well as the context from the query,
achieves the highest precision and recall.

User study. In this user study, participants were asked to com-
plete two tasks to evaluate the query understanding capability of
a conversational system with and without our query relaxation
method. The participants were allowed to get familiar with the
conversational system over the given KB. In task 1 (T1), we asked
participants to come up with 20 questions around 20 given con-
cepts (i.e., condition names). For example, the participant may
ask “what drugs are used to treat [condition]” or “what drugs
cause [condition]”. In task 2 (T2), the participants were allowed to
come up with 10 questions of their own choice about anything
in MED.

The participants were then asked to grade the quality of the
relaxed results in a scale of 1-5. If the system returns a correct
response in the first attempt, it receives 5 points. If the system
fails to return a correct response, the participants can rephrase
their questions for at most 4 more times. Each time a wrong
result is returned, the participant subtracts a point. For example,
if the correct answer is returned after 3 attempts (i.e., 2 failed
attempts) the participant gives in total 5-2 = 3 points. In addition
to the score, we also asked the participants to provide detailed
feedback.

Table 3: Watson Assistant with and without QR.

QR no QR
Score T1 T2 T1 T2
1 (Very dissatisfied) 2.1% 10.55% 13.06% 11.11%
2 (Dissatisfied) 10.35% 11.07% 16.87% 38.26%
3 (Okay) 25.59% 29.33% 36.29% 30.85%
4 (Satisfied) 35.21% 33.37% 18.25% 12.47%
5 (Very satisfied) 26.85% 15.68% 15.53% 7.31%
AVG 3.73 3.31 3.06 2.67

Table 3 shows the aggregated grades received by our query
relaxation method for the two tasks described above. The num-
bers in the table show the percentage of each particular grade.
Clearly, the conversation system with query relaxation achieves
a substantially higher score than the one without query relax-
ation in both tasks. The average grades of the system with query
relaxation in both tasks are 20% higher than the ones without
relaxation. Specifically, our query relaxation method performed
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slightly better in T1 than T2. The reasons are that the questions
used in T2 were completely from the participants and a non-
trivial number of questions (9 out of 200) do not have an answer
in the given KB, as opposed to T1, where 20 concepts were pro-
vided to the users. Moreover, the feedback from the participants
indicates that the lower grades in Table 3 are due to other reasons
orthogonal to the quality of our query relaxation method.

Specifically, there are 7 incidences in which the expected an-
swers are not contained in the given KB (MED). There are 11
incidences where the users complained about the conversational
flow irrespective of the query relaxation results. For example,
some users prefer smaller number of interactions with the con-
versational system in order to complete their tasks. Some users
failed to follow the instructions, and hence ran into unexpected
follow-up questions. Moreover, there are 10 incidences that the
users did not provide any negative feedback but gave a low grade
such as 1 or 3. Last but not the least, the SMEs reported 6 instances
that the amount of information returned is overwhelming even
though the relaxed results are semantically correct. All these
cases resulted in low grades, including 1, 2, and 3. Note that all
the above cases are counted in Table 3. One straightforward so-
lution to address these issues would be to incorporate the user’s
relevance feedback [39] in the query relaxation method, and to
progressively improve the relaxed results.

8 RELATEDWORK
Natural language querying over KBs. Several approaches
have been recently investigated to build natural language inter-
faces to KBs. In [13], query templates are learned from KBs and
question answering corpora. Wang et al. [41] leverage terms and
their relationships from a web corpus and map them to related
concepts using a KB. Then, a randomwalk-based algorithm is pro-
posed for understanding the terms in a given query. The seman-
tic parsing methods proposed in [4] use a domain-independent
representation derived from combinatory categorical grammar
parsers. Most recently, a supervised learning framework [20] is
introduced to exploit sentence embedding for the medical ques-
tion answering task. However, they usually require a large labeled
corpus or pairs of questions and answers. Our approach is com-
plementary to these methods since they only focus on answering
queries with ‘strict’ execution, which often results in no answers.
Our query relaxation expands the domain vocabulary used in
queries and provides more semantically related results.

Query relaxation for databases. The database community
has developed query relaxation methods that return informa-
tion beyond a standard query. Query relaxation expands the
query selection criteria to include additional relevant informa-
tion, often by consulting a semantic model of the data domain.
Gaasterland [18] introduces query relaxation techniques in de-
ductive databases, using logic rules to specify legal relaxation
constraints. Query relaxation [11] is introduced to relational
databases using type-abstraction hierarchies to find semantically
similar query results. A taxonomy-based relational algebra is
proposed to extend the capability of selection and join by re-
lating values occurring in the tuples with values in the query
using the taxonomy [26]. Poulovassilis et al. [31] applied query
approximation and query relaxation techniques based on RDFS
inference rules to the evaluation of conjunctive regular path
queries (CRPQs) over graph data. Our approach is different from
the above work as we leverage external knowledge sources to
expand the domain vocabulary. Further, our approach uses the

domain ontology and context information to differentiate the
semantic subtleties among instances.

Semantic similarity measures. Among various semantic
measures, path finding measure [42] is based on the shortest path
separating concepts, which traverses the LCS of two concepts.
IC-based measures can be estimated solely from the structure of
a taxonomy [36], or from the distribution of concepts in a text
corpus and a taxonomy [34]. Our semantic similarity measure is
designed upon these measures and overcomes their limitations
by utilizing the domain ontology to differentiate the semantic
subtleties. Hence our method can achieve significant gain of
recall without sacrificing the precision.

Recent works demonstrated that deep learning models built
at word [8, 30] or sentence [3, 14] level can be used for semantic
similarity estimation. However, these methods demand high qual-
ity training data sets, which is critical and expensive in reality.
Moreover, directly applying word or sentence embeddings to our
problem is not sufficient since the structural and contextual infor-
mation are not considered when the model is trained. Hence, we
use word and sentence embeddings for linking the given KB to
the external knowledge source and build our similarity measure
on top of it.

9 CONCLUSION
In this paper, we present a novel two-phase query relaxation
method that leverages external knowledge sources to expand
answers for querying medical KBs. We introduce a novel similar-
ity metric to empower our query relaxation method to identify
semantically related concepts. Our method is successfully inte-
grated with two exemplary systems, a conversational system
and a natural language query system, respectively. Our experi-
ments show that our query relaxation method for the medical KB
outperforms state-of-the-art methods, including deep learning-
based ones, in precision and recall. We also conduct a user study
demonstrating how our query relaxation method expands the
query results and improves their quality for medical KBs.
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