
Schemas And Types For JSON Data
Mohamed-Amine Baazizi

Sorbonne Université, LIP6 UMR 7606

France

baazizi@ia.lip6.fr

Dario Colazzo

Université Paris-Dauphine, PSL Research University

France

dario.colazzo@dauphine.fr

Giorgio Ghelli

Dipartimento di Informatica

Università di Pisa

Pisa, Italy

ghelli@di.unipi.it

Carlo Sartiani

DIMIE

Università della Basilicata

Potenza, Italy

sartiani@gmail.com

ABSTRACT
The last few years have seen the fast and ubiquitous diffusion of

JSON as one of the most widely used formats for publishing and

interchanging data, as it combines the flexibility of semistruc-

tured data models with well-known data structures like records

and arrays. The user willing to effectively manage JSON data col-

lections can rely on several schema languages, like JSON Schema,

JSound, and Joi, or on the type abstractions offered by modern

programming languages like Swift or TypeScript.

The main aim of this tutorial is to provide the audience with

the basic notions for enjoying all the benefits that schemas and

types can offer while processing and manipulating JSON data.

This tutorial focuses on four main aspects of the relation between

JSON and schemas: (1) we survey existing schema language pro-

posals and discuss their prominent features; (2) we review how

modern programming languages support JSON data as first-class

citizens; (3) we analyze tools that can infer schemas from data, or

that exploit schema information for improving data parsing and

management; and (4) we discuss some open research challenges

and opportunities related to JSON data.

1 INTRODUCTION
The last two decades have seen a dramatic change in the data pro-

cessing landscape. While at the end of the last century data were

usually very structured and managed inside relational DBMSs,

nowadays they have very different characteristics: they are big,

usually semistructured or even unstructured, without a rigid and

predefined schema, and hosted and produced in data process-

ing platforms that do not embrace the relational model. In this

new scenario, where data come without a schema, and multiple

data models coexist, JSON is affirming as a useful format for

publishing and exchanging data, as it combines the flexibility

of XML with well-known data structures like records and ar-

rays. JSON is currently employed for publishing and sharing data

in many application fields and for many different purposes: for

instance, JSON is used as the result format for many web site

APIs (e.g., Twitter, New York Times), as a common format for the

remote interaction of modern web applications (e.g., Facebook’s

GraphQL is entirely based on JSON), as a common format for ex-

changing scientific data as well as public open data (e.g., the U.S.

Government’s open data platform: https://www.data.gov).

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the

22nd International Conference on Extending Database Technology (EDBT), March

26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Given the wide diffusion of JSON and its use in scientific as

well as mainstream applications, the need to directly manipulate

JSON data inside applications rapidly emerged. To this aim, a

schema language, specifically designed for JSON, has been in-

troduced, but its adoption is not growing at a fast pace, since

its specification is somewhat complex and many modern pro-

gramming languages, like Swift and TypeScript, directly support

JSON data through their own, simple type systems; furthermore,

Walmart Labs endowed JavaScript, which is inherently untyped,

with a powerful schema language for JSON objects by means of

JavaScript function calls.

In this tutorial proposal, we will present and discuss existing

schema and type languages for JSON data, and compare their

features; we will also discuss several schema-related tools, with

a particular focus on approaches for schema inference. The main

aim of this tutorial is to provide the audience and developers with

the basic notions for enjoying all the benefits that schemas and

types can offer while processing, analyzing, and manipulating

JSON data.

Outline. This 1.5-hour tutorial is split into five main parts:

(1) JSON primer (∼ 10 min.). In this very introductory part

of the tutorial, we review the basic notions about JSON

together with its JavaScript legacy, and present a few ex-

amples, coming from publicly available datasets, that we

will use throughout the remaining parts of the tutorial.

(2) Schema languages (∼ 20 min.). In this part of the tuto-

rial we focus on existing schema languages for JSON data

collections and discuss their most prominent features.

(3) Types in Programming Languages (∼ 15min.). In this
part of the tutorial we review how modern programming

languages support JSON data as first class citizens. In par-

ticular, we focus on programming and scripting languages

for web and/or mobile applications, where JSON data in-

terchange is a crucial task.

(4) Schema Tools (∼ 30 min.). In this part of the tutorial

we analyze tools that exploit schema information for im-

proving JSON data processing. We focus on the problem of

inferring a meaningful schema for schemaless JSON collec-

tions, as well as on the exploitation of schema information

for improving data parsing and management.

(5) Future Opportunities (∼ 10 min.). Finally, we outline
open research problems as potential directions for new

research in this area.

In what follows we describe at a very high level the technical

content covered in each of the last four aforementioned parts.

Tutorial

 

 

Series ISSN: 2367-2005 437 10.5441/002/edbt.2019.39

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.39


2 SCHEMA LANGUAGES
In this part of the tutorial we will focus our attention on several

schema languages for JSON data, with particular emphasis on

JSON Schema [4] and Walmart Labs Joi [6].

JSON Schema emerged in the academic community and has

been developed without a specific programming or scripting lan-

guage in mind. JSON Schema allows the programmer to specify

a schema for any kind of JSON values, and supports traditional

type constructors, like union and concatenation, as well as very

powerful constructors like negation types.

JSON Schema has already been studied. Indeed, in [21], moti-

vated by the need of laying the formal foundations for the JSON

Schema language [4], Pezoa et al. present the formal semantics

of that language, as well as a theoretical study of its expressive

power and validation problem. Along the lines of [21], Bourhis et

al. [15] have recently laid the foundations for a logical character-

ization and formal study for JSON schema and query languages.

On the contrary, Joi has been developed by Walmart as a tool

for (i) creating schemas for JSON objects and (ii) ensuring the

validation of objects inside an untyped scripting language like

JavaScript; furthermore, to the best of our knowledge, Joi has

not been studied so far. Joi only allows the designer to describe

the schema for JSON objects, but it still provides the ability to

specify co-occurrence and mutual exclusion constraints on fields,

as well as union and value-dependent types.

We will analyze the most prominent features of these lan-

guages, and compare their capabilities in a few scenarios. We

will also briefly discuss JSound [5], an alternative, but quite re-

strictive, schema language, as well as a few other schema-related

proposals, such that described in [24], where Wang et al. present

a framework for efficiently managing a schema repository for

JSON document stores. The proposed approach relies on a no-

tion of JSON schema called skeleton. In a nutshell, a skeleton is a

collection of trees describing structures that frequently appear in

the objects of a JSON data collection. In particular, the skeleton

may totally miss information about paths that can be traversed

in some of the JSON objects.

3 TYPES IN PROGRAMMING LANGUAGES
Unlike XML, which found no space as a first class citizen in pro-

gramming languages, with the obvious and notable exception of

XQuery, JSON has been designed starting from the object lan-

guage of an existing scripting language. Therefore, given its wide

use in web and mainstream application development, JSON sup-

port has been introduced in several strongly typed programming

and/or scripting languages.

To directly and naturally manage JSON data a programming

language should incorporate the ability to express record types,

sequence types, and union types. While record and sequence

types can be easily found inmany programming languages, union

types are quite rare and usually confined to functional languages

only.

In this part of the tutorial we will discuss the support for JSON

objects inside the type systems of TypeScript [9] and Swift [8].

TypeScript is a typed extension of JavaScript, while Swift is an

Apple-backed programming language that is rapidly becoming

the language of choice for developing applications in the Apple

ecosystem (iOS + macOS). These languages show similar features,

but also very significant differences in the treatment of JSON

objects.

We will also compare the features offered by these languages

with those of the schema languages we presented in the second

part of the tutorial.

4 SCHEMA TOOLS
In this part of the tutorial we will present several schema-related

tools for JSON data. We will first discuss existing approaches

for inferring a schema starting from a dataset and then move to

parsing tools that are able to exploit dynamic type information

to speed-up data parsing.

4.1 Schema Inference
Several schema inference approaches for JSON data collections

have been proposed in the past. In [10–12] authors describe a

distributed, parametric schema inference approach capable of

inferring schemas at different levels of abstraction. In the context

of Spark, the Spark Dataframe schema extraction [7] is a very

interesting tool for the automated extraction of a schema from

JSON datasets; this tool infers schemas in a distributed fashion,

but, unlike the technique described in [10–12], its inference ap-

proach is quite imprecise, since the type language lacks union

types, and the inference algorithm resorts to Str on strongly

heterogeneous collections of data. Other systems, like Jaql [13],

exploit schema information for inferring the output schema of a

query, but still require an externally supplied schema for input

data, and perform output schema inference only locally on a

single machine.

There are also a few inference tools for data stored in NoSQL

systems and RDBMSs. Indeed, in the context of NoSQL systems

(e.g. MongoDB), recent efforts have been dedicated to the problem

of implementing tools for JSON schema inference. A JavaScript

library for JSON, called mongodb-schema, is presented in [22].

This tool analyzes JSON objects pulled from MongoDB, and pro-

cesses them in a streaming fashion; it is able to return quite

concise schemas, but it cannot infer information describing field

correlation. Studio 3T [19] is a commercial front-end for Mon-

goDB that offers a very simple schema inference and analysis

feature, but it is not able to merge similar types, and the resulting

schemas can have a huge size, which is comparable to that of the

input data. In [23], a python-based tool is described, called Skin-

fer, which infers JSON Schemas from a collection of JSON objects.

Skinfer exploits two different functions for inferring a schema

from an object and for merging two schemas; schema merging is

limited to record types only, and cannot be recursively applied to

objects nested inside arrays. Couchbase, finally, is endowed with

a schema discovery module which classifies the objects of a JSON

collection based on both structural and semantic information [3].

This module is meant to facilitate query formulation and select

relevant indexes for optimizing query workloads.

When moving to RDBMSs, in [16] Abadi and al. deal with

the problem of automatically transforming denormalised, nested

JSON data into normalised relational data that can be stored in

a RDBMS; this is achieved by means of a schema generation

algorithm that learns the normalised, relational schema from data.

This approach ignores the original structure of the JSON input

dataset and, instead, depends on patterns in the attribute data

values (functional dependencies) to guide its schema generation.

438



4.2 Parsing
There are a few novel parsing tools for JSON data that take into

account dynamic type information for improving the efficiency

of the applications relying on them.

In a recent work [20], Li et al. present streaming techniques for

efficiently parsing and importing JSON data for analytics tasks;

these techniques are then used in a novel C++ JSON parser, called

Mison, that exploits AVX instructions to speed up data parsing

and discarding unused objects. To this end, it infers structural

information of data on the fly in order to detect and prune parts

of the data that are not needed by a given analytics task.

In [14], Bonetta and Brantner present Fad.js, a speculative,
JIT-based JSON encoder and decoder designed for the Oracle

Graal.js JavaScript runtime. It exploits data access patterns to

optimize both encoding and decoding: indeed, Fad.js relies on

the assumption that most applications never use all the fields

of input objects, and, for instance, skips unneeded object fields

during JSON object parsing.

5 FUTURE OPPORTUNITIES
We finally discuss several open challenges and opportunities

related to JSON schemas, including the following ones.

Schema Inference and ML. While all schema inference ap-

proaches covered in the previous part of the tutorial are based

on traditional techniques, a recent work by Gallinucci et al. [17]

shows the potential benefits of ML approaches in schema infer-

ence; furthermore, ML-based inference techniques have already

been used for non-JSON data, as shown by Halevy et al. in [18].

Hence, a promising research direction is to understand how these

methods can be efficiently applied to large collections of data

and whether they can overcome some limitations of previous

approaches.

Schema-Based Data Translation. While JSON is very frequently

used for exchanging and publishing data, it is hardly used as

internal data format in Big Data management tools, that, instead,

usually rely on formats like Avro [1] and Parquet [2]. When input

datasets are heterogeneous, schemas can improve the efficiency

and the effectiveness of data format conversion. Therefore, a

major opportunity is to design schema-aware data translation

algorithms that are driven by schema information and use it to

improve the quality of the translation.

6 INTENDED AUDIENCE AND COVERAGE
Our goal is to present a coherent starting point for EDBT atten-

dees who are interested in understanding the foundations and

applications of schemas and types for JSON data processing. We

will not assume any background in JSON schema languages, but

will introduce them starting from the roots, giving broad cover-

age of many of the key ideas, making it appropriate for graduate

students seeking new areas to study and researchers active in

the field alike.

7 BIOGRAPHICAL SKETCHES
Mohamed-Amine Baazizi (Ph.D.) is an assistant professor at

Sorbonne Université. He received his PhD from Université of

Paris-Sud and completed his postdoctoral studies in Télécom

Paristech. His research focuses on exploiting schema information

for optimizing the processing of semi-structured data.

Dario Colazzo (Ph.D.) is Full Professor in Computer Science

at LAMSADE - Université Paris-Dauphine. He received his PhD

from Università di Pisa, and he completed his postdoctoral stud-

ies at Università di Venezia and Université Paris Sud. His main

research activities focus on static analysis techniques for large

scale data management.

Giorgio Ghelli (Ph.D.) is Full Professor in Computer Science,

at Università di Pisa. He was Visiting Professor at École Normale

Supérieure Paris, at Microsoft Research Center, Cambridge (UK),

and at Microsoft Co. (Redmond, USA), member of the W3C XML

Query Working Group, member of the board of the EAPLS. He

worked on database programming languages and type systems

for these languages, especially in the fields of object oriented and

XML data models.

Carlo Sartiani (Ph.D.) is an assistant professor at Università

della Basilicata. He received his PhD from Università di Pisa,

and he completed his postdoctoral studies at Università di Pisa.

He worked on database programming languages and data in-

tegration systems, and his current research activities focus on

semistructured and big data.

REFERENCES
[1] Apache Avro. https://avro.apache.org.
[2] Apache Parquet. https://parquet.apache.org.
[3] Couchbase auto-schema discovery. https://blog.couchbase.com/auto-schema-

discovery/.

[4] JSON Schema language. http://json-schema.org.
[5] JSound schema definition language. http://www.jsoniq.org/docs/JSound

/html-single/index.html.
[6] Object schema description language and validator for JavaScript objects.

https://github.com/hapijs/joi.

[7] Spark Dataframe. https://spark.apache.org/docs/latest/
sql-programming-guide.html.

[8] Swift. https://swift.org.
[9] TypeScript. https://www.typescriptlang.org.
[10] MohamedAmine Baazizi, HoussemBen Lahmar, Dario Colazzo, Giorgio Ghelli,

and Carlo Sartiani. 2017. Schema Inference for Massive JSON Datasets. In

EDBT ’17.
[11] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani.

2017. Counting types for massive JSON datasets. In Proceedings of The 16th
International Symposium on Database Programming Languages, DBPL 2017,
Munich, Germany, September 1, 2017. 9:1–9:12.

[12] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani.

2019. Parametric schema inference for massive JSON datasets. The VLDB
Journal (2019). https://doi.org/10.1007/s00778-018-0532-7

[13] Kevin S. Beyer, Vuk Ercegovac, Rainer Gemulla, Andrey Balmin, Mohamed Y.

Eltabakh, Carl-Christian Kanne, Fatma Özcan, and Eugene J. Shekita. 2011.

Jaql: A Scripting Language for Large Scale Semistructured Data Analysis.

PVLDB 4, 12 (2011), 1272–1283.

[14] Daniele Bonetta and Matthias Brantner. 2017. FAD.js: Fast JSON Data Access

Using JIT-based Speculative Optimizations. PVLDB 10, 12 (2017), 1778–1789.

http://www.vldb.org/pvldb/vol10/p1778-bonetta.pdf

[15] Pierre Bourhis, Juan L. Reutter, Fernando Suárez, and Domagoj Vrgoc. 2017.

JSON: Data model, Query languages and Schema specification. In PODS ’17.
123–135.

[16] Michael DiScala and Daniel J. Abadi. 2016. Automatic Generation of Nor-

malized Relational Schemas from Nested Key-Value Data. In SIGMOD ’16.
295–310.

[17] Enrico Gallinucci, Matteo Golfarelli, and Stefano Rizzi. 2018. Schema profiling

of document-oriented databases. Inf. Syst. 75 (2018), 13–25.
[18] Alon Y. Halevy, Flip Korn, Natalya Fridman Noy, Christopher Olston, Neoklis

Polyzotis, Sudip Roy, and Steven Euijong Whang. 2016. Goods: Organizing

Google’s Datasets. In Proceedings of the 2016 International Conference on Man-
agement of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 -
July 01, 2016. 795–806.

[19] 3T Software Labs. 2017. Studio 3T. https://studio3t.com.
[20] Yinan Li, Nikos R. Katsipoulakis, Badrish Chandramouli, Jonathan Goldstein,

and Donald Kossmann. 2017. Mison: A Fast JSON Parser for Data Analytics.

PVLDB 10, 10 (2017), 1118–1129.

[21] Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Martín Ugarte, and Domagoj

Vrgoč. 2016. Foundations of JSON Schema. In WWW ’16. 263–273.
[22] Peter Schmidt. 2017. mongodb-schema.

https://github.com/mongodb-js/mongodb-schema.
[23] scrapinghub. 2015. Skinfer. https://github.com/scrapinghub/skinfer.
[24] Lanjun Wang, Shuo Zhang, Juwei Shi, Limei Jiao, Oktie Hassanzadeh, Jia Zou,

and Chen Wangz. 2015. Schema Management for Document Stores. Proc.
VLDB Endow. 8, 9 (May 2015), 922–933.

439


	Schemas And Types For JSON DataMohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani

