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ABSTRACT
Effective data analytics on data collected from the real world
usually begins with a notoriously expensive pre-processing step
of data transformation and wrangling. Programming By Example
(PBE) systems have been proposed to automatically infer trans-
formations using simple examples that users provide as hints.
However, an important usability issue—verification—limits the
effective use of such PBE data transformation systems, since the
verification process is often effort-consuming and unreliable.

We propose a data transformation paradigm design CLX (pro-
nounced “clicks”) with a focus on facilitating verification for end
users in a PBE-like data transformation. CLX performs pattern
clustering in both input and output data, which allows the user to
verify at the pattern level, rather than the data instance level, with-
out having to write any regular expressions, thereby significantly
reducing user verification effort. Thereafter, CLX automatically
generates transformation programs as regular-expression replace
operations that are easy for average users to verify.

We experimentally compared the CLX prototype with both
FlashFill, a state-of-the-art PBE data transformation tool, and
Trifacta, an influential system supporting interactive data trans-
formation. The results show improvements over the state of the
art tools in saving user verification effort, without loss of effi-
ciency or expressive power. In a user study on data sets of various
sizes, when the data size grew by a factor of 30, the user verifica-
tion time required by the CLX prototype grew by 1.3× whereas
that required by FlashFill grew by 11.4×. In another user study
assessing the users’ understanding of the transformation logic —
a key ingredient in effective verification — CLX users achieved a
success rate about twice that of FlashFill users.

1 INTRODUCTION
Data transformation, or datawrangling, is a critical pre-processing
step essential to effective data analytics on real-world data and is
widely known to be human-intensive as it usually requires pro-
fessionals to write ad-hoc scripts that are difficult to understand
and maintain. A human-in-the-loop Programming By Example
(PBE) approach has been shown to reduce the burden for the
end user: in projects such as FlashFill [6], BlinkFill [24], and
Foofah [11], the system synthesizes data transformation pro-
grams using simple examples the user provides.

Problems — Most of existing research in PBE data transforma-
tion tools has focused on the “system” part — improving the
efficiency and expressivity of the program synthesis techniques.
Although these systems have demonstrated some success in ef-
ficiently generating high-quality data transformation programs
for real-world data sets, verification, as an indispensable in-
teraction procedure in PBE, remains a major bottleneck within
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existing PBE data transformation system designs. The high labor
cost, may deter the user from confidently using these tools.

Any reasonable user who needs to perform data transforma-
tion should certainly care about the “correctness” of the inferred
transformation logic. In fact, a user will typically go through
rounds of “verify-and-specify" cycles when using a PBE system.
In each interaction, a user has to verify the correctness of the cur-
rent inferred transformation logic by validating the transformed
data instance by instance until she identifies a data instance mis-
takenly transformed; then she has to provide a new example for
correction. Given a potentially large and varied input data
set, such a verification process is like “finding a needle in
a haystack” which can be extremely time-consuming and
tedious.

A naïve way to simplify the cumbersome verification process
is to add explanations to the transformed data so that the user
does not have to read them in their raw form. For example, if
we can somehow know the desired data pattern, we can write a
checking function to automatically check if the post-transformed
data satisfies the desired pattern, and highlight data entries that
are not correctly transformed.

However, a data explanation procedure alone can not solve the
entire verification issue; the undisclosed transformation logic re-
mains untrustworthy to the end user. Users can at best verify that
existing data are converted into the right form, but the logic is
not guaranteed to be correct and may function unexpect-
edly on new input (see Section 2 for an example). Without good
insight into the transformation logic, PBE system users cannot
tell if the inferred transformation logic is correct, or when there
are errors in the logic, they may not be able to debug it. If the
user of a traditional PBE system lacks good understand-
ing of the synthesize program’s logic, she can only verify
it by spending large amounts of time testing the synthe-
sized program on ever-larger datasets.

Naïvely, previous PBE systems can support program explana-
tion by presenting the inferred programs to end users. However,
these data transformation systems usually design their own Do-
main Specific Languages (DSLs), which are usually sophisticated.
The steep learning curve makes it unrealistic for most users to
quickly understand the actual logic behind the inferred programs.
Thus, besides more explainable data, a desirable PBE system
should be able to present the transformation logic in a way that
most people are already familiar with.

Insight — Regular expressions (regexp) have been known to
most programmers of various expertise and regexp replace op-
erations have been commonly applied in data transformations.
The influential data transformation system, Wrangler (later
as Trifacta), proposes simplified natural-language-like regular
expressions which can be understood and used even by non-
technical data analysts. This makes regexp replace operations
a good choice for an explainable transformation language. The
challenge then is how to automatically synthesize regexp replace
operations as the desired transformation logic in a PBE system.
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A regexp replace operation takes in two parameters: an input
pattern and a replacement function. Suppose an input data set is
given, and the desired data pattern can be known, the challenge
is to determine a suitable input pattern and the replacement func-
tion to convert all input data into the desired pattern. Moreover, if
the input data set is heterogeneous with many formats, we need
to find out an unknown set of such input-pattern-and-replace-
function pairs.

Pattern profiling can be used to discover clusters of data pat-
terns within a data set that are are useful to generate regular
replace operations. Moreover, it can also serve as a data expla-
nation approach helping the user quickly understand the pre-
and post-transformation data which reduces the verification chal-
lenge users face in PBE systems.

Proposed Solution — In this project, we propose a new data
transformation paradigm, CLX, to address the two specific prob-
lemswithin our claimed verification issue. TheCLX paradigm has
three components: two algorithmic components—clustering and
transformation—with an intervening component of labeling. In
this paper, we present an instantiation of the CLX paradigm. We
present (1) an efficient pattern clustering algorithm that groups
data with similar structures into small clusters, (2) a DSL for
data transformation, that can be interpreted as a set of regular
expression replace operations, (3) a program synthesis algorithm
to infer desirable transformation logic in the proposed DSL.

Through the above means, we are able to greatly ameliorate
the usability issue in verification within PBE data transformation
systems. Our experimental results show improvements over the
state of the art in saving user verification effort, along with in-
creasing users’ comprehension of the inferred transformations.
Increasing comprehension is highly relevant to reducing the veri-
fication effort. In one user study on a large data set, when the data
size grew by a factor of 30, the CLX prototype cost 1.3× more
verification time whereas FlashFill cost 11.4×more verification
time. In a separate user study accessing the users’ understand-
ing of the transformation logic, CLX users achieved a success
rate about twice that of FlashFill users. Other experiments also
suggest that the expressive power of the CLX prototype and its
efficiency on small data are comparable to those of FlashFill.

Organization — After motivating our problem with an example
in Section 2, we discuss the following contributions:
• Wedefine the data transformation problem and present the
PBE-like CLX framework solving this problem. (Section 3)
• We present a data pattern profiling algorithm to hierarchi-
cally cluster the raw data based on patterns. (Section 4)
• We present a new DSL for data pattern transformation in
the CLX paradigm. (Section 5)
• We develop algorithms synthesizing data transformation
programs, which can transform any given input pattern
to the desired standard pattern. (Section 6)
• We experimentally evaluate the CLX prototype and other
baseline systems through user studies and simulations.
(Section 7)

We explore the related work in Section 8 and finish with a dis-
cussion of future work in Section 9.

2 MOTIVATING EXAMPLE
Bob is a technical support employee at the customer service
department. He wanted to have a set of 10,000 phone numbers
in various formats (as in Figure 1) in a unified format of “(xxx)

(734) 645-8397
(734)586-7252
734-422-8073
734.236.3466
...

Figure 1: Phone numbers
with diverse formats

\({digit}3\)\ {digit}3\-{digit}4
(734) 645-8397 ... (10000 rows)
Figure 2: Patterns after
transformation

\({digit}3\){digit}3\-{digit}4
(734)586-7252 ... (2572 rows)
{digit}3\-{digit}3\-{digit}4
734-422-8073 ... (3749 rows)
\({digit}3\)\ {digit}3\-{digit}4
(734) 645-8397 ... (1436 rows)
{digit}3\.{digit}3\.{digit}4
734.236.3466 ... (631 rows)
...

Figure 3: Pattern clusters of
raw data

1 Replace '/^\(({digit}{3})\)({digit}{3})\-({digit}{4})$/'

in column1 with '($1) $2-$3'

2 Replace '/^({digit}{3})\-({digit}{3})\-({digit}{4})$/' in

column1 with '($1) $2-$3'

3 ...

Figure 4: Suggested data transformation operations
xxx-xxxx”. Given the volume and the heterogeneity of the data,
neither manually fixing them or hard-coding a transformation
script was convenient for Bob. He decided to see if there was an
automated solution to this problem.

Bob found that Excel 2013 had a new feature named FlashFill
that could transform data patterns. He loaded the data set into
Excel and performed FlashFill on them.

Example 2.1. Initially, Bob thought using FlashFill would be
straightforward: he would simply need to provide an example of
the transformed form of each ill-formatted data entry in the input
and copy the exact value of each data entry already in the cor-
rect format. However, in practice, it turned out not to be so easy.
First, Bob needed to carefully check each phone number entry
deciding whether it is ill-formatted or not. After obtaining a new
input-output example pair, FlashFill would update the transfor-
mation results for the entire input data, and Bob had to carefully
examine again if any of the transformation results were incorrect.
This was tedious given the large volume of heterogeneous data
(verification at string level is challenging). After rounds of
repairing and verifying, Bob was finally sure that FlashFill suc-
cessfully transformed all existing phone numbers in the data set,
and he thought the transformation inferred by FlashFill was
impeccable. Yet, when he used it to transform another data set, a
phone number “+1 724-285-5210” was mistakenly transformed as
“(1) 724-285”, which suggested that the transformation logic may
fail anytime (unexplainable transformation logic functions
unexpectedly). Customer phone numbers were critical informa-
tion for Bob’s company and it was important not to damage them
during the transformation. With little insight from FlashFill
regarding the transformation program generated, Bob was not
sure if the transformation was reliable and had to do more testing
(lack of understanding increases verification effort).

Bob heard about CLX and decided to give it a try.

Example 2.2. He loaded his data into CLX and it immediately
presented a list of distinct string patterns for phone numbers in
the input data (Figure 3), which helped Bob quickly tell which
part of the data were ill-formatted. After Bob selected the de-
sired pattern, CLX immediately transformed all the data and
showed a new list of string patterns as Figure 2. So far, veri-
fying the transformation result was straightforward. The
inferred program is presented as a set of Replace operations on
raw patterns in Figure 3, each with a picture visualizing the trans-
formation effect. Bob was not a regular expressions guru, but
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Notation Description
S = {s1, s2, . . . } A set of ad hoc strings s1, s2, . . . to be

transformed.
P = {p1, p2, . . . } A set of string patterns derived from S.
pi = {t1, t2, . . . } Pattern made from a sequence of tokens

ti
T The desired target pattern that all strings

in S needed to be transformed into.
L = {(p1, f1), (p2, f2), . . . } Program synthesized in CLX transforming

data the patterns of P into T .
E The expression E in L, which is a con-

catenation of Extract and/or ConstStr op-
erations. It is a transformation plan for a
source pattern. We also refer to it as an
Atomic Transformation Plan in the paper.

Q(̃t, p) Frequency of token t̃ in pattern p
G Potential expressions represented in Di-

rected Acyclic Graph.
Table 1: Frequently used notations

Token Class Regular Expression Example Notation
digit [0-9] “12” ⟨D ⟩
lower [a-z] “car” ⟨L⟩
upper [A-Z] “IBM” ⟨U ⟩
alpha [a-zA-Z] “Excel” ⟨A⟩
alpha-numeric [a-zA-Z0-9_-] “Excel2013” ⟨AN ⟩

Table 2: Token classes and their descriptions
these operations seemed simple to understand and verify. Like
many users in our User Study (Section 7.3), Bob had a deeper
understanding of the inferred transformation logic with
CLX than with FlashFill, and hence, he knew well when
and how the programmay fail, which saved him from the
effort of more blind testing.

3 OVERVIEW
3.1 Patterns and Data Transformation

Problem
A data pattern, or string pattern, is a “high-level” description of
the attribute value’s string. A natural way to describe a pattern
could be a regular expression over the characters that constitute
the string. In data transformation, we find that groups of con-
tiguous characters are often transformed together as a group.
Further, these groups of characters are meaningful in themselves.
For example, in a date string “11/02/2017”, it is useful to cluster
“2017” into a single group, because these four digits are likely
to be manipulated together. We call such meaningful groups of
characters as tokens.

Table 2 presents all token classes we currently support in our
instantiation of CLX, including their class names, regular ex-
pressions, and notation. In addition, we also support tokens of
constant values (e.g., “,”, “:”). In the rest of the paper, we represent
and handle these tokens of constant values differently from the 5
token classes defined in Table 2. For convenience of presentation,
we denote such tokens with constant values as literal tokens
and tokens of 5 token classes defined in Table 2 as base tokens.

A pattern is written as a sequence of tokens, each followed
by a quantifier indicating the number of occurrences of the pre-
ceding token. A quantifier is either a single natural number or
“+”, indicating that the token appears at least once. In the rest
of the paper, to be succinct, a token will be denoted as “⟨̃t⟩q”
if q is a number (e.g., ⟨D⟩3) or “⟨̃t⟩+” otherwise (e.g., ⟨D⟩+). If
t̃ is a literal token, it will be surrounded by a single quotation
mark, like ‘:’. When a pattern is shown to the end user, it is pre-
sented as a natural-language-like regular expression proposed by
Wrangler [13] (see regexps in Fig 4).

Labeling

Messy Raw Data

TransformingClustering

P1

P2

P3

P1

P2

P3

P2
30 1 2

Figure 5: “CLX” Model: Cluster–Label–Transform
With the above definition of data patterns, we hereby formally

define the problem we tackle using the CLX framework—data
transformation. Data transformation or wrangling is a broad
concept. Our focus in this paper is to apply the CLX paradigm
to transform a data set of heterogeneous patterns into a desired
pattern. A formal definition of the problem is as follows:

Definition 3.1 (Data (Pattern) Transformation). Given a
set of strings S = {s1, . . . , sn }, generate a program L that trans-
forms each string in S to an equivalent string matching the user-
specified desired target pattern T .

L = {(p1, f1), (p2, f2), . . . } is the program we synthesize in
the transforming phase of CLX. It is represented as a set regexp
replace operations, Replace(p, f )1, that many people are familiar
with (e.g., Fig 4).

With above definitions of patterns and data transformations,
we present the CLX framework for data transformation.

3.2 CLX Data Transformation Paradigm
We propose a data transformation paradigm called Cluster-Label-
Transform (CLX, pronounced “clicks”). Figure 5 visualizes the
interaction model in this framework.

Clustering — The clustering component groups the raw input
data into clusters based on their data patterns/formats. Compared
to raw strings, data patterns is amore abstract representation. The
number of patterns is fewer than raw strings, and hence, it can
make the user understand the data and verify the transformation
more quickly. Patterns discovered during clustering is also useful
information for the downstream program synthesis algorithm to
determine the number of regexp replace operations, as well as
the desirable input patterns and transformation functions.

Labeling — Labeling is to specify the desired data pattern that
every data instance is supposed to be transformed into. Presum-
ably, labeling can be achieved by having the user choose among
the set of patterns we derive in the clustering process assuming
some of the raw data already exist in the desired format. If no
input data matches the target pattern, the user could alternatively
choose to manually specify the target data form.

Transforming — After the desired data pattern is labeled, the
system automatically synthesizes data transformation logic that
transforms all undesired data into the desired form and also
proactively helps the user understand the transformation logic.

In this paper, we present an instantiation of the CLX paradigm
for data pattern transformation. Details about the clustering com-
ponent and the transformation component are discussed in Sec-
tion 4 and 6. In Section 5, we show the domain-specific-language
(DSL) we use to represent the program L as the outcome of
program synthesis, which can be then presented as the regexp re-
place operations. The paradigm has been designed to allow new

1p is the regular expression, and f is the replacement string indicating the operation
on the string matching the pattern p.
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algorithms and DSLs for transformation problems other than
data pattern transformation; we will pursue other instantiations
in future work.

4 CLUSTERING DATA ON PATTERNS
In CLX, we first cluster data into meaningful groups based on
their structure and obtain the pattern information, which helps
the user quickly understand the data. To minimize user effort, this
clustering process should ideally not require user intervention.

LearnPADS [4] is an influential project that also targets string
pattern discovery. However, LearnPADS is orthogonal to our
effort in that their goal is mainly to find a comprehensive and
unified description for the entire data set whereas we seek to
partition the data into clusters, each cluster with a single data
pattern. Also, the PADS language [3] itself is known to be hard
for a non-expert to read [29]. Our interest is to derive simple
patterns that are comprehensible. Besides the explainability, effi-
ciency is another important aspect of the clustering algorithm we
must consider, because input data can be huge and the real-time
clustering must be interactive.

To that end, we propose an automated means to hierarchically
cluster data based on data patterns given a set of strings. The data
is clustered through a two-phase profiling: (1) tokenization: tok-
enize the given set of strings of ad hoc data and cluster based on
these initial patterns, (2) agglomerative refinement: recursively
merge pattern clusters to formulate a pattern cluster hierarchy
that allows the end user to view/understand the pattern structure
information in a simpler and more systematic way, and also helps
CLX generate a simple transformation program.

4.1 Initial Clustering Through Tokenization
Tokenization is a common process in string processing when
string data needs to be manipulated in chunks larger than single
characters. A simple parser can do the job.

Below are the rules we follow in the tokenization phase.
• Non-alphanumeric characters carry important hints about
the string structure. Each such character is identified as
an individual literal token.
• We always choose the most precise base type to describe a
token. For example, a token with string content “cat” can
be categorized as “lower”, “alphabet” or “alphanumeric”
tokens. We choose “lower” as the token type for this token.
• The quantifiers are always natural numbers.

Here is an example of the token description of a string data record
discovered in tokenization phase.

Example 4.1. Suppose the string “Bob123@gmail.com” is to be
tokenized. The result of tokenization becomes [⟨U ⟩, ⟨L⟩2, ⟨D⟩3,
‘@’, ⟨L⟩5, ‘.’, ⟨L⟩3].

After tokenization, each string corresponds to a data pattern
composed of tokens. We create the initial set of pattern clusters
by clustering the strings sharing the same patterns. Each cluster
uses its pattern as a label which will later be used for refinement,
transformation, and user understanding.

Find Constant Tokens — Some of the tokens in the discovered
patterns have constant values. Discovering such constant values
and representing them using the actual values rather than base
tokens helps improve the quality of the program synthesized. For
example, if most entities in a faculty name list contain “Dr.”, it
is better to represent a pattern as [‘Dr.’,‘\ ’, ‘⟨U ⟩’, ‘⟨L⟩+’] than
[‘⟨U ⟩’, ‘⟨L⟩’, ‘.’, ‘\ ’, ‘⟨U ⟩’, ‘⟨L⟩+’]. Similar to [4], we find tokens

Algorithm 1: Refine Pattern Representations
Data: Pattern set P, generalization strategy д̃
Result: Set of more generic patterns Pf inal

1 Pf inal ,Praw ← ∅;
2 Craw ← {};
3 for pi ∈ P do
4 pparent ← дetParent(pi , д̃);
5 add pparent to Praw ;
6 Craw [pparent ] = Craw [pparent ] + 1 ;
7 for pparent ∈ Praw ranked by Craw from high to low do
8 pparent .child ← {pj |∀pj ∈ P,pj .isChild(pparent )};
9 add pparent to Pf inal ;

10 remove pparent .child from P;
11 Return Pf inal ;

with constant values using the statistics over tokenized strings
in the data set.

4.2 Agglomerative Pattern Cluster
Refinement

In the initial clustering step, we distinguish different patterns by
token classes, token positions, and quantifiers, the actual number
of pattern clusters discovered in the ad hoc data in tokenization
phase could be huge. User comprehension is inversely related to
the number of patterns. It is not very helpful to present too many
very specific pattern clusters all at once to the user. Plus, it can be
unacceptably expensive to develop data pattern transformation
programs separately for each pattern.

To mitigate the problem, we build pattern cluster hierarchy,
i.e., a hierarchical pattern cluster representation with the leaf
nodes being the patterns discovered through tokenization, and
every internal node being a parent pattern. With this hierarchical
pattern description, the user can understand the pattern informa-
tion at a high level without being overwhelmed by many details,
and the system can generate simpler programs. Plus, we do not
lose any pattern discovered previously.

From bottom-up, we recursively cluster the patterns at each
level to obtain parent patterns, i.e., more generic patterns, for-
mulating the new layer in the hierarchy. To build a new layer,
Algorithm 1 takes in different generalization strategy д̃ and the
child pattern set P from the last layer. Line 3-5 clusters the cur-
rent set of pattern clusters to get parent pattern clusters using the
generalization strategy д̃. The generated set of parent patterns
may be identical to others or might have overlapping expressive
power. Keeping all these parent patterns in the same layer of the
cluster hierarchy is unnecessary and increases the complexity of
the hierarchy generated. Therefore, we only keep a small subset
of the parent patterns initially discovered and make sure they
together can cover any child pattern in P. To do so, we use a
counter Craw counting the frequencies of the obtained parent
patterns (line 6). Then, we iteratively add the parent pattern
that covers the most patterns in P into the set of more generic
patterns to be returned (line 7-10). The returned set covers all pat-
terns in P (line 11). Overall, the complexity is O(n logn), where
n is the number of patterns in P, and hence, the algorithm itself
can quickly converge.

In this paper, we perform three rounds of refinement to con-
struct the new layer in the hierarchy, each with a particular
generalization strategy:

(1) natural number quantifier to ‘+’
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Leaf Nodes P 0

Parent Patterns P 1

Parent Patterns P 2

Parent Patterns P 3

...

...

<U><L>2<D>3@<L>5.<L>3

<U>+<L>+<D>+@<L>+.<L>+

<A>+<D>+@<A>+.<A>+

<AN>+@<AN>+.<AN>+

<U><L>3... ...

<L>+<D>+...

... ...

<A>+@...

Figure 6: Hierarchical clusters of data patterns

(2) ⟨L⟩, ⟨U ⟩ tokens to ⟨A⟩
(3) ⟨A⟩, ⟨N ⟩, ’-’, ‘_’ tokens to ⟨AN ⟩

Example 4.2. Given the pattern we obtained in Example 4.1,
we successively apply Algorithm 1 with Strategy 1, 2 and 3 to gen-
eralize parent patterns P1, P2 and P3 and construct the pattern
cluster hierarchy as in Figure 6.

4.3 Limitations
The pattern hierarchy constructed can succinctly profile the pat-
tern information for many data. However, the technique itself
may be weak in two situations. First, as the scope of this paper
is limited to addressing the syntactic transformation problem
(Section 5), the pattern discovery process we propose only con-
siders syntactic features, but no semantic features. This may
introduce the issue of “misclustering”. For example, a date of
format “MM/DD/YYYY” and a date of format “DD/MM/YYYY”
may be grouped into the same cluster of “⟨N ⟩2/⟨N ⟩2/⟨N ⟩4”, and
hence, transforming from the former format into the latter format
is impossible in our case. Addressing this problem requires the
support for semantic information discovery and transformation,
which will be in our future work. Another possible weakness of
“fail to cluster” is also mainly affected by the semantics issue: we
may fail to cluster semantically-same but very messy data. E.g.,
we may not cluster the local-part (everything before ‘@’) of a
very weird email address “Mike'John.Smith@gmail.com” (token
⟨AN ⟩ cannot capture ‘'’ or ‘.’). Yet, this issue can be easily resolved
by adding additional regexp-based token classes (e.g., emails).
Adding more token classes is beyond the interest of our work.

5 DATA PATTERN TRANSFORMATION
PROGRAM

As motivated in Section 1 and Section 3, our proposed data trans-
formation framework is to synthesize a set of regexp replace
operations that people are familiar with as the desired transfor-
mation logic. However, representing the logic as regexp strings
will make the program synthesis difficult. Instead, to simplify
the program synthesis, we propose a new language, UniFi, as a
representation of the transformation logic internal to CLX. The
grammar of UniFi is shown in Figure 7. We then discuss how to
explain a inferred UniFi program as regexp replace operations.

The top-level of any UniFi program is a Switch statement that
conditionally maps strings to a transformation. Match checks
whether a string s is an exact match of a certain pattern p we
discover previously. Once a string matches this pattern, it will
be processed by an atomic transformation plan (expression E in
UniFi) defined below.

Definition 5.1 (Atomic Transformation Plan). Atomic
transformation plan is a sequence of parameterized string operators
that converts a given source pattern into the target pattern.

The available string operators include ConstStr and Extract.
ConstStr(̃s) denotes a constant string s̃ . Extract(̃ti ,̃tj ) extracts

Program L := Switch((b1, E1), . . . , (bn , En ))

Predicate b :=Match(s,p)

Expression E := Concat(f1, . . . , fn )

String Expression f := ConstStr(̃s) | Extract(̃ti , t̃j )

Token Expression ti := (̃t, r,q, i)
Figure 7: UniFi Language Definition

from the ith token to the jth token in a pattern. In the rest of the
paper, we express an Extract operation as Extract(i ,j), or Extract(i)
if i = j. A token t is represented as (̃t, r,q, i): t̃ is the token class
in Table 2; r represents the corresponding regular expression of
this token; q is the quantifier of the token expression; i denotes
the index (one-based) of this token in the source pattern.

As with FlashFill [6] and BlinkFill [24], we only focus on
syntactic transformation, where strings are manipulated as a se-
quence of characters and no external knowledge is accessible, in
this instantiation design. Semantic transformation (e.g., convert-
ing “March” to “03”) is a subject for future work. Further–again
like BlinkFill [24]–our proposed data pattern transformation
language UniFi does not support loops. Without the support for
loops, UniFi may not be able to describe transformations on an
unknown number of occurrences of a given pattern structure.

We use the following two examples used by FlashFill [6] and
BlinkFill [24] to briefly demonstrate the expressive power of
UniFi, and the more detailed expressive power of UniFi would
be examined in the experiments in Section 7.4. For simplicity,
Match(s,p) is shortened asMatch(p) as the input string s is fixed
for a given task.

Example 5.1. This problem ismodified from test case “Example
3” in BlinkFill. The goal is to transform all messy values in the
medical billing codes into the correct form “[CPT-XXXX]” as in
Table 3.

Raw data Transformed data
CPT-00350 [CPT-00350]
[CPT-00340 [CPT-00340]
[CPT-11536] [CPT-11536]
CPT115 [CPT-115]

Table 3: Normalizing messy medical billing codes

The UniFi program for this standardization task is
Switch((Match("\[<U>+\-<D>+"),

(Concat(Extract(1,4),ConstStr(']')))),
(Match("<U>+\-<D>+"),
(Concat(ConstStr('['),Extract(1,3),
ConstStr(']'))))

(Match("<U>+<D>+"),
(Concat(ConstStr('['),Extract(1),
ConstStr('-'),Extract(2),ConstStr(']')))))

Example 5.2. This problem is borrowed from “Example 9”
in FlashFill. The goal is to transform all names into a unified
format as in Table 4.

Raw data Transformed data
Dr. Eran Yahav Yahav, E.
Fisher, K. Fisher, K.
Bill Gates, Sr. Gates, B.
Oege de Moor Moor, O.

Table 4: Normalizing messy employee names

A UniFi program for this task is
Switch((Match("<U><L>+\.\ <U><L>+\ <U><L>+"),

Concat(Extract(8,9),ConstStr(','),
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ConstStr(' '),Extract(5))),
(Match("<U><L>+\ <U><L>+\,\ <U><L>+\."),
Concat(Extract(4,5),ConstStr(','),

ConstStr(' '),Extract(1))),
(Match("<U><L>+\ <U>+\ <U><L>+"),
Concat(Extract(6,7),ConstStr(','),

ConstStr(' '),Extract(1))))

Program Explanation — Given a UniFi program L, we want to
present it as a set of regexp replace operations, Replace, parame-
terized by natural-language-like regexps used by Wrangler [13]
(e.g., Figure 4), which are straightforward to even non-expert
users. Each component of (b, E), within the Switch statement of L,
will be explained as a Replace operation. The replacement string
f in the Replace operation is created from p and the transforma-
tion plan E for the condition b. In f , a ConstStr(s̃) operation will
remain as s̃ , whereas a Extract(t̃i , t̃j ) operation will be interpreted
as $t̃i . . . $t̃j . The pattern p in the predicate b = Match(s,p) in
UniFi naturally becomes the regular expression p in Replace
with each tokens to be extracted surrounded by a pair of paren-
theses indicating that it can be extracted. Note that if multiple
consecutive tokens are extracted in p, we merge them as one
component to be extracted in p and change the f accordingly
for convenience of presentation. Figure 4 is an example of the
transformation logic finally shown to the user.

In fact, these Replace operations can be further explained
using visualization techniques. For example, we could add a Pre-
view Table (e.g., Figure 8) to visualize the transformation effect
in our prototype in a sample of the input data. The user study
in Section 7.3 demonstrates that our effort of outputting an ex-
plainable transformation program helps the user understand the
transformation logic generated by the system.

6 PROGRAM SYNTHESIS
We now discuss how to find the desired transformation logic as
a UniFi program using the pattern cluster hierarchy obtained.
Algorithm 2 shows our synthesis framework.

Given a pattern hierarchy, we do not need to create an atomic
transformation plan (Definition 5.1) for every pattern cluster in
the hierarchy. We traverse the pattern cluster hierarchy top-
down to find valid candidate source patterns (line 6, see Sec-
tion 6.1). Once a source candidate is identified, we discover all
token matches between this source pattern in Qsolved and the
target pattern (line 7, see Section 6.2). With the generated token
match information, we synthesize the data pattern normaliza-
tion program including an atomic transformation plan for every
source pattern (line 11, see Section 6.3).

6.1 Identify Source Candidates
Before synthesizing a transformation for a source pattern, we
want to quickly check whether it can be a candidate source pattern
(or source candidate), i.e., it is possible to find a transformation
from this pattern into the target pattern, through validate. If
we can immediately disqualify some patterns, we do not
need to go through more expensive data transformation
synthesis process for them. There are a few reasons why some
pattern in the hierarchy may not be qualified as a candidate
source pattern:

(1) The input data set may be ad hoc and a pattern in this data
set can be a description of noise values. For example, a data
set of phone numbers may contain “N/A” as a data record
because the customer refused to reveal this information.
In this case, it is meaningless to generate transformations.

Algorithm 2: Synthesize UniFi Program
Data: Pattern cluster hierarchy root PR , target pattern T
Result: Synthesized program L

1 Qunsolved , Qsolved ← [ ] ;
2 L ← ∅;
3 push PR to Qunsolved ;
4 while Qunsolved , ∅ do
5 p ← pop Qunsolved ;
6 if validate(p,T) = ⊤ then
7 G ← findTokenAlignment(p,T);
8 push {p,G} to Qsolved ;
9 else

10 push p.children to Qunsolved ;

11 L ← createProgs(Qsolved );
12 Return L

(2) We may be fundamentally not able to support some trans-
formations (e.g., semantic transformations are not sup-
ported as in our case). Hence, we should filter out certain
patterns which we think semantic transformation is un-
avoidable, because it is impossible to transform them into
the desired pattern without the help from the user.

(3) Some patterns are too general; it can be hard to determine
how to transform these patterns into the target pattern.
We can ignore them and create transformation plans for
their children. For instance, if a pattern is “⟨AN ⟩+,⟨AN ⟩+”,
it is hard to tell if or how it could be transformed into the
desired pattern of “⟨U ⟩⟨L⟩+ : ⟨D⟩+”. By comparison, its
child pattern “⟨U ⟩⟨L⟩+, ⟨D⟩+” seems to be a better fit as
the candidate source.

Any input data matching no candidate source pattern is left
unchanged and flagged for additional review, which could in-
volve replacing values with NULL or default values or manually
overriding values.

Since the goal here is simply to quickly prune those patterns
that are not good source patterns, the checking process should
be able to find unqualified source patterns with high precision
but not necessarily high recall. Here, we use a simple heuristic
of frequency count that can effectively reject unqualified source
patterns with high confidence: examining if there are sufficient
base tokens of each class in the source pattern matching the
base tokens in the target tokens. The intuition is that any source
pattern with fewer base tokens than the target is unlikely to be
transformable into the target pattern without external knowl-
edge; base tokens usually carry semantic meanings and hence
are likely to be hard to invent de novo.

To apply frequency count on the source pattern p1 and the
target pattern p2, validate (denoted asV) compares the token
frequency for every class of base tokens in p1 and p2. The token
frequency Q of a token class ⟨̃t⟩ in p is defined as

Q(⟨̃t⟩,p) =
n∑
i=1
{ti .q |t .name = ⟨̃t⟩},p = {t1, . . . , tn } (1)

If a quantifier is not a natural number but “+”, we treat it as 1 in
computing Q.

Suppose T is the set of all token classes (in our case, T =
[⟨D⟩, ⟨L⟩, ⟨U ⟩, ⟨A⟩, ⟨AN ⟩]),V is then defined as

V(p1,p2) =

{
true if Q(⟨̃t⟩,p1) ≥ Q(⟨̃t⟩,p2),∀⟨̃t⟩ ∈ T
false otherwise (2)

270



Input Data Output Data

Figure 8: Preview Tab

<D>3 ")" "  "" (" <D>3 "-" <D>4ø

Target Pattern T

<D>3 " ." <D>3 " ." <D>4Candidate Source 
Pattern P cand

Extract(1) Extract(1) Extract(5)

Extract(3)

ConstStr ConstStr ConstStr ConstStr

Extract(3)

Figure 9: Token alignment for the target pattern T

<U> <L>+

Extract(1) Extract(2)

ø

<U> <L>+

Extract(1) Extract(2)

ø

Extract(1,2)

Before 
Combining

After
Combining

Figure 10: Combine Extracts
Algorithm 3: Token Alignment Algorithm
Data: Target pattern T = {t1, . . . , tm }, candidate source

pattern Pcand = {t ′1, . . . , t
′
n }, where ti and t ′i denote

base tokens
Result: Directed acyclic graph G

1 η̃← {0, . . . ,n}; ηs ← 0; ηt ← n; ξ ← {};
2 for ti ∈ T do
3 for t ′j ∈ Pcand do
4 if SyntacticallySimilar(ti , t ′j ) = ⊤ then
5 e ← Extract(t ′j );
6 add e to ξ (i−1,i);

7 if ti .type = ‘literal’ then
8 e ← ConstStr(ti .name);
9 add e to ξ (i−1,i);

10 for i ∈ {1, . . . ,n − 1} do
11 ξin ← {∀ep ∈ ξ(i−1,i), ep is an Extract operation};
12 ξout ← {∀eq ∈ ξ(i,i+1), eq is an Extract operation};
13 for ep ∈ ξin do
14 for eq ∈ ξout do
15 if ep .srcIdx + 1 = eq .srcIdx then
16 e ← Extract(ep .ti , eq .tj );
17 add e to ξ (i−1,i+1);

18 G ← Daд(η̃,ηs ,ηt , ξ );
19 Return G

Example 6.1. Suppose the target pattern T in Example 5.1 is
[‘[’, ⟨U ⟩+, ‘-’, ⟨D⟩+, ‘]’], we know

Q(⟨D⟩,T) = Q(⟨U ⟩,T) = 1

A pattern [‘[’, ⟨U ⟩3, ‘-’, ⟨D⟩5] derived from data record “[CPT-
00350” will be identified as a source candidate by validate, be-
cause

Q(⟨D⟩,p) = 5 > Q(⟨D⟩,T) ∧
Q(⟨U ⟩,p) = 3 > Q(⟨U ⟩,T)

Another pattern [‘[’, ⟨U ⟩3, ‘-’] derived from data record “[CPT-”
will be rejected because

Q(⟨D⟩,p) = 0 < Q(⟨D⟩,T)

6.2 Token Alignment
Once a source pattern is identified as a source candidate in Sec-
tion 6.1, we need to synthesize an atomic transformation plan
between this source pattern and the target pattern, which ex-
plains how to obtain the target pattern using the source pattern.
To do this, we need to find the token matches for each token in
the target pattern: discover all possible operations that yield a
token. This process is called token alignment.

For each token in the target pattern, there might be multiple
different tokenmatches. Inspired by [6], we store the results of the
token alignment in Directed Acyclic Graph (DAG) represented as

aDAG(η̃,ηs ,ηt , ξ ) . η̃ denotes all the nodes in DAGwith ηs as the
source node and ηt as the target node. Each node corresponds to
a position in the pattern. ξ are the edges between the nodes in η̃
storing the source information, which yield the token(s) between
the starting node and the ending node of the edge. Our proposed
solution to token alignment in a DAG is presented in Algorithm 3.

Align Individual Tokens to Sources — To discover sources,
given the target pattern T and the candidate source pattern
Pcand , we iterate through each token ti in T and compare ti
with all the tokens in Pcand .

For any source token t ′j in Pcand that is syntactically similar
(defined in Definition 6.1) to the target token ti in T , we create a
token match between t ′j and ti with an Extract operation on an
edge from ti−1 to ti (line 2-9).

Definition 6.1 (Syntactically Similar). Two tokens ti and
tj are syntactically similar if: 1) they have the same class, 2) their
quantifiers are identical natural numbers or one of them is ‘+’ and
the other is a natural number.

When ti is a literal token, it is either a symbolic character or a
constant value. To build such a token, we can simply use a Con-
stStr operation (line 7-9), instead of extracting it from the source
pattern. This does not violate our previous assumption of not
introducing any external knowledge during the transformation.

Example 6.2. Let the candidate source pattern be [ ⟨D⟩3, ‘.’,
⟨D⟩3, ‘.’, ⟨D⟩4] and the target pattern be [‘(’, ⟨D⟩3, ‘)’, ‘ ’, ⟨D⟩3,
‘-’, ⟨D⟩4]. Token alignment result for the source pattern Pcand
and the target pattern T , generated by Algorithm 3 is shown in
Figure 9. In Figure 9, a dashed line is a token match, indicating
the token(s) in the source pattern that can formulate a token in
the target pattern. A solid line embeds the actual operation in
UniFi rendering this token match.

Combine Sequential Extracts — The Extract operator in our
proposed language UniFi is designed to extract one or more to-
kens sequentially from the source pattern. Line 4-9 only discovers
sources composed of an Extract operation generating an indi-
vidual token. Sequential extracts (Extract operations extracting
multiple consecutive tokens from the source) are not discovered,
and this token alignment solution is not complete. We need to
find the sequential extracts.

Fortunately, discovering sequential extracts is not independent
of the previous token alignment process; sequential extracts are
combinations of individual extracts. With the alignment results
ξ generated previously, we iterate each state and combine every
pair of Extracts on an incoming edge and an outgoing edge that
extract two consecutive tokens in the source pattern (line 10-
17). The Extracts are then added back to ξ . Figure 10 visualizes
combining two sequential Extracts. The first half of the figure
(titled “Before Combining”) shows a transformation plan that
generates a target pattern pattern ⟨U ⟩⟨D⟩+with two operations—
Extract(1) and Extract(2). The second half of the figure (titled
“After Combining”) showcases merging the incoming edge and
the outgoing edge (representing the previous two operations)
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and formulate a new operation (red arrow), Extract(1,2), as a
combined operation of the two.

A benefit of discovering sequential extracts is it helps yield a
“simple” program, as described in Section 6.3.

Correctness — Algorithm 3 is sound and complete, which is
proved in Appendix A in the technical report [12].

6.3 Program Synthesis using Token
Alignment Result

As we represent all token matches for a source pattern as a DAG
(Algorithm 3), finding a transformation plan is to find a path from
the initial state 0 to the final state l , where l is the length of the
target pattern T .

The Breadth First Traversal algorithm can find all possible
atomic transformation plans for this DAG. However, not all of
these plans are equally likely to be correct and desired by the end
user. The hope is to prioritize the correct plan. The Occam’s razor
principle suggests that the simplest explanation is usually correct.
Here, we applyMinimum Description Length (MDL) [23], a
formalization of Occam’s razor principle, to gauge the simplicity
of each possible program.

Suppose M is the set of models. In this case, it is the set
of atomic transformation plans found given the source pattern
Pcand and the target pattern T . E = f1 f2 . . . fn ∈ M is an
atomic transformation plan, where f is a string expression. In-
spired by [21], we define Description length (DL) as follows:

L(E,T) = L(E) + L(T |E) (3)

L(E) is the model description length, which is the length re-
quired to encode the model, and in this case, E. Hence,

L(E) = |E | logm (4)

wherem is the number of distinct types of operations.
L(T |E) is the data description length, which is the sum of the

length required to encode T using the atomic transformation
plan E. Thus,

L(T |E) =
∑
fi ∈E

logL(fi ) (5)

where L(fi ) the length to encode the parameters for a single ex-
pression. For a Extract(i) or Extract(i,j) operation,L(f ) = log |Pcand |2
(recall Extract(i) is short for Extract(i,i)). For a ConstStr(̃s), L(f ) =
log c |s̃ | , where c is the size of printable character set (c = 95).

With the concept of description length described, we define
the minimum description length as

Lmin (T ,M) = min
E∈M

[
L(E) + L(T |E)

]
(6)

In the end, we present the atomic transformation plan E with
the minimum description length as the default transformation
plan for the source pattern. Also, we list the other k transforma-
tion plans with lowest description lengths.

Example 6.3. Suppose the source pattern is “⟨D⟩2/⟨D⟩2/⟨D⟩4
”, the target pattern T is “⟨D⟩2/⟨D⟩2”. The description length of
a transformation plan E1 = Concat(Extract(1,3)) is L(E1,T) =
1 log 1 + 2 log 3. In comparison, the description length of another
transformation plan E2 =Concat(Extract(1), ConstStr(‘/’),Extract(3))
is L(E2,T) = 3 log 2+ log 32 + log 95+ log 32 > L(E1,T). Hence,
we prefer E1, a clearly simpler and better plan than E2.

6.4 Limitations and Program Repair
The target pattern T as the sole user input so far is more am-
biguous compared to input-output example pairs used in most
other PBE systems. Also, we currently do not support “semantic
transformation”. We may face the issue of “semantic ambiguity”—
mismatching syntactically similar tokens with different semantic
meanings. For example, if the goals is to transform a date of
pattern “DD/MM/YYYY” into the pattern ”MM-DD-YYYY” (our
clustering algorithm works in this case). Our token alignment
algorithm may create a match from “DD” in the first pattern to
“MM” in the second pattern because they have the same pattern of
⟨D⟩2. The atomic transformation plan we initially select for each
source pattern can be a transformation that mistakenly converts
“DD/MM/YYYY” into “DD-MM-YYYY”. Although our algorithm
described in Section 6.3 often makes good guesses about the
right matches, the system still infers an imperfect transformation
about 50% of the time (Appendix E in the technical report [12]).

Fortunately, as our token alignment algorithm is complete and
the program synthesis algorithm can discover all possible trans-
formations and rank them in a smart way, the user can quickly
find the correct transformation through program repair: replace
the initial atomic transformation plan with another atomic trans-
formation plans among the ones Section 6.3 suggests for a given
source pattern.

To make the repair even simpler for the user, we deduplicate
equivalent atomic transformation plans defined below before the
repair phase.

Definition 6.2 (Eqivalent Plans). Two Transformation
Plans are equivalent if, given the same source pattern, they al-
ways yield the same transformation result for any matching string.

For instance, suppose the source pattern is [⟨D⟩2, ‘/’, ⟨D⟩2].
Two transformation plans E1 = [Extract(3),Const(‘/’), Extract(1)]
and E2 = [Extract(3), Extract(2), Extract(1)] will yield exactly the
same output because the first and third operations are identical
and the second operation will always generate a ‘/’ in both plans.
If two plans are equivalent, presenting both rather than one of
them will only increase the user effort. Hence, we only pick the
simplest plan in the same equivalence class and prune the rest.
The methodology detecting the equivalent plans is elaborated in
Appendix B in the technical report [12].

Overall, the repair process does not significantly increase the
user effort. In those cases where the initial program is imperfect,
75% of the time the user made just a single repair (Appendix E in
the technical report [12]).

7 EXPERIMENTS
We make three broad sets of experimental claims. First, we show
that as the input data becomes larger and messier, CLX tends to
be less work to use than FlashFill because verification is less
challenging (Section 7.2). Second, we show that CLX programs
are easier for users to understand than FlashFill programs (Sec-
tion 7.3). Third, we show that CLX’s expressive power is similar
to that of baseline systems, as is the required effort for non-
verification portions of the PBE process (Section 7.4).

7.1 Experimental Setup
We implemented a prototype of CLX and compared it against
the state-of-the-art PBE system FlashFill. For ease of expla-
nation, in this section, we refer this prototype as “CLX”. Ad-
ditionally, to make the experimental study more complete, we
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had a third baseline approach, a non-PBE feature offered by
TrifactaWrangler2 allowing the user to perform string trans-
formation through manually creating Replace operations with
simple natural-language-like regexps (referred as RegexReplace).
All experiments were performed on a 4-core Intel Core i7 2.8G
CPU with 16GB RAM. Other related PBE systems, Foofah [11]
and TDE [9], target different workloads and also share the same
verification problem we claim for PBE systems, and hence, are
not considered as baselines.

7.2 User Study on Verification Effort
In this section, we conduct a user study on a real-world data set to
show that (1) verification is a laborious and time-consuming step
for users when using the classic PBE data transformation tool
(e.g., FlashFill) particularly on a large messy data set, (2) ask-
ing end users to hand-write regexp-based data transformation
programs is challenging and inefficient, and (3) the CLX model
we propose effectively saves the user effort in verification during
data transformation and hence its interaction time does not grow
fast as the size and the heterogeneity of the data increase.

Test Data Set — Finding public data sets with messy formats
suitable for our experiments is very challenging. The first ex-
periment uses a column of 331 messy phone numbers from the
“Times Square Food & Beverage Locations” data set [19].

Overview — The task was to transform all phone numbers into
the form “⟨D⟩3-⟨D⟩3-⟨D⟩4”. We created three test cases by ran-
domly sampling the data set with the following data sizes and
heterogeneity: “10(2)” has 10 data records and 2 patterns; “100(4)”
has 100 data records and 4 patterns; “300(6)” has 300 data records
and 6 patterns.

We invited 9 students in Computer Science with a basic under-
standing of regular expressions and not involved in our project.
Before the study, we educated all participants on how to use the
system. Then, each participant was asked to work on one test
case on a system and we recorded their performance.

We looked into the user performances on three systems from
various perspectives: overall completion time, number of interac-
tions, and verification time. The overall completion time gave us a

2TrifactaWrangler is a commercial product of Wrangler launched by Trifacta
Inc. The version we used is 3.2.1

quick idea of how much the cost of user effort was affected when
the input data was increasingly large and heterogeneous in this
data transformation task. The other two metrics allowed us to
check the user effort in verification. While measuring completion
time is straightforward, the other two metrics need to be clarified.
Number of interactions. For FlashFill, the number of interactions
is essentially the number of examples the user provides. For CLX
we define the number of interactions as the number of times
the user verifies (and repairs, if necessary) the inferred atomic
transformation plans. We also add one for the initial labeling
interaction. For RegexReplace, the number of interactions is the
number of Replace operations the user creates.
Verification Time. All three systems follow different interaction
paradigms. However, we can divide the interaction process of into
two parts, verification and specification: the user is either busy
inputting (typing keyboards, selecting, etc.) or paused to verify
the correctness of the transformed data or synthesized/hand-
written regular expressions.

Measuring verification time is meaningful because we hypoth-
esize that PBE data transformation systems become harder to use
when data is large and messy not because the user has to provide
a lot more input, but it becomes harder to verify the transformed
data at the instance level.

Results — As shown in Figure 11a, “100(4)” cost 1.1× more time
than “10(2)” onCLX, and “300(6)” cost 1.2×more time than “10(2)”
on CLX. As for FlashFill, “100(4)” cost 2.4× more time than
“10(2)”, and “300(6)” cost 9.1× more time than “10(2)”. Thus, in
this user study, the user effort required by CLX grew slower than
that of FlashFill. Also, RegexReplace cost significantly more
user effort than CLX but its cost grew not as quickly as FlashFill.
This shows good evidence that (1) manually writing data trans-
formation script is cumbersome, (2) the user interaction time
grows very fast in FlashFill when data size and heterogeneity
increase, and (3) the user interaction time in CLX also grows, but
not as fast.

Now, we dive deeper into understanding the causes for obser-
vation (2) and (3). Figure 11b shows the number of interactions
in all test cases on all systems. We see that all three systems
required a similar number of interactions in the first two test
cases. Although FlashFill required 3 more interactions than
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Task ID Size AvgLen MaxLen DataType
Task1 10 11.8 14 Human name
Task2 10 20.3 38 Address
Task3 100 16.6 18 Phone number
Table 5: Explainability test cases details

CLX in case “300(6)”, this could hardly be the main reason why
FlashFill cost almost 5x more time than CLX.

We take a close look at the three systems’ interactions in the
case of “300(6)” and plot the timestamps of each interaction in
Figure 11c. The result shows that, in FlashFill, as the user was
getting close to achieving a perfect transformation, it took the
user an increasingly longer amount of time tomake an interaction
with the system, whereas the interaction time intervals were
relatively stable in CLX and RegexReplace. Obviously, the user
spent a longer time in each interaction NOT because an example
became harder to type in (phone numbers have relatively similar
lengths). We observed that, without any help from FlashFill,
the user had to eyeball the entire data set to identify the data
records that were still not correctly transformed, and it became
harder and harder to do so simply because there were fewer
of them. Figure 12 presents the average verification time on all
systems in each test case. “100(4)” cost 1.0× more verification
time than “10(2)” onCLX, and “300(6)” cost 1.3×more verification
time than “10(2)” on CLX. As for FlashFill, “100(4)” cost 3.4×
more verification time than “10(2)”, and “300(6)” cost 11.4× more
verification time than “10(2)”. The fact that the verification time
on FlashFill also grew significantly as the data became larger
and messier supports our analysis and claim.

To summarize, this user study presents evidence that Flash-
Fill becomes much harder to use as the data becomes larger
and messier mainly because verification is more challenging. In
contrast, CLX users generally are not affected by this issue.

7.3 User Study on Explainability
Through a new user study with the same 9 participants on three
tasks, we demonstrate that (1) FlashFill users lack understand-
ing about the inferred transformation logic, and hence, have
inadequate insights on how the logic will work, and show that
(2) the simple program generated by CLX improves the user’s
understanding of the inferred transformation logic.

Additionally, we also compared the overall completion time
of three systems.

Test Set — Since it was impractical to give a user too many data
pattern transformation tasks to solve, we had to limit this user
study to just a few tasks. To make a fair user study, we chose tasks
with various data types that cost relatively same user effort on all
three systems. From the benchmark test set we will introduce in
Section 7.4, we randomly chose 3 test cases that each is supposed
to require same user effort on both CLX and FlashFill: Example
11 from FlashFill (task 1), Example 3 from PredProg (task 2) and
“phone-10-long” from SyGus (task 3). Statistics (number of rows,
average/max/min string length of the raw data) about the three
data sets are shown in Table 5.

Overview — We designed 3 multiple choice questions for every
task examining how well the user understood the transformation
regardless of the system he/she interacted with. All the questions
were formulated as “Given the input string as x , what is the
expected output”. All questions are shown in Appendix C in the
technical report [12].

Sources # tests AvgSize AvgLen MaxLen DataType
SyGus [26] 27 63.3 11.8 63 car model ids, human name,

phone number, university
name and address

FlashFill [6] 10 10.3 15.8 57 log entry, phone number, hu-
man name, date, name and po-
sition, file directory, url, prod-
uct name

BlinkFill [24] 4 10.8 14.9 37 city name and country, hu-
man name, product id, ad-
dress

PredProg [25] 3 10.0 12.7 38 human name, address
Prose [22] 3 39.3 10.2 44 country and number, email,

human name and affiliation
Overall 47 43.6 13.0 63

Table 6: Benchmark test cases details
During the user study, we asked every participant to partici-

pate all three tasks, each on a different system (completion time
was measured). Upon completion, each participant was asked to
answer all questions based on the transformation results or the
synthetic programs generated by the system.

Explainability Results — The correct rates for all 3 tasks using
all systems are presented in Figure 13. The result shows that the
participants were able to answer these questions almost perfectly
using CLX, but struggled to get even half correct using FlashFill.
RegexReplace also achieved a success rate similar to CLX, but
required higher user effort and expertise.

The result suggests that FlashFill users have insufficient
understanding about the inferred transformation logic and CLX
improves the users’ understanding in all tasks, which provides
evidence that verification in CLX can be easier.

Overall Completion Time — The average completion time for
each task using all three systems is presented in Figure 14. Com-
pared to FlashFill, the participants using CLX spent 30% less
time on average: ∼ 70% less time on task 1 and ∼ 60% less time
on task 3, but ∼ 40% more time on task 2. Task 1 and task 3
have similar heterogeneity but task 3 (100 records) is bigger than
task 1 (10 records). The participants using FlashFill typically
spent much more time on understanding the data formats at the
beginning and verifying the transformation result in solving task
3. This provides more evidence that CLX saves the verification
effort. Task 2 is small (10 data records) but heterogeneous. Both
FlashFill and CLX made imperfect transformation logic syn-
thesis, and the participants had to make several corrections or
repairs. We believe CLX lost in this case simply because the data
set is too small, and as a result, CLX was not able to exploit its
advantage in saving user effort on large-scale data set. The study
also gives evidence that CLX is sometimes effective in saving
user verification effort in small-scale data transformation tasks.

7.4 Expressivity and Efficiency Tests
In a simulation test using a large benchmark test set, we demon-
strate that (1) the expressive power of CLX is comparable to the
other two baseline systems FlashFill and RegexReplace, and
(2) CLX is also pretty efficient in costing user interaction effort.

Test Set —We created a benchmark of 47 data pattern transfor-
mation test cases using a mixture of public string transformation
test sets and example tasks from related research publications
(will be released upon the acceptance of the paper). The informa-
tion about the number of test cases from each source, average
raw input data size (number of rows), average/max data instance
length, and data types of these test cases are shown in Table 6.
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Baselines CLX Wins Tie CLX Loses
vs. FlashFill 17 (36%) 17 (36%) 13 (28%)

vs. RegexReplace 33 (70%) 12 (26%) 2 (4%)
Table 7: User effort simulation comparison.

A detailed description of the benchmark test set is shown in
Appendix D in the technical report [12].

Overview — We evaluated CLX against 47 benchmark tests. As
conducting an actual user study on all 47 benchmarks is not
feasible, we simulated a user following the “lazy approach” used
by Gulwani et al. [8]: a simulated user selected a target pattern
or multiple target patterns and then repaired the atomic trans-
formation plan for each source pattern if the system proposed
answer was imperfect.

Also, we tested the other two systems against the same bench-
mark test suite. As with CLX, we simulated a user on FlashFill;
this user provided the first positive example on the first data
record in a non-standard pattern, and then iteratively provided
positive examples for the data record on which the synthetic
string transformation program failed. On RegexReplace, the
simulated user specified a Replace operation with two regular
expressions indicating the matching string pattern and the trans-
formed pattern, and iteratively specified new parameterized Re-
place operations for the next ill-formatted data record until all
data were in the correct format.

Evaluation Metrics — In experiments, we measured how much
user effort all three systems required. Because systems follow
different interactionmodels, a direct comparison of the user effort
is impossible. We quantify the user effort by Step, which is defined
differently as follows
• For CLX, the total Steps is the sum of the number of cor-
rect patterns the user chooses (Selection) and the number
of repairs for the source patterns whose default atomic
transformation plans are incorrect (Repair). In the end,
we also check if the system has synthesized a “perfect”
program: a program that successfully transforms all data.
• For FlashFill, the total Steps is the sum of the number of
input examples to provide and the number of data records
that the system fails to transform.
• For RegexReplace, each specified Replace operation is
counted as 2 Steps as the user needs to type two regular
expressions for each Replace, which is about twice the
effort of giving an example in FlashFill.

In each test, for any system, if not all data records were correctly
transformed, we added the number of data records that the system
fails to transform correctly to its total Step value as a punishment.
In this way, we had a coarse estimation of the user effort in all
three systems on the 47 benchmarks.

Expressivity Results — CLX could synthesize right transfor-
mations for 42/47 (∼ 90%) test cases, whereas FlashFill reached
45/47 (∼ 96%). This suggests that the expressive power of CLX is
comparable to that of FlashFill.

There were five test cases where CLX failed to yield a perfect
transformation. Only one of the failures was due to the expres-
siveness of the language itself, the others could be fixed if there
were more representative examples in the raw data. “Example
13” in FlashFill requires the inference of advanced condition-
als (Contains keyword “picture”) that UniFi cannot currently
express, but adding support for these conditionals in UniFi is
straightforward. The failures in the remaining four test cases
were mainly caused by the lack of the target pattern examples

in the data set. For example, one of the test cases we failed is a
name transformation task, where there is a last name “McMillan”
to extract. However, all data in the target pattern contained last
names comprising one uppercase letter followed by multiple low-
ercase letters and hence our system did not realize “McMillan”
needed to be extracted. We think if the input data is large and
representative enough, we should be able to successfully capture
all desired data patterns.

RegexReplace allows the user to specify any regular expres-
sion replace operations, hence it was able to correctly transform
all the input data existed in the test set, because the user could
directly write operations replacing the exact string of an individ-
ual data record into its desired form. However, similar to UniFi,
RegexReplace is also limited by the expressive power of regular
expressions and cannot support advanced conditionals. As such,
it covered 46/47 (∼ 98%) test cases.

User Effort Results — As the Step metric is a potentially noisy
measure of user effort, it is more reasonable to check whether
CLX costs more or less effort than other baselines, rather than to
compare absolute Step numbers. The aggregated result is shown
in Table 7. It suggests CLX often requires less or at least equal
user effort than both PBE systems. Compared to RegexReplace,
CLX almost always costs less or equal user effort. A detailed
discussion about the user effort on CLX and comparison with
other systems is in Appendix E in the technical report [12].

8 RELATEDWORK

Data Transformation — FlashFill (now a feature in Excel) is
an influential work for syntactic transformation by Gulwani [6].
It designed an expressive string transformation language and pro-
posed the algorithm based on version space algebra to discover a
program in the designed language. It was recently integrated to
PROSE SDK released by Microsoft. A more recent PBE project,
TDE [9], also targets string transformation. Similar to FlashFill,
TDE requires the user to verify at the instance level and the gen-
erated program is unexplainable to the user. Other related PBE
data cleaning projects include [11, 24].

Another thread of seminal research including [21], Wran-
gler [13] and Trifacta created by Hellerstein et al. follow a
different interaction paradigm called “predictive interaction”.
They proposed an inference-enhanced visual platform supporting
many different data wrangling and profiling tasks. Based on the
user selection of columns, rows or text, the system intelligently
suggests possible data transformation operations, such as Split,
Fold, or pattern-based extraction operations.

Pattern Profiling — In our project, we focus on clustering ad
hoc string data based on structures and derive the structure in-
formation. The LearnPADS [4] project is somewhat related. It
presents a learning algorithm using statistics over symbols and
tokenized data chunks to discover pattern structure. LearnPADS
assumes that all data entries follow a repeating high-level pattern
structure. However, this assumption may not hold for some of the
workload elements. In contrast, we create a bottom-up pattern
discovery algorithm that does not make this assumption. Plus,
the output of LearnPADS (i.e., PADS program [3]) is hard for
a human to read, whereas our pattern cluster hierarchy is sim-
pler to understand. Most recently, Datamaran[5] has proposed
methodologies for discovering structure information in a data set
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whose record boundaries are unknown, but for the same reasons
as LearnPADS, Datamaran is not suitable for our problem.

Program Synthesis — Program synthesis has garnered wide
interest in domains where the end users might not have good
programming skills or programs are hard to maintain or reuse
including data science and database systems. Researchers have
built various program synthesis applications to generate SQL
queries [16, 20, 27], regular expressions [1, 17], data cleaning
programs [6, 28], and more.

Researchers have proposed various techniques for program
synthesis. [7, 10] proposed a constraint-based program synthesis
technique using logic solvers. However, constraint-based tech-
niques are mainly applicable in the context where finding a satis-
fying solution is challenging, but we prefer a high-quality pro-
gram rather than a satisfying program. Version space algebra is
another important technique that is applied by [6, 14, 15, 18]. [2]
recently focuses on using deep learning for program synthesis.
Most of these projects rely on user inputs to reduce the search
space until a quality program can be discovered; they share the
hope that there is one simple solution matching most, if not all,
user-provided example pairs. In our case, transformation plans
for different heterogeneous patterns can be quite distinct. Thus,
applying the version space algebra technique is difficult.

9 CONCLUSION AND FUTUREWORK
Data transformation is a difficult human-intensive task. PBE is
a leading approach of using computational inference to reduce
human burden in data transformation. However, we observe that
standard PBE for data transformation is still difficult to use due
to its laborious and unreliable verification process.

We proposed a new data transformation paradigm CLX to
alleviate the above issue. In CLX, we build data patterns to help
the user quickly identify both well-formatted and ill-formatted
data which immediately saves the verification time. CLX also
infers regexp replace operations as the desired transformation,
which many users are familiar with and boosts their confidence
in verification.

We presented an instantiation of CLX with a focus on data
pattern transformation including (1) a pattern profiling algorithm
that hierarchically clusters both the raw input data and the trans-
formed data based on data patterns, (2) a DSL, UniFi, that can
express many data pattern transformation tasks and can be inter-
preted as a set of simple regular expression replace operations,
(3) algorithms inferring a correct UniFi program.

We presented two user studies. In a user study on data sets of
various sizes, when the data size grew by a factor of 30, the user
verification time required by CLX grew by 1.3× whereas that
required by FlashFill grew by 11.4×. The comprehensibility user
study shows the CLX users achieved a success rate about twice
that of the FlashFill users. The results provide good evidence
that CLX greatly alleviates the verification issue.

Although building a highly-expressive data pattern transfor-
mation tool is not the central goal of this paper, we are happy to
see that the expressive power and user effort efficiency of our
initial design of CLX is comparable to those of FlashFill in a
simulation study on a large test set in another test.

CLX is a data transformation paradigm that can be used not
only for data pattern transformation but other data transfor-
mation or transformation tasks too. For example, given a set
of heterogeneous spreadsheet tables storing the same informa-
tion from different organizations, CLX can be used to synthesize

programs converting all tables into the same standard format.
Building such an instantiation of CLX will be our future work.
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