
Finding Meaningful Contrast Patterns forQuantitative Data
Rohan Khade

George Mason University
Fairfax, VA, USA
rkhade@gmu.edu

Jessica Lin
George Mason University

Fairfax, VA, USA
jessica@gmu.edu

Nital Patel
Intel Corporation
Chandler, AZ, USA

nital.s.patel@intel.com

ABSTRACT
Contrast set mining identifies patterns that can best distinguish
between two groups of data. While many machine learning mod-
els share the same goal, contrast set mining focuses on data un-
derstanding and interpretability. Most existing work in contrast
set mining focuses on categorical data. In this work, we pro-
pose an algorithm that discovers contrast patterns on mixed data
(datasets that contain both categorical and continuous attributes).
Our algorithm is able to discover multivariate interactions using a
supervised adaptive binning strategy. The binning strategy iden-
tifies meaningful bin boundaries in continuous attributes based
on their relationships with other attributes. This in turn allows
us to form better and more meaningful contrast patterns than
traditional techniques that use global, pre-binning approaches.
We propose various pruning strategies to reduce the search space,
and show the utility of our algorithm on simulated data, several
datasets from the UCI repository, as well as real manufacturing
data.
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1 INTRODUCTION
The work presented in this paper was motivated by a desire to
reliably detect factors resulting in failure at final test during the
semiconductor packaging and test process and is the outcome
of a multi-year research grant funded by Intel, Corporation to
develop a solution that can be applied to their manufacturing
facilities. As the industry moves to more complex packages that
involve complex process flows, the amount of data collected dur-
ing the processing increases, and the signals being detected (as
related to cause of test failures) become more diluted. At the
same time, the cost of missing these signals increases, and hence
there is a growing need to develop machine learning algorithms
that can quickly detect the potential cause of part failures and
deliver timely feedback to the engineers so that adjustments in
the manufacturing line can be made to avoid generating scrap.
Note that packaging can contribute up to 50% of the cost to manu-
facture a CPU, hence any scrap avoidance is highly desirable. As
an example, during the baking stage of the manufacturing line,
if the ovens are run at a higher temperature than usual, resulting
in low yield, a timely notice could minimize potential loss. The
behavior of manufacturing data is often predictable; however, at
times there exist anomalies such as low yield for a batch. To find
potential causes of this low yield, one could create a classification
model comparing good chips and bad chips. Apart from a few
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models such as decision trees, most models are not interpretable
to the user and hence non-actionable. Even though models like
decision trees can be used to find explainable patterns, usually
there is a single global model built for the whole dataset using
a greedy strategy. To find all patterns, the user would need to
build all possible trees which can take exponential time. There-
fore, while decision trees are good for classification, they are
not suitable if the goal is to detect patterns in the dataset. The
matter becomes more complicated when we want to capture mul-
tivariate relationships between attributes (e.g. XOR data), which
require more computational time.

The analysis of semiconductor manufacturing data is non-
trivial because the numbers of attributes and instances are large,
and the engineer needs considerable amount of time for analysis.
Our intent is to learn the patterns ("contrast sets") that distin-
guish two groups, e.g. a normal group and an anomalous group,
automatically, without external knowledge. We note that the
main goal here is data understanding and exploration, rather
than prediction.

Pattern mining algorithms are often used during the initial
stages of the data mining process to understand relationships
among features, or in a decision making stage. A major concern
is displaying results that misconstrue relationships between at-
tributes or giving incorrect insights to make decisions. For exam-
ple, due to the large number of relationships between attributes
to be considered, there is a high probability of discovering un-
interesting or potentially spurious patterns. A large amount of
existing work in pattern mining has focused on reducing the
number of such uninteresting patterns, which is also one of the
goals in this paper. Another concern relating to pattern mining
is the time and space complexity. This can usually be reduced
by either building a more compact representation of the data
or pruning the search space. In this paper, we try to reduce the
search space by pruning uninteresting regions.

Contrast set mining is a set of algorithms under the pattern
mining paradigm to find patterns for which the supports differ
significantly among groups. It is closely related to, and can be
directly compared [21] to subgroup discovery and emerging pat-
tern mining. There has been a lot of work in the area of contrast
set mining [4, 14, 15, 26, 29]; however, there remain some issues
that need to be addressed. First, in the manufacturing of semi-
conductors, many attributes of interest are continuous. Most of
the existing work in contrast set mining, emerging patterns and
subgroup discovery focus on improving the efficiency of the al-
gorithms to find categorical contrasts, i.e. by reducing the search
space and the number of database scans. Continuous attributes
are typically handled by either computing some statistics (such
as mean) that meaningfully differ among groups, or by using a
binning technique as a preprocessing step and then treating the
attribute as a categorical one. The latter can potentially provide
more information since it identifies local patterns as ranges of val-
ues in the continuous attributes that can be actionable. Therefore,
in this work we focus on binning-based approaches. A software
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suite Cortana has many state of the art subgroup discovery algo-
rithms developed. It also has an implementation of an adaptive
discretization method that we compare to in the experimental
section. This approach, however, is a greedy approach and may
miss (local) multivariate interactions between continuous fea-
tures which we often find in semiconductor manufacturing data.
As will be seen later, the patterns found using these algorithms
seem to be redundant and cumbersome to interpret.

Binning or discretization is a fundamental and well-studied
topic in data mining. Garcia et al. [10] published a detailed survey
on discretization techniques, as well as a tool (KEEL) that con-
tains implementations of 30 popular discretization algorithms.
We applied these discretization algorithms extensively on various
datasets, but we were not able to find an algorithm that satisfies
all our requirements. Specifically, for our application (or applica-
tions containing continuous attributes in general), the discretizer
has to be able to handlemultivariate data, be adaptive (local
bins with respect to a subset of attributes), and dynamic (tightly
coupled algorithmwith the end goal of finding the most meaning-
ful contrast patterns). In addition, the algorithm needs to detect
not only global correlations, but (local) multivariate interactions
between features. Unfortunately, existing algorithms, including
those implemented in Cortana, typically miss one or more of our
requirements.

Another important aspect of the proposed algorithm is to show
the user the most meaningful contrasts. The authors in [13, 27]
have defined patterns that will most likely be interesting to a
user. More specifically, a meaningful contrast is a pattern that
is not redundant, is productive and independently productive.
We define what each term means in the context of contrast pat-
tern mining and extend it to cases where the patterns have only
continuous, or have mixed features.

Our contributions are summarized as follows:

(1) We propose an algorithm, SDAD-CS (Supervised Dynamic
and Adaptive Discretization for Contrast Sets), to find
contrast patterns for datasets containing continuous (and
categorical) attributes.

(2) Our binning technique is supervised, dynamic, and adap-
tive, and therefore finds better quality and meaningful
bins as compared to the state of the art.

(3) The binning technique detects multivariate interactions
and hence higher order contrasts can be detected.

(4) We introduce several pruning strategies to reduce the
search space, which also results in finding more meaning-
ful contrast patterns.

(5) We use statistical measures to find non-redundant, pro-
ductive and independently productive contrast patterns.

2 RELATEDWORK
A number of work on contrast set mining have been proposed
[4, 14, 15, 26, 29]. In their pioneering work [4], the authors pro-
posed an algorithm, STUCCO (Searching and Testing for Un-
derstandable Consistent COntrasts), that finds contrast sets in
groups. STUCCO employs efficient search for contrast sets based
on another rule mining algorithm, Max-Miner [5]. To assess the
meaningfulness of the difference in support values across groups,
the authors use a chi-square test on the null hypothesis that the
support value is independent of group membership. In another
work [26], the authors observe that existing commercial rule-
finding system, Magnum Opus [25], can successfully perform the
contrast-set mining task. The authors conclude that contrast-set

mining is a special case of the more general rule discovery task.
The techniques discussed above are only applicable to categori-
cal data. A good survey on contrast sets, emerging patterns and
subgroup discovery algorithms is provided in [21]. The authors
also discuss how the interest measures (such as difference in
support and WRACC) are compatible, i.e. the interest can be used
interchangeably between communities.

Techniques derived from decision tree learning can be used;
however, the authors in [16, 18, 23] explain some limitations of
decision-tree-based method for our application. A number of
work have been proposed to find subgroups in numerical do-
mains. The authors in [20, 23] discretize numerical data into bins
to find subgroups. The algorithm is implemented in an open
source tool Cortana. Such techniques typically use an initial dis-
cretization method and then merge spaces based on an interest
measure. We have compared against this approach in the experi-
mental section. An interesting algorithm described in [11] also
discretizes continuous attributes into bins for the problem of
subgroup discovery. The algorithm uses optimistic estimates and
horizontal pruning to prune the search space. This technique
heavily relies on pruning based on the top-k subgroups, since
the interest measure can be updated as soon as the algorithm
reaches k subgroups. Finding all initial split points (exhaustive
search in [11]) is expensive but if the initial partitions are not
exhaustive, e.g. frequency or entropy based, the algorithm may
miss interesting patterns that occur lower down the tree due to
multivariate interactions. The current trend of recent algorithms
tend to use sampling and user feedback to improve efficiency and
quality of rules [6–8, 17]. This is an interesting direction; how-
ever, our goal is to develop an accurate and efficient discretizer
in order to find contrast patterns. These algorithms can certainly
be used in conjunction with our algorithm.

Quantitative association rule mining is well-studied and could
potentially be used for contrast mining. Srikant proposed a dis-
cretization technique that partitions the range of the continu-
ous attribute into n equal-frequency partitions, and assigns the
partitions to consecutive integers [22]. If the supports for any
consecutive partitions fall below the minsup threshold, they are
merged. The problem, however, is setting the initial number of
partitions n and handling multivariate interactions. If n is too
small, it results in large partitions and potential information loss
since elements in the same partition are indistinguishable. On the
other hand, if n is too large, the algorithm becomes computation-
ally expensive. In [2], the authors find extraordinary behavior
by partitioning the antecedent of the rule into bins and finding
the statistics of the consequent. The algorithm cannot handle
multivariate interactions between continuous attributes. The al-
gorithm described in [24] is a bottom-up merging algorithm. It
merges contiguous parts of a feature based on the improvement
of an interest measure. We also use a bottom-up approach to
merge spaces; however, as will be shown later, our algorithm
can handle multivariate interactions between continuous fea-
tures and does not need initial small bins. MVD [3] proposed
by Bay is able to detect multivariate interactions for continuous
attributes. This algorithm is also a bottom-up approach which
merges contiguous spaces if they are not statistically different.

3 PRELIMINARIES
LetDB be a dataset withm rows R = {r1, r2, ... , rm } and n attributes
A = {a1, a2, ... , an }. An attribute can be either categorical or
continuous. A categorical attribute can have multiple values, i.e.
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for a categorical attribute ai having l unique values, domain(ai )
= {vi1, ...,vil }. For continuous attributes, its values consist of real
numbers i.e. domain(ai ) = IR. An item in DB is either a value
in a categorical attribute, ai = vix where vix ∈ domain(ai ), or
range in a continuous attribute, ai ∈ [vl ,vr ] where vl ≤ vr , vl ∈IR
and vl ∈IR. Using the above definitions, we note that items in a
continuous attribute can have overlapping ranges. An itemset c
is a combination of items in DB. Apart from having n attributes,
DB has an extra attribute that contains the group information
for each row (instance). Let G = {g1, g2, ... , gk } be a set of groups.
Each row belongs to exactly one group and multiple rows can
be a part of a single group. If |дk | is the number of instances in
group k and countk (c) is the number of rows that contain itemset
c in group k then support suppk (c) is:

suppk (c) =
countk (c)
|дk |

(1)

Bay [4] formally defines contrast set mining as follows. An
itemset is a contrast between 2 groups i and j if the support
difference between the 2 groups is large and significant. The
support difference is large if

suppi (c) − suppj (c) > δ (2)
and significant if

χ2i j (c) < α (3)
where α and δ are user-defined parameters.

Contrasts should be non-redundant. In the context of frequent
itemset mining, an itemset c is redundant if it contains a proper
subset d that has the same support as i where i is an itemset
of d [27]. An example given in [27] explains that any superset
of itemset female, pregnant is unlikely to be interesting since
female subsumes pregnant, i.e. these itemsets are functionally
dependent.

An itemset c is said to be productive if for every partition d,
where d ⊂ c , supp(c) > supp(d) ∗ supp(c\d). Since the dataset is
usually a sample of the population, statistical test such as fisher’s
exact test and chi-squared tests are performed on each partition of
an itemset to check for significance of the product. Although this
makes the algorithms computationally more expensive, it is an
important step to determine productivity and finding meaningful
patterns.

Another requirement is that a pattern should be independently
productive. To be independently productive, an itemset should
not be explained by any of its supersets apart from being pro-
ductive and not redundant. Statistical tests are also performed at
this step, usually as a postprocessing step.

An optimistic estimate (oe) of an itemset is the maximum
possible value of an interest measure in any of the itemsets
specializations[12]. If X’ is the specialization of X and Int(X’)
is the calculated interest measure of X’ then

Int(X ′) ≤ oe(X ) (4)
optimistic estimates are used to prune the search space by calcu-
lating the upper bound of the children nodes of each explored
node in the search tree.

Top-k pattern mining algorithms display the best ’k’ patterns
to the user based on some user defined interest measure. The
advantage is two-fold. First, it removes the need for the user to
enter a minimum threshold for the interest measure. For example,
support-based pruning is the first stage of the Apriori algorithm
[1] for association rule mining. Determining the best minimum

support (minsup) is non-trivial, if minsup is too high or too low,
it may find too few or too many patterns, respectively. The other
advantage is that it helps prune the search space even if the inter-
est measure is not monotonically decreasing based on optimistic
estimates.

We use the following strategies to reduce the search space.
An itemset is pruned if (1) it does not have support over δ in
any group (minimum deviation size pruning); (2) its expected
occurrence is less than 5, since statistical tests are not significant
at that level; and (3) If the optimistic estimate of the χ squared
value for the itemset’s children is less than the current threshold.
Also, to reduce the number of false positives, the value of α is
adjusted according to Bonferroni’s adjustment as explained in
[4].

4 QUANTITATIVE CONTRAST SETS
4.1 Methodology

Figure 1: Search Tree for Mixed Data

To find combination of attributes (itemsets to be explored), any
search algorithm such as breadth first search or depth first search
can be used. Depth first search is not the preferred choice of
search algorithm since it reduces the amount of pruning possible.
More specifically, it may try to combine attributes which other
algorithms may have found to be "non-combinable" early on.
For example. if the support of a subset of an itemset is below
the threshold, depth first search will not prune it. Breadth first
search, on the other hand, can maximize pruning. However, the
storage overhead at each level may be high. We use a search
strategy [28] shown in Figure 1 since it can maximize pruning,
and it requires less storage overhead than breadth first search.
The figure shows how itemsets are combined, and the number on
each node indicates the order in which it is explored. If an itemset
contains only categorical attributes, calculating the support for
each group is straightforward. When a combination containing
at least one continuous attribute is encountered in the tree, our
proposed algorithm, SDAD-CS, is called.

To explore contrast patterns for mixed (or exclusively con-
tinuous) itemsets, such as in nodes 4 to 12 in Figure 1, we pro-
pose SDAD-CS (Supervised Dynamic and Adaptive Discretization
for Contrast Sets), a quantitative contrast-set mining algorithm.
Given an itemset c containing 0 or more categorical items, and 1
or more continuous attributes ca = {a1 ... an } where n > 0, SDAD-
CS finds itemsets that are contrasts between the groups. The
contrasts found should also have the interest measure (such as
difference in support) greater than the current minimum. Each
contrast pattern returned should contain items from all the at-
tributes (categorical and continuous) specified by the calling
function.
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The core idea behind SDAD-CS is to first divide the space
(range) of a continuous attribute in a top-down fashion, calculate
the interest measures and determine whether to stop searching
or to explore further. After that, it merges similar contiguous
spaces in a bottom-up fashion and refines the space.

Let input group DB be all the rows and columns of the dataset
containing the groups of interest. Let c and ca be the categorical
itemset and continuous attributes to be explored, respectively.
The pseudocode for SDAD-CS is shown in Algorithm 1. The α
and δ are user input parameters (α is adjusted during execution).
Though not shown specifically in the algorithm, α and δ are
used each time there is a check for significance and largeness,
respectively. The parent measure, which is initially set to 0, stores
the parent’s interest measure (such as difference in support). Min
support is set to the current minimum support in the current
list of top-k contrasts. If the list does not have k contrasts, min
support is set to δ . Starting with the top-down part, partition(ca)
(Line 4 of the Algorithm) divides each continuous attribute at
the median or mean (we use median) into spaces. For example, a
continuous attribute with a range 0 to 100 with median 35 will
be divided into [0-35] and (35-100]. Next, f ind_combs(p) (Line 5)
finds combinations of spaces between continuous attributes. For
example, if there are two continuous attributes, dividing each by
its median creates four rectangles (spaces) on a scatter plot. Each
space together with the categorical itemset creates a candidate
itemset. If cont is the number of continuous attributes, then the
number of spaces is 2cont . These spaces define our initial bin
boundaries.

The algorithm iterates over each space created. It checks if
the space can be pruned (Line 7). This is performed by either
checking a lookup table or by performing some calculation and
saving the information in a lookup table, as will be described
later. We use a hash map with the itemset as the key. More space-
efficient data structures such as a hierarchical hash map can be
used if space is an issue. Our pruning strategies are explained in
detail in a later section; however, at this point it suffices to note
that a space is pruned if it is found in the lookup table.

The next step is to calculate the support of the itemset in each
group in the current space r (Line 10). SDAD-CS then calculates
the interest measure – in our case the difference in support (and
Surprising Factor) (Line 11). The algorithm then needs to make
a decision whether to explore the current space further. This is
determined by calculating the optimistic estimates for the child
space. If the current database contains n groups, the optimistic
estimate is calculated as follows.

Let r be the current space being explored, ccar be the itemset
found at space r and countk (ccar ) be the number of instances of
group k in space r. If |д1 |, |д2 | ... |дn | are the number of instances
in group 1, 2 ... n respectively, then,

supp1(ccar ) =
count1(ccar )
|д1 |

(5)

is the support of itemset cca in space r in group 1. Similar
definition follows for the support of the same itemset in group n.

Let level be the current level in the recursive tree of SDAD-CS,
|ca | be the number of continuous attributes, then

max_instances_child =
|DB |

2level+1 ∗ |ca |
(6)

indicates the maximum number of instances in the child spaces
created by a recursive call of SDAD-CS. This comes from the
fact that the continuous space is split at the median and hence

distributes the data points among all child spaces equally. It
should be noted that the assumption is that the data is real-
valued, and each reading is unique. Some care has to be taken if
the number of unique values is far less than the number of data
points.

The maximum support for itemset ccar in group 1 in any of
the child spaces is

max_supp_д1 =min(max_instances_child
|д1 |

, supp1(ccar )) (7)

The first part of equation 7 calculates the maximum support
possible in a child space for group 1. We note here that the
median is calculated based on all the given instances and the
groups can be imbalanced.We see that dividing the space may not
reduce the supports proportionally in all groups. If the number of
possible instances in the child space is greater than the number
of instances in group 1, then the first value inside the ’max’
function is greater than 1. This is not possible and is taken care of
in the second part of the equation. Also, support is monotonically
decreasing as the space reduces, and hence if the support of the
current space is less than the maximum possible support of
the child space, the maximum support of the child space is the
current support. A similar argument can be made for the other
groups.

We can calculate minimum support by following Eq. 6-8:

other_instances_д1 = |DB | − count1(ccar ) (8)

other_instances_д1 is the number of instances of the other
groups apart from g1 in the current space r.

Let

min_instances_д1 =max_instances_child −other_instances_д1
(9)

which will be negative if the majority of elements are not g1.

min_supp_д1 =max(0, min_instances_д1
|д1| ) (10)

Finally, the optimistic estimate for the child space is given by

oe(ccar ) =max(∀i∀j, i , j,max_supp_дi −min_supp_дj) (11)

i,j = 1..n
If the optimistic estimate calculated is greater than the mini-

mum support, the child spaces are recursively explored (Lines
12-13). If a better contrast pattern is found in the child space, it
is added to the current list of contrast patterns (Lines 14-15), else
if the current contrast pattern is large and significant, then it is
either added to the current list of contrasts D or Dtemp (Lines
16-21). The current itemset is added to D if the interest measure
is greater than its parents. However, if it is not, the algorithm
waits until all the spaces are explored and adds it if at least the
interest measure in one space is greater than that of its parent
(Lines 22-23).

After finding contrast spaces, the algorithm merges similar
and contiguous spaces to get more general and comprehensible
contrasts in a bottom up fashion (Lines 26-30). To merge parti-
tions, the spaces are sorted in increasing order of size. We observe
that, SDAD-CS finds fewer and more meaningful itemsets since
there is more opportunity of merging smaller itemsets. If we plot
the continuous attributes on a scatter plot, the spaces created by
two continuous attributes is a rectangle and the size is the area
of the rectangle; by plotting 3 continuous attributes the space
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Algorithm 1: Algorithm SDAD-CS
Input: DB with group attribute, categorical items c in

itemset, continuous attributes ca, δ , α , min support,
parent measure pm

Output: Set of contrast patterns
1 begin
2 D ← List o f itemsets that are contrasts (Initially set to

empty )
3 Dtemp ← List o f itemsets that may be contrasts

(Initially set to empty )
4 p = partition(ca) %partition each continuous

attribute at median

5 r = f ind_combs(p) % f ind all combinations

o f ranдes f ound by p

6 for each space in r do
7 if can_prune(ccar ) then
8 Add itemset to pruned list
9 continue

10 Calculate s(ccar ) for each group
11 Calculate int(ccar ) user defined interest measure

(such as difference in support) between each group
12 if oe(ccar ) >min support then
13 Dchild = SDAD_CS(DBr , ca, δ , α , min support,

int(ccar ))
14 if Dchild not empty and then
15 Append(D,Dchild )
16 else
17 if ccar large and significant then
18 if ccar greater than pm then
19 Append (D,ccar )
20 else
21 Append (Dtemp ,ccar )

22 if len(D)>0 then
23 append(D,Dtemp )
24 else
25 return []
26 if level==1 then
27 FIS = SORT(All spaces from smallest to largest)

while No space left to combine in FIS do
28 Check 2 contiguous spaces if combination is

possible if Comb possible then
29 Combine itemsets; update contrast set

30 Return D

is a cuboid and the size is the volume of the cuboid. In general,
hyper-planes create hyper-cubes and the size is n-volume.

Lines 28-29 loop through the spaces and try to merge contigu-
ous and similar ones. Again, similarity is tested using a chi square
test with αr and the resulting contrast is still large and significant.
If the itemsets are merged, the support, PR (to be defined later),
hyper volume and bin boundaries are updated accordingly. More
specialized itemsets are deleted and the new itemset is inserted
in the appropriate sorted place.

4.2 Interest Measures
The default interest measure we use in the quantitative analysis
is the difference in support; however, we find that looking at
the homogeneity of a space while searching can help us find
interesting patterns. We define an interest measure, purity ratio
(PR), which describes how homogeneous the current region is
with respect to the group. In general, any interest measure, such
as entropy, can also be used here depending on the problem
definition. Our data is highly imbalanced and working with just
supports of the group eradicates this issue. For purity ratio (PR), a
value closer to 1 indicates that the current space contains mostly
data from the same group. Suppose i and j are the groups we
are contrasting, c is the itemset with discretized quantitative
attributes, sic is the support of group i in the space of itemset c ,
we define PR as:

PR(c) = 1 −
min(sic , sjc )
max(sic , sjc )

(12)

One limitation with purity ratio is that it does not take the size
of the itemset involved into consideration. For example, consider
two itemsets: c1 with supports of 0.02 and 0.04 in groups i and j
respectively and c2 with supports 0.30 and 0.60. Both have equal
purity ratio. However, we notice that c2 should be considered
more interesting since it covers more instances. On the other
hand, difference in support has another issue. Suppose we find
two itemsets: c1 with supports of 0.9 and 0.8 in groups i and j
respectively and c2 with supports 0.20 and 0.10, and we notice
that both have similar support difference. However, c2 (for our
application) is more interesting, i.e. given the contrast c2 the
likelihood c2 to be in group i is double that of j but there is
almost a equal likelihood for c1 to be from either of the groups.
To overcome this, we define SurPRising Measure:

SurprisinдMeasure(c) = PR(c) ∗ Di f f (c) (13)
By multiplying difference in support (Diff) in each group to

purity (PR) it takes the size of the contrast into consideration
while giving equal weights to both groups.

The optimistic estimate for Surprising Measure is the same as
Equation 11, since in the best case, PR will always be 1 in any
partition (PR = 1 if there is only one instance in a partition).

4.3 Pruning
For itemsets containing only categorical attributes, we use the
same pruning methods as in [4], i.e. minimum deviation size, ex-
pected value and chi-square bounds. This can be directly applied
to itemsets containing both continuous and categorical or only
continuous items once the bins are formed. Apart from the above
technique, we try to prune redundant contrasts. An itemset is
redundant if the support of the itemset is equal to the support
of one of its subsets. The rationale behind this can be explained
using an example. Consider an itemset { f emale & preдnant}. Fe-
male subsumes pregnant i.e. the support of { f emale & preдnant}
is equal to support of {preдnant}. Any contrast that is a superset
of { f emale & preдnant} is likely redundant.

If an itemset is redundant, the support difference will be the
same as its ancestors. Not expanding this itemset will reduce the
number of redundant contrasts and search space. We note that
the itemset should be redundant in all groups. In many real world
datasets, there might be missing values, or incorrectly entered
values. In addition, highly correlated features also tend to have
many redundant contrasts. Hence, we loosen the requirement of

448



EDBT 2019, March 26-29, 2019, Lisbon, Portugal Rohan Khade, Jessica Lin, and Nital Patel

Figure 2: (Left) Vertical lines: all splits before merging. (Right) Final result after merging.

total subsumation and test whether the difference is statistically
the same.

The datasets tested upon are samples of the population, and
hence to make decisions for the population, statistical tests are
needed. To check if two itemsets have statistically the same dif-
ferences in support in the population, we use the central limit
theorem. We choose this because we can assume that the differ-
ence in support for multiple samples of the population tend to
follow a normal distribution. Extending the definition of central
limit theorem to difference in support, it states that “Given no
other samples, the best approximation of the mean of the differ-
ence in support for the population is the difference in support in
the current sample."

Let α be the significance level, |дx | and |дy | be the sizes of
groups x and y, respectively, di f fcurr be the current difference
in the groups, di f fsubset be the difference of the subset, and
suppx (c) and suppy (c) be the supports of itemset c in group x
and y, respectively. For each subset, we calculate the bounds of
the difference di f fbound . Let

a =
suppx (c) ∗ (1 − suppx (c))

|дx | (14)

and,

b =
suppy (c) ∗ (1 − suppy (c))

|дy | (15)

di f fbound = di f fsubset ± α ∗
√
a + b (16)

If di f fcurr is within the range of di f fbound , the difference
support for the current itemset is statistically the same as its sub-
set and hence may not be interesting and is pruned. Itemsets that
are supersets of the current itemset will also not be meaningful.

Another case for redundancy for contrast patterns would be if
there is a contrast found with support = 0 in a group but greater
than δ in the other, then adding another item to the itemset
may result in a redundant itemset. Extending this to itemsets
containing continuous items, and looking at our definition of
PR, we notice that when PR = 1 in a space, only one group
is present in that space. Adding another item to the itemset
would result in redundant contrasts. For example, consider a
dataset containing attributes height and current country with
groups toddler and adult. Consider we find a contrast height ∈
]60,75] (inches) has support(adult)=0.8 and support(toddler)=0.
Now adding current country to height may also result in a large
and significant contrast, but it is clearly redundant between these
groups.

A contrast pattern ’c’ is productive if for every subset ’a’ and
’c\a’,

di f fc > suppx (a) ∗ suppx (c \ a) − suppy (a) ∗ suppy (c \ a) (17)

if |g_x| > |g_y|.
If di f fc is less than the product on the right-hand side of the

equation for even one of the subsets, the contrast is clearly not
productive. However, if it is greater, a statistical test is needed
to confirm if it is indeed productive. We use chi-square test to
check productivity. It should be noted that this formula is related
to leverage in association rule mining which checks statistical
dependence between variables.

At the end of the mining process, a check is performed to
see if the contrasts are independently productive. Independently
productive itemsets are meaningful, independent of their children
or ancestor itemsets. For example, consider a dataset with two
groups of days when a hurricane "develops" and "not develops,"
and a user wants to study the differences in the groups. There
are a few necessary conditions for a hurricane to develop, e.g.
temperature of water > 80 degrees Fahrenheit, depth of water >
200 feet and low wind shear. Considering these 3 features, the
number of contrasts which will be found is 7. However, the only
contrasts that the user might be interested in are the ones with
all 3 conditions in it. Independently productive patterns provides
the users with a compact set of patterns which are likely to be
meaningful.

To check whether an itemset is independently productive, a
check is performed on each superset of the itemset present in
the final list. For example, consider itemset {A & B} and itemset
{A} in the list of contrasts found. Let r(A) be the indices of rows
that item A is present, r(B) be the indices of rows that item B is
present and r(A ∩ B) be the indices of rows that item A and item
B are present. Now if itemset {A} is independently productive
then rows r(A) - r(A ∩ B) should also be a contrast, otherwise the
contrast is found only because of itemset {B}. To check whether
an itemset is a contrast, a chi-square test is performed to check
significance difference in the groups. We note that an itemset
may have multiple supersets and the check is performed only
on supersets present in the final list. It is easy to see why this is
the case by simple observation. If the superset is not a contrast,
then it cannot be the case that the other features present in the
superset caused the current itemset to be a contrast.
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(a) (b)

(c) (d)

Figure 3: (a) Simulated Dataset 1 (b) Simulated Dataset 2 (c) Simulated Dataset 3 (d) Simulated Dataset 4

4.4 Example
In Figure 2 we show an example of discretizing an itemset c =
{X }, where X is a continuous attribute. Let G be the group at-
tribute with value “A" and “B". The figures shows the histograms
of X , and the different shades of gray denote the two groups “A"
and “B". The darker shade denotes G = “A”. Suppose 2% of all
records belong in group “A", and the rest belong in group “B".
X is first divided into two spaces at the medianm, and SDAD-
CS notices that PR in the left space is 1 since there are no in-
stances of {X < m,Y = “A”}. This is a pure space and does
not need to be split further. In the right space, however, the
PR is 1 − (48/98)/(2/2) = 0.51 and the optimistic estimate is
1− 23/98 = 0.76. The algorithm continues dividing the space and
the new PR becomes 1 − (23/98)/(2/2) = 0.76. All the partitions
are shown in Figure 2(Left). Spaces are thenmerged from smallest
to largest. The final partition after merging contiguous regions
is in Figure 2(Right).

5 EXPERIMENTAL EVALUATION
SDAD-CS is compared with 3 other popular algorithms, MVD,
Fayyad’s entropy based method [9], and Subgroup Discovery
interval binning [20] implemented in the Cortana software suite.

Experimental Setup: For all experiments, initial α = 0.05 and
δ = 0.1 . The search tree was stunted to have a maximum of 5
levels. For the simulated dataset, we use Surprising Factor as our
interest measure since it results in the best contrasts qualitatively.
For the quantitative analysis, we compare all the algorithms
with SDAD-CS NP (No Pruning) . This was to level the playing
field since many redundant and non-productive contrasts have
a high interest measure and are pruned out by our algorithm.
We use mean difference in support as the interest measure since
the other algorithms are not developed to optimize Surprising
Factor or Purity and hence would not be a fair comparison. These
experiments however show the utility of our algorithm compared
to the state of the art. We also discuss the scale and effect of non
meaningful patterns found by not using our pruning methods.

We compare our algorithm to MVD [3] with initial α = 0.05
and δ = 0.01 of the size of the dataset. For MVD, the datasets
were initially discretized to have 100 instances per small bin as in

[3]. For Fayyad’s discretizer, the Group attribute is treated as the
Class. For subgroup discovery using Cortana, we use theWRACC
measure (equivalent to finding support difference in groups [21])
with a minimum value of 0.01 with beam search and use the
’intervals’ option for continuous attributes. The other settings
for Cortana include keeping the target as nominal, search width
100, maximum time to infinity, maximum subgroups to k (100 in
experiments), minimum coverage to 2 and maximum coverage
to the entire dataset. Although Cortana is suite of algorithms,
these settings seem to be the fairest comparison to our algorithm,
and from here on we will refer to these settings as ’Cortana’. For
Cortana we ran the algorithms twice, once for each subgroup, and
then used all the subgroups found as the contrast set. The first
part of this section qualitatively analyzes some of the contrasts
found, and later we quantitatively compare the algorithms. Please
visit https://zenodo.org/badge/latestdoi/8891484 to access the
application version.

5.1 Simulated Dataset 1
As a litmus test, we first conduct experiments on 4 simulated
datasets, to check the validity of the bins found. The first simu-
lated data consist of 2 attributes as shown in Figure 3a. The bold
line indicate the bins found by SDAD-CS and the dotted lines are
the bins found by MVD.

The only split point SDAD-CS finds is with Attribute 1. Since
PR = 1 for both contrasts we cannot do "better" by adding another
attribute hence we prune these spaces i.e SDAD-CS will not find
a contrast between Attribute 1 and Attribute 2. Although we
see that there is some interaction (correlation) between the 2
attributes, which is detected by MVD, the goal here is to find a
boundary that separates the groups and there is no interest in the
underlying relationships in this case. MVD misses this splitting
point. The entropy based method and Cortana finds the same
contrast as SDAD-CS, however Cortana also finds a bin outlined
by the red box which seems meaningless.

5.2 Simulated Dataset 2
This experiment shows the algorithm’s ability to find meaningful
contrast patterns in multivariate data. This dataset consists of
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two multivariate Gaussians in the shape of an “X” as shown in
Figure 3b. Each Gaussian has a group attribute associated with it
indicated by the markers.

The bin boundaries found by SDAD-CS are indicated by the
rectangles in Figure 3b. We note that there is no rule found when
we run SDAD-CS on each attribute individually. The contrasts
found byMVD are similar to our algorithm. However, the entropy
based method does not find any bins for this dataset. Cortana
does not find the best bins which are shown by the red dotted
boxes.

5.3 Simulated Dataset 3
In this experiment, we generated two variables uniformly dis-
tributed in the range 0 to 1. The only relationship in this dataset
is that Attribute 1 in range 0 to 0.5 belongs to Group 2 and the
rest Group 1. SDAD-CS finds contrasts at only level 1; however,
Cortana finds meaningless contrasts at higher levels, shown in
the red box. MVD finds similar contrasts as SDAD-CS.

5.4 Simulated Dataset 4
In Simulated dataset 4 we see interactions between attributes at
level 2 of the search tree. We notice that during the search stage,
there will be contrasts in the range 0 to 0.25 and 0.75 to 1 for
Attribute 1 and 0 to 0.5 and 0.75 to 1 for Attribute 2. However,
when the attributes are combined, the lower level contrasts are
not independently productive and hence pruned by SDAD-CS.
SDAD-CS finds a total of 6 contrasts. On the other hand, Cortana
misses the top right contrasts and finds somemeaningless regions
shown in the middle of the figure.

5.5 Adult Dataset
5.5.1 Analyzing Bin Boundaries for Numeric Features. In this

section, the differences in the contrasts found by the 5 algorithms
on the Adult census dataset from the UCI Machine Learning
repository [19] are shown. This experiment is a comparison be-
tween the ’Doctorate’ and ’Bachelor’ groups. We focus on Age
and hours per week worked attributes since they highlight the
differences between the algorithms.

Some of the quantitative contrasts found are shown in Table
1. Figure 4 shows the group support and the PR in each equi-
frequency bin for Age and hours-per-week. The labels on the
X-axis denote the bin boundary used and the Y-axis denotes the
group support.

Looking at the contrasts found by SDAD-CS, we observe
strong contrasts in the ranges 19–26 and 47–90 of the age at-
tribute when we use PR as the interest measure to optimize.
Looking at Figure 4a, we notice that, in the range 27–45, the
supports for both groups are similar and hence it has a low PR.
However, in the other ranges, there is clearly a dominant group.
Similarly, in the range 50–100 for the hours-per-week attribute
shown in Figure 4b, we see the majority belonging to the Doctor-
ate group. The Bachelor group usually work less than 40 hours
per week. The fifth contrast pattern discretizes {age, hours-per-
week} which produces a better contrast (higher purity) than the
contrasts found in the lower-order ones. This suggests that there
is a multivariate relationship between these 2 attributes. We
also notice the bin boundaries of {age, hours-per-week} change
as compared to when they are discretized independently. This
contrast shows that a global discretization may not work.

(a)

(b)

Figure 4: (a) Histogram comparing Age supports and pu-
rity ratio (b) Histogram comparing Hours per week sup-
ports and purity ratio

Cortana and SDAD-CS with support difference does not detect
very good split points qualitatively. For example, in the range 19–
26 in the age attribute we find only the group Bachelors. However,
they find bigger bin boundaries. By looking at Figure 4a we notice
the difference in supports and purity between ages 27 and 45 is
small, however since the overall support in that space is much
higher, the 2 algorithms find this as a large contrast. This is not
surprising since the goal is to maximize the interest measure. A
similar argument can be made for hours per week attribute. The
contrasts found by Cortana when age and hours per week are
combined are not productive according to the definition earlier. If
we compare contrast 6 of Cortana and SDAD-CSwith PR, Cortana
finds a purer space. However, we also notice that in the range
19–26 of the age attribute, the support for the Doctorate group
is close to 0, so PR is almost 1 for this contrast. Thus, we can
prune this space for higher order combinations. An example of a
contrast found without pruning this space is 19 ≤ Age ≤ 25 and 1
≤ hours-per-week ≤ 40, which has support of 0 for the Doctorate
group, and support of 0.10 for the Bachelors group. If this space
is not pruned, SDAD would have found a purer contrast than
Cortana, however, this clearly is a redundant space.

Fayyad’s entropy discretizer and MVD detects level 1 interac-
tions and finds strong contrasts, but fails to find any interaction
between the attributes when combined. For the Doctorate group
MVD forms a bin for Ages 48–59, which seems reasonable, how-
ever from 60–90 even though support difference is low, the purity
(homogeneity) in favor of the Doctorate group is similar. Looking
at the bar graph in Figure 4a, at around age 40, the support for
both groups are similar, and as the age increases, we notice a
higher support for the Doctorate group. MVD is not able to find
the interaction between age and Hours worked

5.5.2 Analyzing top Patterns found. We now take a look at the
top patterns found by Cortana (similar ones found by SDAD-CS
without pruning). The setting for Cortana are as explained earlier;
however, the depth of the tree was set as 2 for this discussion.
The top 5 contrasts are shown in Table 3 (Cortana also displays
contrasts such as sex = Male and occupation = Pro f specialty
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Table 1: Contrast Sets for Adult Dataset

S.No Contrast Set Supp (Doc.) Supp (Bach.)
Contrasts Using SDAD-CS with PR

1 18 < Aдe <= 26 0 0.16
2 47 < Aдe <= 90 0.48 0.22
3 1 < hour_per_week <= 40 0.45 0.60
4 50 < hour_per_week <= 99 0.28 0.14
5 49 < Aдe <= 69 and 50 < hour_per_week <= 99 0.13 0.03
6 25 < Aдe <= 39 and 1 < hour_per_week <= 39 0.11 0.26

Contrasts Using SDAD-CS with Support Difference
1 18 < Aдe <= 39 0.26 0.57
2 38 < Aдe <= 90 0.76 0.46
3 1 < hour_per_week <= 48 0.55 0.73
4 40 < hour_per_week <= 99 0.55 0.40

Contrasts Using Subgroup Discovery with Cortana
1 39 < Aдe <= 80.0 0.74 0.43
2 −in f < Aдe <= 39 0.26 0.57
3 6 < hour_per_week <= 49 0.53 0.72
4 49 < hour_per_week < in f 0.45 0.28
5 32 < Aдe <= 69 and 49 < hour_per_week < in f 0.41 0.19
6 −in f < Aдe <= 43 and 6 < hour_per_week <= 49 0.20 0.50

Contrasts Using Fayyad Entropy Binning
1 18 < Aдe <= 26 0 0.16
2 26 < Aдe <= 32 0.08 0.19
3 46 < Aдe <= 90 0.24 0.51
4 0 < hour_per_week <= 55 0.91 0.78

Contrasts Using MVD
1 18 < Aдe <= 24 0 0.13
2 47 < Aдe <= 58 0.32 0.15
3 39 < hour_per_week <= 40 0.30 0.43
4 50 < hour_per_week <= 99 0.28 0.14

Table 2: Datasets

Dataset Groups No. of instance per
group

No. of Features/ Contin-
uous Features

Adult Bachelors/Doctorate 8025/594 13/5
Spambase Spam/No Spam 1813/2788 57/57
Breast Cancer Benign/Malignant 458/241 10/10
Mammography Severe/Not Severe 445/516 5/5
Transfusion Donated/Not Donated 570/178 4/4
Shuttle Rad Flow/High 45586/8903 9/9
Credit Card No/Yes 23363/6635 24/23
Census Income Below 50K/Above 50K 187141/12382 39/11
Ionosphere g/b 225/126 34/34
covtype Spruce-Fir/Lodgepole Pine 211840/283301 54/10

which is clearly the same as contrast number 4 in the table and is
not considered here). We notice that the top 5 contrasts has one
item in common occupation = Pro f specialty . The question
arises if all the contrast are meaningful.

Itemsets i, ii and iii in Table 3 are singular itemsets required
for calculation of the expected support for the top 5 itemsets
shown as a, b and c in table. Looking at Table 3, we see itemsets
1, 4 and 5 are not meaningful since the difference in support is
not statistically different from the expected difference in support.
Itemset 2 is clearly redundant and functionally dependent to
itemset 3. Hence, of the top 5 contrasts found by Cortana, only
contrast 3 would be displayed by SDAD-CS. It should be noted

that these itemsets are seeds to higher order itemsets (with 3 and
more items) which further exacerbates the problem. Later on we
discuss the pervasiveness of this in all the datasets we encounter.

5.6 Quantitative Analysis
In this section, we compare the mean difference in support. We
compare the algorithms based on difference of support since it
is shown to be compatible with WRACC [21] (they are directly
proportional). It should be noted that SDAD-CS finds significantly
better contrasts with respect to Surprising Factor, however, it
would not be a fair comparison since Cortana is not optimized
for this interest measure.
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Table 3: Top Contrast Sets for Adult Dataset with Cortana

S.No Contrast Set Supp (Doc.) Supp (Bach.)
Top 5 Contrasts found by Cortana

1 occupation = Pro f specialty and 28 <= Aдe < 80 0.74 0.21
2 occupation = Pro f specialty and 19302 <= f nlwдt < 606111 0.76 0.28
3 occupation = Pro f specialty 0.76 0.28
4 occupation = Pro f specialty and sex = Male 0.61 0.17
5 occupation = Pro f specialty and class = > 50K 0.55 0.11

Required Itemsets with 1 item
i 28 <= Aдe < 80 0.98 0.8
ii sex = Male 0.81 0.69
iii class = > 50K 0.73 0.41

Expected Supports for itemsets
a occupation = Pro f specialty and 28 <= Aдe < 80 0.75 0.22
b occupation = Pro f specialty and sex = Male 0.61 0.19
c occupation = Pro f specialty and class = > 50K 0.55 0.11

Each algorithm finds different number of contrasts. To have
a meaningful comparison, we only compare the top k contrasts
where k is decided by the algorithm that finds the least number
of contrasts or 100, whichever is smaller. The itemsets are sorted
on the interest measure which is used to compare the algorithms
in the experiment i.e. the itemsets are sorted in decreasing order
on difference. The datasets are from the UCI repository and are
shown in Table 2.

The ∗ and - in Table 4 indicate that the distributions are not
significantly different from SDAD-CS according to the Wilcoxon
Mann Whitney test, and that the experiment was not able to
be completed, respectively. The results indicate that on aver-
age, SDAD-CS NP finds the best results followed by Cortana.
However, many of the contrast found are redundant when ana-
lyzed qualitatively. For example, in the Shuttle dataset, SDAD-CS
seems to find very bad contrasts compared to Cortana. Further
analysis of the patterns show that Attr_1 in (-inf, 54.0] has prob-
abilities 0.91 and 0.01 in the 2 groups respectively and Attr_9
in (-inf, 2.0] has probabilities 0.77 and 0. Cortana then finds an-
other pattern Attr_1 in (-inf, 54.0] and Attr_9 in (-inf, 62.0] with
probabilities 0.91 and 0.01 which is clearly not improving the
pattern found in the previous level. However, these strong pat-
terns contribute towards increasing the average interest measure.
Comparing the results manually indicate the SDAD-CS finds all
the non-redundant contrasts. Moreover, if we restrict the algo-
rithms to find only patterns at the first level, SDAD-CS finds
stronger patterns. Additional experiments were conducted to
validate our algorithm on semiconductor manufacturing data
and initial results indicate SDAD-CS found the most interesting
patterns qualitatively.

We compare the time cost for MVD, SDAD-CS and SDAD-
CS NP in Table 5. It should be noted that the time observed
is only representative and may not be an accurate comparison.
The implementation standards were kept similar, however, it
is possible that the algorithms could be made faster by some
implementation optimizations. In general SDAD-CS explores
more spaces but that may not correlate to time taken. This may be
because at each space, MVD is more computationally expensive.
SDAD-CS with pruning is the fastest in general.

For each dataset we show the number of Redundant, Unpro-
ductive and Independently Productive Contrasts in the top 100
patterns without applying the filter. The results are shown in

Table 6. As shown in the table the majority of the contrasts may
not be interesting to the user.

6 CASE STUDY: ANALYSIS OF
MANUFACTURING DATA

The previous section showed the ability of our algorithm to find
better contrast patterns than other state of the art algorithms,
however, through this section, we show the utility of contrast
pattern mining in a real world scenario. We demonstrate that
contrast patterns have the capability to find insightful informa-
tion in a dataset from a high-volume semiconductor packaging
factory. Note that the data has been encoded and normalized for
intellectual property reasons. The patterns shown here can be
easily interpreted by engineers which may not be possible with
other machine learning paradigms. There are many examples
where we can apply our algorithm in the semiconductor man-
ufacturing domain, such as, analyzing the difference between
machines or finding contrasts between a high yield and a low
yield batch.

A large amount of information is collected on a per package
level as material moves through the packaging and test process.
The segment of processing in the manufacture of CPUs which
is of interest to us, lies between the wafer test and final test
operations. Wafer test is the test performed on an entire wafer
before it gets singulated and packaged. Final test occurs after the
packaging process, and is used to ensure the product is going to
perform as designed under specified operating conditions. The
data collected are tied to the part identifier and can consist of
variables that have continuous, as well as, discrete values. One
has parameters that correspond to contextual information re-
lated to, for example, the sequence of equipment that processed
the part, including relevant subentities (e.g. test heads, pick and
place heads, oven lanes, bond heads etc.), material information,
along with parametric measurement information from sensors
on process tools (such as temperatures and pressures), along with
parametric measurements from test, as well as, and categorical
data related to device performance. The data volumes are quite
substantial when one looks at the data collected across the en-
tire manufacturing flow and to show viability of the methods
presented in this paper, a limited data set was normalized and
used for testing. The intent of the activity is to use the methods
to quickly identify manufacturing conditions that are resulting
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Table 4: Quantitative Analysis of Contrast Sets

Dataset SDAD-CS
NP

MVD Entropy Cortana-
Interval

Mean Support Difference
Adult 0.26 0.16 0.18 0.27∗

Spambase 0.60 0.42 0.36 0.60∗

Breast 0.86 0.46 0.51 0.87∗
Mammography 0.54 0.36 0.52∗ 0.43
Transfusion 0.34 0.12 0.29 0.35∗

Shuttle 0.87 0.24 0.45 0.92∗

Credit Card 0.26 0.17 - 0.19
Census Income 0.48 0.32 - 0.49∗

Ionosphere 0.76 0.43 0.35 0.75∗
Covtype 0.49 0.41 - 0.45

Table 5: Time taken by SDAD-CS and MVD

Dataset Time in Seconds Number of Partitions Evaluated
SDAD-CS MVD SDAD-CS NP SDAD-CS MVD SDAD-CS NP

Adult 11.11 22.92 13.28 742 171 1024
Spambase 899.97 1901.88 1909.02 121604 592 283714
Breast 0.59 3.38 1.98 72 30 376
Mammography 0.71 0.88 0.86 188 19 248
Transfusion 0.42 0.69 0.40 86 23 84
Shuttle 45.80 80.82 105.95 302 382 1018
Credit Card 441.82 873.88 639.22 12126 3260 17202
Census Income 1490.34 2256.63 4127.39 594 2566 19516
Ionosphere 960.54 983.21 1169.56 117199 122854 7371104

Table 6: Number of Meaningful Contrasts

Dataset Count (Meaningful Contrasts) Count (Meaningless Contrasts)
Adult 3 97
Spambase 12 88
Breast Cancer 5 95
Mammography 11 37
Transfusion 7 23
Shuttle 9 91
Credit Card 1 99
Census Income 8 92
Ionosphere 10 90
Covtype 3 97

in failures at final test to prevent generation of additional scrap
material. Note that these failures are typically sporadic and the
upstream signals often get diluted with increasing process com-
plexity.

For this experiment we took a sample of the entire popula-
tion and compared it with parts that failed a particular test. The
data consists of 148 attributes including around 30 continuous at-
tributes. A quick look at the contrasts indicate some information
of the failing parts. These insights allow engineers to tweak or
change things that are a probable cause of the failure for the test.
In Table 7 we see categorical contrasts which suggest that most of
the problems occur on a particular placement tool and pick head
on a specific chip attach module (CAM) and most of the issues
usually occur on the back row of the tray holding the parts. Both
the location of the impacted parts in the trays and the specific
placement tool point to a potential issue with the rear lane of the

module. We also see in Table 7 that the time the impacted parts
are spending above the solder liquidus temperature in the reflow
oven is unusually higher. Another issue noted in 7 indicates that
the average peak reflow temperature for the chips that failed the
test seem to be higher as well. These results indicate an issue
with the temperature control in the rear lane of the reflow oven
on that specific module. With this information, feedback and
changes along the manufacturing line can be made in a timely
manner, including blocking any additional processing on that
specific equipment/location until the issue has been addressed.
Other algorithms however give a large number of contrasts and
are sometimes hard to interpret and act upon.

In any practical scenario the scaling of the algorithm is very
important. Apart from introducing some pruning mechanisms
in the previous sections in a real world scenario the data usually
does not fit in main memory. A usual way to handle this situation
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Table 7: Contrast Sets for Manufacturing data

Contrast Set Supp. Diff Supp. (Population) Supp. (Sample)
CAM entity-SCE 0.27 0.28 0.55
Placement tool-JVF 0.27 0.28 0.55
10.5106<=CAM peak temp std<=10.6534 0.18 0.45 0.62
67.1875<=Die temp above std<=67.2486 0.17 0.13 0.3
CAM row location -Rear 0.16 0.34 0.5
92.0373<=CAM time above liquidus<=92.8009 0.16 0.04 0.21
254.1609 <= CAM Peak temperature <= 256.8191 0.14 0.24 0.37

is by parallelizing the algorithm by using multiple machines (in
a cluster). It should be noticed that SDAD-CS is run on combina-
tions of features (itemsets) and can be run parallel of each other.
Intermittent results can be used to prune the next stages. There
are multiple strategies proposed in the literature of association
rule mining (or search tree algorithms) to find candidate itemsets
in parallel. A simple strategy is find contrast patterns at each
level of the tree in parallel and then use those results to prune
the next level of the tree. There is some loss of pruning of the
search space across subtrees, but by using this strategy, we can
treat each problem at the computing nodes as an independent
problem, and use the pruning strategies discussed earlier within
subtrees. The times taken to complete the experiments are 18,
106 and 225 minutes for samples containing 100000, 500000 and
1000000 instances respectively with 120 features.

7 CONCLUSION
In this paper we propose a method to find contrast sets in mixed
data. Using a binning strategy that automatically determines
the size and number of bins for the continuous attributes, we
find meaningful contrasts even with the presence of multivari-
ate interactions. Our algorithm is capable of finding meaningful
contrasts which can potentially be more interesting to users by
finding productive, independently productive and non-redundant
patterns. We discuss strategies to reduce the search space. The
experimental results show the utility of our algorithm in real
datasets and how it finds better contrasts compared to exist-
ing techniques. The algorithm introduced in this work provides
insights for analyzing data that fits in the main memory. Manu-
facturing data, as well as data in many application domains are
very large. We discussed a way to scale up the algorithm in a
parallel environment. This can be potentially used to provide
more accurate and real time patterns to engineers.
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