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ABSTRACT
Index structures such as B-trees and bloom filters are the "petrol
engines" of database systems, but these structures do not fully
exploit patterns in data distribution. To address this, researchers
have suggested using machine learning models as "electric en-
gines" that can entirely replace index structures. Such a paradigm
shift in data system design, however, opens many unsolved de-
sign challenges, e.g. more research is needed to understand the
theoretical guarantees and design efficient support for insertion
and deletion.
In this paper we adopt a different position: index algorithms

are good enough, and that instead of going back to the drawing
board to fit data systems with learned models, we should develop
lightweight "hybrid engines", where a helping model "boosts" clas-
sical index performance using techniques from machine learning.

As a case study, we show how interpolation techniques can be
integrated with a B-trees with negligible change to the structure
and memory footprint of the base algorithm. We show that such
a simple helping model, called Interpolation-Friendly B-tree (IFB-
tree), can boost the speed of B-trees by up to 50%.

1 INTRODUCTION
Data engines exploit efficient implementations of algorithmic
index structures, such as hash tables, B-trees, radix-trees, bloom
filters, etc. Index structures fit different tasks and workloads, e.g.
B-trees are efficient for range lookups and hash tables are the
tool of choice for point queries. Different aspects for each of
these indexes have been studied for decades. Many tuning sug-
gestions exist, for example, for B-trees to efficiently fit hardware
specifications including the latency/bandwidth ratio and cache-
sizes, and various extensions have been suggested to improve
the performance even further. [4, 5, 11, 12].
Recently, it was suggested that general-purpose index struc-

tures such as B-tree cannot exploit common patterns in data
distribution of the real-world data, hence proposing the use of
machine learning (ML) models [9]. In this approach, a learned
model entirely replaces a classical index and learns how to per-
form the same behavior. For example, a B-tree can be replaced by
a learned index (based on deep learning models) that takes the
key as input and estimates the position of the corresponding data
record in a sorted set, i.e., a clustered index or sorted list of keys.
Learned indexes can be effective for read-only lookups over

many data distributions. However, lack of theoretical perfor-
mance guarantees for a learned model and the challenges for
handling update operations in a learned model has lead to an
extensive debate in the community. In general, and similar to the
analogy of ’petrol vs electric’ engines, adopting machine learning
techniques could yield elegant methods in data management but
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Figure 1: Alternatives for classical indexes

the design and maintenance of an ML-enhanced DBMS opens
numerous challenges that require comprehensive research. In
the meantime, we need hybrid engines that do not render cur-
rent algorithms and indexes unnecessary. We refer to the hybrid
engines as "helping models". Figure 1 illustrates a classical B-tree
index (a) vs a learned index (b), the hybrid approach (c) where
helping models improve a classical index on different stages.

In this work, we try to bridge the gap between traditional index
structures and the ML approach, suggesting that a helping model
can be integrated with a traditional index without incurring un-
due overhead.We suggest that the ability of anMLmodel to make
distribution-aware indices is not a rival for classical indexes, but
indeed complements them.
We therefore present the Interpolation-Friendly B-tree (IFB-

tree), which sticks with the traditional B-tree structures to enjoy
their performance guarantees, yet is able to exploit the basic ideas
of a learned index such as bounding error-windows for intra-node
lookups. More specifically, we demonstrate how linear interpola-
tion can be integrated with a B-tree index to reduce unnecessary
operations with a negligible memory footprint. The process can
be done by analyzing a B-tree and labeling interpolation-friendly
nodes, so that further access to such nodes can be accelerated
using interpolation. Our experiments show that the Interpolation-
Friendly B-trees (IFB-trees) gives up to 50% improvement over
B-trees.

2 TO B-TREE OR NOT TO B-TREE?
2.1 B-tree overview
The B-tree is a generic data structure. State-of-the-art B-trees
are n-ary binary trees, i.e., generic data structures that do not
assume any specific pattern in the underlying key distribution [4,
5, 11, 12]. B-tree lookup time consists of the time to search within
each node, plus the time to follow the pointers and load the next
nodes in bottom levels. This takes time and requires keeping a
portion of data (inner nodes) in memory.
One of the key issues in a B-tree is that, to locate an item in

each of the B-tree nodes, the entire node should be searched,
either by linear scan or binary search.
In the following, we consider the alternative approaches that

provide "smarter" methods for looking up keys in B-trees. The
general solution for a more targeted lookup in a B-tree node (i.e.,
a sorted list of keys) is to use a method that effectively leverages
the underlying key distribution.

Short Paper

 

 

Series ISSN: 2367-2005 710 10.5441/002/edbt.2019.93

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.93


2.2 Learned indexes
Machine learning provides various tools for learning a distri-
bution. Recently, Kraska et al. [9] suggested that if a machine
learning model can fully learn the CDF of the key distribution,
it can directly predict the location of the queried keys in the
table pages. They exploited a hierarchy of deep learned mod-
els to help shrink the problem space. Since all predictions in
machine learning are susceptible to errors, the maximum error
for the models needs to be computed in advance. Once the po-
sition is estimated, we can scan a range around the estimated
position in the table pages. This is called the error window, i.e.
[ ˆpos(key) −MaxErrLeft , ˆpos(key) +MaxErrRight]. As shown in
Figure 1(a,b), a learned index entirely replaces a classical data
structure (like B-tree). If the prediction error is small enough, a
learned model can ultimately beat B-tree’s lookup time.

Challenges of learned indexes. A learned index can learn
many complex distributions and locate the position of the key
with a considerably low error margin. The idea of ML-indexes is
be very effective for modeling some specific CDFs, yet MLmodels
are not efficient for every key distribution. Moreover, state-of-
the-art learned models are mostly suitable for read-only data.
Despite that these models can handle a few insertions and dele-
tions by reserving empty spaces in the sorted list, more update
requests require re-training the model, which is computationally
expensive. Since the model is bound to the mapping between the
key’s value and the position’s offset, any changes to this mapping,
such as inserts and deletes, make the learned model ineffective.
Moreover, learned indexes require that the table pages be stored
in a continuous block of memory so that records can be retrieved
once the position is estimated. This assumption does not hold
when the keys are not sorted, e.g. in a secondary (non-clustered)
index, hence limits the applicability of a learned index.

2.3 IFB-tree
We believe that the main issue behind the challenges in a learned
index is that it "replaces" an algorithmic data structure, but cannot
deliver all the same operations. Alternatively, we suggest that a
similar ideas of a learned index can be embedded within a data
structure, such as the B-tree. Unlike theML index approachwhich
entirely replaces conventional index structures with a learned
model over the sorted page of keys, we stick with the genuine
structure of the B-tree. In fact, the B-tree itself is very effective in
modeling the CDF of the key distribution by repeatedly breaking
it into smaller parts. We consider the fact that a considerable
share of B-tree lookup time is spent on intra-node search, i.e., to
find the smallest value in a B-tree node that is larger (or equal)
to the query point q. If we manage to outperform the intra-node
search in a B-tree, the efficiency of B-trees can be improved
without changing its theoretical performance guarantees.

Learning node distribution. Since keys are sorted in each
B-tree node, we can think of a smarter lookup instead of naively
doing a linear or binary search over all keys in the node. Similar
to the learned indexes, a tiny model can predict the position
of a key in each node, which reduces the search space within
each B-tree node. However, even the simplest models (e.g. linear
regression) requires keeping model parameters for each node in
memory, and the cost of managing and loading the parameters
does not lead to any performance improvements.

Node interpolation. Following the general idea ofML indexes,
our solution is to estimate a range that guarantees the target key
resides in. While interpolation looks like a naive approach, it

could be very effective and has near-zero cost: it simply requires
one bit per key, and the computation is very fast and simple.
Figure 2b illustrates how interpolation can be done in a B-tree
node. If the queried key vq is between the two keys in a B-tree
node, say vi , vi+1 , it should be located on the next level, which
could be the next node in the tree or a node in the physical table
pages if the current node is a leaf. The interpolated index of the
entry corresponding to vq is: p̂q =

⌊
vq−vi
vi+1−vi × node_size

⌋
The interpolation has an error, unless the keys follow an ex-

act arithmetic progression, which is almost never the case in
real-world except in case of auto-generated key sequences. Let’s
assume the maximum error for any value in a node is MaxErrLeft
and MaxErrRight, respectively. This means that the area between
p̂q −MaxErrLeft + p̂q +MaxErrRight should be scanned to find
the actual position corresponding to vq .

Global error window. Storing the errors values MaxErrLeft
and MaxErrRight alongside the keys in the B-tree node will in-
crease the memory footprint and hence greatly reduces the per-
formance. Moreover, having variable error values for each node
makes it challenging to exploit the SIMD capabilities for in-
terpolation and search. We prefer not to store any extra in-
formation in each node and keep the structure of B-tree un-
touched to the extent possible. Therefore, we define a global
threshold for error for the entire B-tree, called the interpola-
tion diameter ∆. We call a B-tree node “interpolation-friendly” if
any key can be found with interpolation error of at most ∆, i.e.
∆ ≥ max(MaxErrLeft,MaxErrRight). If a node is interpolation-
friendly, we can estimate the location corresponding to the query
point q, say p̂q , and then search the area

[
p̂q − ∆, p̂q + ∆

]
, as

the result is guaranteed to be in this area. Another advantage of
having a pre-defined value for ∆, is that the length of the loop
for searching in a node is defined in compile time, hence the
program can be efficiently optimized using efficient branch-free
and/or loop-unrolled code for either linear or binary search [2].

Marking IFB-tree nodes. Building an IFB-tree involves two
steps. The first step is to build a simple B-tree. In the second
stage, we analyze all nodes in B-tree to find which nodes are
interpolation friendly. More specifically, a node is interpolation-
friendly if |pkeyi − i | < ∆,∀ 0 ≤ i ≤ K . Once a node is identified
as interpolation-friendly, it should be flagged somewhere. In case
that the interpolation error for a node is above ∆, the default
search procedure should be used without interpolation, which
can be done by either linear or binary search.

A typical B-tree node consists of a list of keys and pointers to
next nodes. However, the MSB of the 64-bit pointer is rarely used
in practice, because the memory address in commodity operating
systems is less than 264−1 bytes = 2 Exabytes. Therefore, we can
use the MSB of the pointer to flag if the node is interpolation-
friendly. To use the pointer, we need to mask the MSB of the
pointer value before using it. Figure 2a shows the layout of an
IFB-tree node. Note that if IFB-tree is used as a primary index, the
data tables are sorted too, hence interpolation can be also done on
the leaf node to predict the position of the result in physical table
pages. Moreover, marking an IFB-tree is a lightweight process
compared to B-tree build time, but it can be easily parallelized as
well.

2.4 Complexity analysis
The complexity of IFB-tree is the same as the B-tree for all op-
erations. Whenever an IFB-tree node is created or modified, the
interpolation error must be re-computed for all values in the
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Figure 2: Interpolation in IFB-tree

node. For a node with node size of p, the time taken to find the
maximum interpolation error for all values in the node is O(p).
In the following, we analyze the time taken to build and update
the IFB-tree and show that none of the theoretical complexities
are different than that of B-tree.

Build time.. Bulk-loading data in a B-tree takes O(n logp n)
time. In IBF-trees, there is a second phase for evaluating the nodes
and marking interpolation-friendly nodes, which takesO(n). The
complexity of bulk insertion thus isO(n logp n+n) = O(n logp n).

Update time. For insertion and deletion, the complexity of the
B-tree isO(p logp n), which consists ofO(logp n) access/modification
of nodes times O(p) time for modifying each node. When using
IFB-trees, we simply re-evaluate the interpolation-friendliness of
each node when an element in the node is modified. The complex-
ity of accessing a node thus still is O(p + p) = O(p), leaving the
overall O(p logp n) complexity unchanged for update operations.

Lookup time. Finding the position corresponding to the query
in each node takes O(t) time if the node is interpolation-friendly
(t=interpolation diameter), and O(p) otherwise. Depending on
how many of the nodes are interpolation-friendly. As t < p, the
lookup time is between O(t logp n) if all nodes are interpolation-
friendly and O(p logp n) in the worst case.

3 EVALUATION
In this section we compare the performance of the IFB-tree for
both synthetic and real-world data to analyze its lookup time and
the effectiveness of interpolation.

Experimental Setup. IFB-tree and B-tree are implemented in
C++ and compiled with gcc (7.3.0). Note that all data resides in
main memory. The range index finds the first the first indexed
key that is equal or higher than the lookup key. Also, the keys on
the physical layout are sorted (i.e. it is a clustered index), so that
the entire result set can be returned once the first key is found.

Datasets. We used three datasets for performance evaluation,
namely accessLog, lognormal, and longitudes. The accesslog data
contains web-server log records from a hotel booking website.
Lognormal is a synthetic data generated from lognormal distri-
bution. Longitudes are sampled without replacement from the
longitudes of over 1.5 billion locations extracted from the Open-
StreetMap database [17].

Implementation details. For both B-tree and IFB-tree, we
used 64-bit keys and 64-bit payload. Scanning in each node can
be done by either linear or binary search. When the baseline
methods use linear search, the performance improvements of
IFB-trees are expected to be higher and more predictable, because
shrinking the scan area will linearly reduce the lookup time in
nodes. However, it is generally reported that binary search is
more effective on new hardware, even for medium-sized nodes [2,

Figure 3: Speedup gained by interpolation (IFB-tree)

7]. We consequently use binary search for both IFB-tree and the
baseline B-tree methods.

Speedup. Figure 3 shows the speedup obtained by the IFB-tree
over the B-tree on different datasets with 5M and 500M keys.
After tuning the parameters for both indexes (i.e., page size and
interpolation diameter), the IFB-tree improves the performance
by 10% to 55%.

Effect of page size. The key parameter in a B-tree is the page
size (= node size). Figure 4a shows how the B-tree lookup time is
affected by the page size. Choosing a large page size decreases
the branching factor and the tree depth, but searching through
each nodes takes more time.

Speedup analysis. The performance speedup of the IFB-tree
depends of B-tree nodes that are interpolation-friendly, as well
as the interpolation diameter (the area that should be searched
within each page). As shown in Figure 4b, the number of interpolation-
friendly nodes is almost proportional to ∆

page size , i.e., to inter-
polate the majority of nodes on large pages, we need a larger
error window. However, a larger error window also decreases the
speedup gained by interpolation. Figure 4c shows the speedup
of IFB-tree against a B-tree with the same page size, suggesting
that the best error window is obtained when ∆ = 1

4 × page size.
The lookup times (in nanoseconds) are depicted in Figure 4d.

4 RELATEDWORK
Interpolation search. Interpolation is an alternative to index
structures for estimating the location of records in a clustered
index. The technique is known to be very effective when the
underlying data distribution is close to uniform [4].

Learning database engine. The use of machine learning on
learned indices is just recently proposed. Kraska et al. suggested
a learned index based on a hierarchy of deep models, called the
Recursive Model Index (RMI) [9]. Further research is done on
linear learned indexes [3], inverted indexes [18], and enhanced
learned bloom filters [15, 18]. Moreover, some theoretical analysis
is done on the maximum capacity of deep learning models for
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Figure 4: IFB-tree analysis on Longitudes dataset

keeping index key information [20]. Machine learning has been
also adopted for other database operations [6, 8, 10, 13, 13, 16, 19].

Data transformation. Following a different line of work, it
is suggested that the performance of index structures can be
greatly improved by pre-processing the input data and trans-
forming the keys using a mapping function, in a way that the
index structure be more efficient for indexing the distribution
of the transformed keys. This idea is exploited for bloom fil-
ters [14] and multi-dimensional data [1]. Interestingly, a data
transformation that makes the key distribution closer to uniform
can benefit IFB-tree and further decreases the interpolation er-
ror, hence boosting the speedup of an IFB-tree against its B-tree
equivalent.

B-tree enhancement techniques. Several suggestions have
been made to design B-trees efficient for the modern hardware.
For example, Levandoski et al. suggested BW-trees, a latch-free
and cache-friendly B-tree that is used in several Microsoft data
engines [12]. Optimizing B-trees can involve compression tech-
niques such as prefix-based splitting. Leis et al. suggested Adap-
tive Radix Trees, which consumes less memory especially on
top levels of the tree. Since all tree-based data structures follow
the basic principles of B-trees, such as maintain data in sorted
order and splitting the distribution using hierarchies of the table,
IFB-tree can be customized for these variants, too.

5 CONCLUSION AND FUTUREWORK
We suggest that the ideas behind learned indexes can be inte-
grated with classical index structures to make them aware of the
distribution, hence boosting the performance of the current algo-
rithm. By adopting a computationally lightweight method like
interpolation, we boosted the performance of B-trees by up to
50% without modifying the overall structure of B-trees or deteri-
orating their theoretical performance guarantees. The intra-node
interpolation idea is indeed independent from the layout of the
tree and hence can be integrated in different extensions to B-tree,
including B+-trees, BW-trees [12], and radix trees [11].
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