
SparkER: Scaling Entity Resolution in Spark
Luca Gagliardelli

University of Modena and Reggio Emilia
Modena, Italy

luca.gagliardelli@unimore.it

Giovanni Simonini
MIT CSAIL

Cambridge, MA, USA
giovanni@csail.mit.edu

Domenico Beneventano
University of Modena and Reggio Emilia

Modena, Italy
domenico.beneventano@unimore.it

Sonia Bergamaschi
University of Modena and Reggio Emilia

Modena, Italy
sonia.bergamaschi@unimore.it

ABSTRACT
We present SparkER, an ER tool that can scale practitioners’
favorite ER algorithms. SparkER has been devised to take full ad-
vantage of parallel and distributed computation as well (running
on top of Apache Spark). The first SparkER version was focused
on the blocking step and implements both schema-agnostic and
Blast meta-blocking approaches (i.e. the state-of-the-art ones); a
GUI for SparkER, to let non-expert users to use it in an unsuper-
vised mode, was developed. The new version of SparkER to be
shown in this demo, extends significantly the tool. Entity match-
ing and Entity Clustering modules have been added. Moreover, in
addition to the completely unsupervised mode of the first version,
a supervised mode has been added. The user can be assisted in
supervising the entire process and in injecting his knowledge
in order to achieve the best result. During the demonstration,
attendees will be shown how SparkER can significantly help in
devising and debugging ER algorithms.

1 INTRODUCTION
Entity Resolution (ER) is the task of identifying different repre-
sentations (profiles) that pertain to the same real-world entity. ER
is a fundamental and expensive task for Data Integration [2]. The
naïve solution of ER (i.e. comparing all profiles to each others)
is impracticable when the data volume increases (e.g. Big Data),
thus blocking techniques are employed to cluster similar records
and to limit the number of comparisons only among the profiles
contained in the same block.

In a real-world scenario, to identify a blocking strategy (i.e. the
blocking key) yielding high recall and precision is a hard task [4].
In particular, in the Big Data context, schema-aware techniques
have two main issues: (i) schema alignment, hardly achievable
with a high heterogeneity of the data; (ii) labeled data to train
classification algorithms, or human intervention to select which
attributes to combine. To overcome these problems, the schema-
agnostic approach was introduced [10]: each profile is treated as
a bag of words and schema-information is ignored. For instance,
Schema-Agnostic Token Blocking considers as blocking key each
token that appear in profiles, regardless of the attribute in which
it appears (Figure 1(b)). However, schema-agnostic methods pro-
duce a very low precision.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

So, to mitigate this problem, they are typically coupled with
meta-blocking [6, 10, 13]. The goal of meta-blocking is to restruc-
ture a blocking collection by removing least promising compar-
isons. This is achieved in the following way: profiles and compar-
isons are represented as nodes and edges of a graph, respectively;
each node is connected to another one if the profiles co-occurs
in at least one block. Then, the edges are weighted on the basis
of the co-occurence of its adjacent profiles and for each profile
a threshold is computed. Finally, the graph is pruned removing
the edges which have a weight lower than the threshold. A toy
example is shown in Figure 1(c): each edge is weighted counting
the co-occurring blocks of its adjacent profiles, and is retained if
its weight is above the average. The dashed lines are the removed
comparisons.

@inproceedings {
 title = {SparkER: parallel Blast}
 author = {Luca Gagliardelli}
 year = {2017}
}

@bookchapter {
 title = {Blast: loosely schema blocking},
 author = {Giovanni Simonini}
 year = {2016}
}

Source2

p3 p4p4

Source1

Name Authors Abstract

p1 Blast G. Simonini how to improve meta-blocking…

p2 SparkER L. Gagl iardel l i Simonini et a l proposed blocking…

Meta-Blocking

3

(c)

p1 p2

p3 p4

2

1

1 2
2

Meta-Blocking

3

(c)

p1 p2

p3 p4

2

1

1 2
2

(b)

blast

p1 p3 p4

simonini

p1 p2 p3

blocking

p1 p2 p3

Blocking

gagliardelli

p2 p4

sparker

p2 p4

(b)

blast

p1 p3 p4

simonini

p1 p2 p3

blocking

p1 p2 p3

Blocking

gagliardelli

p2 p4

sparker

p2 p4

(a)

Figure 1: Schema-agnostic (meta-)blocking process.

In [13] we proposed Blast, which introduces the notion of loose
schema information extracted from the data and composed of: (i)
attribute partitioning and (ii) attribute partition entropy (Figure
2(a)). The idea beyond attribute partitioning is that more values
two attributes share, more are similar, thus similar attributes are
put together in the same partition. Then, the meta-blocking takes
into account the generated attributes’ partitions: the blocking
key is composed by tokens concatenated to partition IDs; in
this way, the token "Simonini" (Figure 2(b)) is split into two
tokens, disambiguating "Simonini" as author ("Simonini_1"), and

Demonstration

Series ISSN: 2367-2005 602 10.5441/002/edbt.2019.66

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.66

"Simonini" as cited author; note that "Simonini_1" do not generate
any block, since it appears only in p2.

Loose schema
information

Name, Title,
Abstract

Authors, Author

entropy = 0.4

entropy = 0.8

(b)

Loose schema blocking

p1 p2

p3 p4

1.6

Loose
Meta-Blocking

C1

C2

(c)(a)

0.4
1.2

0.4

0.4

0.4

p1 p3

Simonini_2

p2

Simonini_1

p1 p2 p3
p4

Simonini

Figure 2: Meta-blocking with loose schema information.

Attribute partition entropy computes the entropy of each clus-
ter and gives more importance to the profiles that co-occurs in
blocks generated from clusters with high entropy. The idea is
that finding equalities inside a cluster with a high variability of
the values (i.e. high entropy) has more value that finding them
in a cluster with low variability (i.e. low entropy). The attribute
partition entropy is used in order to improve the edges weights:
each edge of the meta-blocking graph is re-weighted according
to the entropy associated to the block that generates it (i.e. the
entropy of the partition from which the blocking key belongs), as
shown in Figure 2(c). This affects the meta-blocking by helping to
remove more superfluous comparisons than the ones removed by
schema-agnostic blocking (the two retained red edges of Figure
1(c) are now removed).

At the end of the pruning step, the meta-blocking produces
the candidate pairs, i.e. pairs of profiles related to the same entity.
Then, these pairs have to be resolved, i.e. it is necessary to decide
if a pair is a true match or not, this task is called entity match-
ing. Several techniques can be applied to perform this task, e.g.
resolution functions, classifiers, crowdsourcing, etc. Finally, , the
retained matching pairs are clustered (entity clustering) in order
to group together all the profiles associated to the same entity.

Several tools were proposed to cover the full Entity Resolution
stack [9, 11]. In particular, JedAI [11] is more devoted to work
with semi-structured data, a schema-agnostic approach, and the
entity matching phase uses only unsupervised techniques (i.e. no
labeled data are required). In contrast, Magellan [9] is meant to
work with structured data and a supervised approach, so the user
has to align the schema, to provide matches examples to perform
entity matching, and supervise each step. Moreover, JedAI covers
the entity clustering step, while Magellan not.

Nevertheless, none of these tools exploits the benefits of dis-
tributed computing. Works on the meta-blocking parallelization
have been proposed [5], but they are implemented using Hadoop
MapReduce, that is not the best paradigm to exploit modern clus-
ter architectures [3, 12]. SparkER1 is an Entity Resolution tool
for Apache Spark2 designed to cover the full Entity Resolution
stack in a big data context.

Our approach. The first SparkER version [14] was focused on
the blocking step and implements usingApache Spark both schema-
agnostic [10] and Blast [13] meta-blocking approaches (i.e. the
1https://github.com/Gaglia88/sparker
2http://spark.apache.org

Entity Profiles
Loading

Blocker
Entity

matcher
Entity

clusterer
Input
Data

Output
entities

Matching
pairs

Candidate
pairs

Profiles

Figure 3: SparkER architecture.

state-of-the-art ones). The description of the algorithms that we
devised for Apache Spark (and any MapReduce-like system) can
be found in our technical report [15]. Also, we developed a GUI
for SparkER to let non-expert users to use it in an unsupervised
mode.

The new version of SparkER that will be shown in this demo,
extends significantly the tool. Entity matching and entity clus-
tering modules have been added. Moreover, in addition to the
completely unsupervised mode of the first version, a supervised
mode has been added. The user can be assisted in supervising the
entire process and in injecting his knowledge in order to achieve
the best result.

In the following Section 2, we present the main modules that
compose SparkER and in Section 3 the process debugging. Fi-
nally, in Section 4 we present the demonstration for the EDBT
attendees.

2 SPARKER
SparkER is a distributed entity resolution tool, composed by dif-
ferent modules designed to be parallelizable on Apache Spark.
Figure 3 shows the architecture of our system. There are 3 main
modules: (1) blocker: takes the input profiles and performs the
blocking phase, providing as output the candidate pairs; (2) en-
tity matcher takes the candidate pairs generated by the blocker
and label them as match or no match; (3) entity clusterer takes
the matched pairs and groups them into clusters that represents
the same entity. Each of these modules can be seen as black box:
each one is independent from the other.

2.1 Blocker
Figure 4 shows the blocker’ sub-modules implementing the
Loose-Schema Meta-Blocking method described in the introduc-
tion.

Token
Blocking

Block purging
and filtering

Meta-
blocking

Input
Data

Candidates
pairs

Attribute
partitioning

Entropy
extractor

Loose schema
generator

(optional)

Figure 4: Blocker module

Loose SchemaGenerator-Attribute Partitioning: attributes
are partitioned in cluster using a Locality-sensitive Hashing (LSH)
based algorithm. Initially, LSH is applied to the attributes val-
ues, in order to group them according to their similarity. These
groups are overlapping, i.e. each attribute can compare in multi-
ple clusters. Then, for each attribute only the most similar one is
kept, obtaining pairs of similar attributes. Finally, the transitive
closure is applied to such attributes pairs and then attributes
are partitioned into nonoverlapping clusters (Figure 2(a)). All
the attributes that do not appear in any cluster are put in a blob
partition.

603

Graph
generation

Connected
components

Entity
generation

Matching
pairs

Entities

Entity clusterer

Figure 5: Entity clusterer.

Loose Schema Generator-Entropy Extractor: computes the
Shannon entropy for each cluster.

Block Purging and Filtering : the block collection is pro-
cessed to remove/shrink its largest blocks [10]. Block Purging
discards all the blocks that contain more than half of the profiles
in the collection, corresponding to highly frequent blocking keys
(e.g. stop-words). Block Filtering removes each profile from the
largest 20% blocks in which it appears, increasing the precision
without affects the recall.

Meta-Blocking: Finally, the meta-blocking method [10, 13]
introduced in the introduction is applied. The parallel meta-
blocking, implemented on Apache Spark, is inspired by the broad-
cast join: it partitions the nodes of the blocking graph and sends
in broadcast (i.e, to each partition) all the information needed to
materialize the neighborhood of each node one at a time. Once
the neighborhood of a node is materialized, the pruning function
is applied.

The output of the blockermodule are profile pairs connected
by an edge, which represent candidate pairs that will be processed
by the entity matcher module.

2.2 Entity Matcher and Clusterer
Regarding Entity Matching, any existing tool can be used. In
the demo we will show the one implemented in Magellan [9].
The Entity Matcher producesmatching pairs of similar profiles
with their similarity score (similarity graph). The user can select
from a wide range of similarity (or distance) scores, e.g.: Jaccard
similarity, Edit Distance, CSA [1].

The Entity Clusterer receives as input the similarity graph,
in which the profiles are the nodes and the matching pairs repre-
sent the edges, and partition its nodes into equivalence clusters
such that every cluster contains all profiles that correspond to
the same entity. Several entity clustering algorithms have been
proposed in literature [8]; at the moment, we use the connected
component algorithm3, based on the the assumption of transi-
tivity, i.e., if p1 matches with p2, p2 matches with p3, then p1
matches with p3. At the end of this step, the system produces
clusters of profiles: the profiles in the same cluster refer to the
same real-world entity.

3 PROCESS DEBUGGING
The tool can work in a completely unsupervised mode, i.e. the
user can use a default configuration and performs the process on
its data without taking care of the parameters tuning. Otherwise,
the user can supervise the entire process, in order to determine
which are the best parameters for its data, producing a custom
configuration. Given the iterative nature of this process (e.g. the
user try a configuration, if it is not satisfied changes it, and repeat
the step again), it is not feasible to process the entire input data,
as the user should waste too much time. Thus, it is necessary to

3This approach is implemented by using the GraphX library of Spark (https://spark.
apache.org/graphx/) that natively implement the connected component approach.

sample the input data, reducing the size. The main problem is to
take a sample that represents the original data, and also contains
matching and non matching profiles. This problem was already
addressed in [9], where the authors proposed to pick up some
random K profiles PK , then for each profile pi ∈ PK pick up k/2
profiles that could be a match (i.e. shares a high number of token
with pi) and k/2 profiles randomly. K and k are two parameters
that can be set by the user based on the time that she wants to
spend (e.g. selecting more records requires a higher computation
time).

Each step can be assessed using precision and recall, if a
ground-truth is available; otherwise the system selects a sample
of the generated profile pairs (e.g. pairs after blocking, matching
pairs after matching, etc.) and shows them to the user who, on the
basis of his experience evaluates whether the system is working
well or not.

In the blocker each operation (blocking, purging, filtering,
and meta-blocking) can be fine tuned in order to obtain better
performances, e.g. the purging/filtering are controlled through
parameters that can change the aggressiveness of filters, or the
meta-blocking can use different types of pruning strategies, etc.
Moreover, if the Loose Schema Blocking is used, it is possible to
see how the attributes are clustered together, and how to change
the clustering parameters in order to obtain better clusters.

In the entity matching phase, it is possible to try different
similarity techniques (e.g. Jaccard, cosine, etc.) with different
thresholds.

At present no tuning activity is possible in the clustering step
since the connected component algorithm used does not have
any parameters. At the end of the process, the system allows to
explore the generated entities and to store the obtained configu-
ration. Then, the optimized configuration can be applied to the
whole data in a batch mode, in order to obtain the final result.

4 DEMONSTRATION OVERVIEW
During the demonstration, participants will explore the features
of our system on the Abt-Buy dataset4. It contains 2,000 products
extracted from Abt.com and Buy.com catalogs, denoted respec-
tively in red and blue. The dataset comes with a ground-truth
that allows to analyze the performances of each SparkER step.
Also, different datasets can be used5 during the demonstration.

In this demowe focus on showing the attribute partitioning un-
supervised/supervised step, the use of Attribute Partition Entropy
was illustrated in our previous paper [7] and the meta-blocking
step including entropy.

The tool displays the attributes partitions, recall/precision,
the number of blocks (blocking keys) generated, the number of
candidate pairs in the blocks, and the number of false positives
(i.e. the pairs that are in the ground-truth but are lost during the
blocking process) obtained after blocking. Through the interface
it is possible to modify the clustering threshold and other param-
eters (Advanced settings) which influence the algorithm in a more
marginal way.

We start setting the threshold to the maximum value (1) e.g a
schema-agnostic token blocking is applied and all the attributes
fall in the same blob cluster (Figure 6(a)). Then the user decreases
the threshold (0.3) and looks at what happens (Figure 6(b)). Two
clusters are created, representing, respectively the name with the
4https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/
benchmark_datasets_for_entity_resolution
5The datasets are available at: https://sourceforge.net/projects/sparker/files/
datasets/

604

Figure 6: Process debugging. The figure shows how it is possible to debug the blocking phase.

description, and the prices of the products. However, we see how
precision slightly increases but the number of candidate pairs
has been reduced.

Now, the user try to modify the clusters, as apparently separat-
ing the attributes that refer to the name from those which refer
to the description of products (Figure 6(c)) seems a good idea.
He looks at the result and sees that unfortunately the number of
false positive increases.

By theDebug button it is possible to understandwhere the false
positives come from (Figure 6(d)). The tool shows the list of false
positive pairs (i.e. pairs that are in the ground-truth but are not
present after the blocking). By clicking on a pair, its profiles and
shared blocking key are shown and the user can understand why
this pair was lost. In the example we can see that the lost pairs
match on blocking keys referring to the name and description
attributes. So, partitioning descriptions and names was a wrong
choice and the automatic solution proposed by the tool was better
(Figure 6(b)). Moreover, it suggests that the choice of partitioning
the attributes on the bases of their names (i.e. exploting schema
information) can be wrong.

Finally, Figure 6(e) shows the debugging of the meta-blocking
phase, with the Entropy’s values obtained by the Entropy Ex-
tractor module. We can see a large decrease in the number of
candidate pairs w.r.t. 6(b) thus proving the effectiveness of our
technique.

REFERENCES
[1] Fabio Benedetti, Domenico Beneventano, Sonia Bergamaschi, and Giovanni

Simonini. 2019. Computing inter-document similarity with context semantic
analysis. Information Systems 80 (2019), 136–147.

[2] Sonia Bergamaschi, Domenico Beneventano, Francesco Guerra, and Mirko
Orsini. 2011. Data Integration. In Handbook of Conceptual Modeling - Theory,

Practice, and Research Challenges. 441–476.
[3] Sonia Bergamaschi, Luca Gagliardelli, Giovanni Simonini, and Song Zhu. 2017.

BigBench workload executed by using Apache Flink. Procedia Manufacturing
11 (2017), 695–702.

[4] P. Christen. 2012. A survey of indexing techniques for scalable record linkage
and deduplication. IEEE transactions on knowledge and data engineering 24, 9
(2012), 1537–1555.

[5] V. Efthymiou, G. Papadakis, G. Papastefanatos, K. Stefanidis, and T. Palpanas.
2017. Parallel meta-blocking for scaling entity resolution over big heteroge-
neous data. Information Systems 65 (2017), 137–157.

[6] Simonini G., Papadakis G., Palpanas T., and Bergamaschi S. 2018. Schema-
Agnostic Progressive Entity Resolution. In ICDE 2018. 53–64.

[7] Simonini G., Gagliardelli L., Zhu S., and Bergamaschi S. 2018. Enhancing
Loosely Schema-aware Entity Resolution with User Interaction. In HPCS 2018,
July 16-20, 2018. 860–864.

[8] O. Hassanzadeh, F. Chiang, H. C. Lee, and R.ée J Miller. 2009. Framework for
evaluating clustering algorithms in duplicate detection. Proceedings of the
VLDB Endowment 2, 1 (2009), 1282–1293.

[9] P. Konda, S. Das, P. Suganthan GC, A. Doan, A. Ardalan, J. R Ballard, H. Li, F.
Panahi, H. Zhang, J. Naughton, et al. 2016. Magellan: Toward building entity
matching management systems. VLDB Endowment 9, 12 (2016), 1197–1208.

[10] G. Papadakis, G. Papastefanatos, T. Palpanas, and M. Koubarakis. 2016. Scal-
ing Entity Resolution to Large, Heterogeneous Data with Enhanced Meta-
blocking.. In EDBT. 221–232.

[11] G. Papadakis, L. Tsekouras, E. Thanos, G. Giannakopoulos, T. Palpanas, and
M. Koubarakis. 2018. The return of jedAI: end-to-end entity resolution for
structured and semi-structured data. VLDB Endowment 11, 12 (2018), 1950–
1953.

[12] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and F. Özcan.
2015. Clash of the titans: Mapreduce vs. spark for large scale data analytics.
Proceedings of the VLDB Endowment 8, 13 (2015), 2110–2121.

[13] G. Simonini, S. Bergamaschi, and HV Jagadish. 2016. BLAST: a loosely schema-
aware meta-blocking approach for entity resolution. VLDB Endowment 9, 12
(2016), 1173–1184.

[14] G. Simonini, L. Gagliardelli, S. Zhu, and S. Bergamaschi. 2018. Enhancing
Loosely Schema-aware Entity Resolution with User Interaction. In 2018 In-
ternational Conference on High Performance Computing & Simulation (HPCS).
IEEE, 860–864.

[15] G. Simonini, Gagliardelli L., Bergamaschi S., and Jagadish H.V. 2019. Technical
Report. (2019). http://dbgroup.unimo.it/paper/g/scaling_er_report.pdf

605

	SparkER: Scaling Entity Resolution in SparkLuca Gagliardelli, Giovanni Simonini, Domenico Beneventano, Sonia Bergamaschi

