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ABSTRACT
Modern main memory-optimized column stores employ a variety
of compression techniques. Deciding for one compression tech-
nique over others for a given memory budget can be challenging
since each technique has different trade-offs whose impact on
large workloads is not obvious. We present an automated selec-
tion framework for compression configurations. Most database
systems provide means to automatically choose a compression
configuration but lack two crucial properties: The compression
selection cannot be constrained (e.g., by a given storage budget)
and robustness of the compression configuration is not consid-
ered. Our approach uses workload information to determine
robust configurations under the given constraints. The runtime
performance of the various compression techniques is estimated
using adapted regression models.

1 COLUMN COMPRESSION IN HYRISE
Two of the main driving forces of current database development –
both industrial and research – are autonomous database systems
and cloud-based installations. Both topics are strongly connected
as database vendors are increasingly interested in optimizing
their operational costs for large self-hosted database installations.

One way to lower the costs – especially for main memory-
optimized database systems – is to reduce the memory consump-
tion of large databases. Such a reduction allows storing databases
on smaller and thus less expensive server machines or adding
more instances to a shared server. But the sheer size of large
cloud installations hampers manual optimization of compression
configurations by database administrators. This development has
recently sparked the research on autonomous database systems.

The work presented in this paper is an intermediate step to
approach the issue of optimizing memory consumption while
still retaining the performance advantages of main memory-
optimized databases. When cost considerations are gaining im-
portance, the optimization objective for compression configura-
tions is less runtime performance rather than to retain the current
runtime performance while minimizing the storage requirements.
With the goal of automatically finding a compression configura-
tion for a given memory budget, this project intends to provide
the building blocks for autonomous systems.

The area of data compression has been thoroughly studied
for decades in database research. Virtually all modern database
systems implement various techniques to compress data and
most commercial systems further provide means to adjust the
compression level (e.g., Oracle’s declarative policies for the auto-
matic data compression (ADO), cf. [12], or SQLServer’s database
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engine tuning advisor (DTA), cf. [11]). However, we see two dis-
tinct issues that remain open from a research perspective: (i)
workload- and constraint-based compression configurations and
(ii) determination of configurations whose runtime performance
is robust to changing workloads.

We present and discuss the three main components in our
research database Hyrise [10] with which we approach workload-
driven and robust compression configurations:

• We introduce Hyrise’s compression framework which im-
plements an efficient and maintainable interface for vari-
ous column compression techniques (Section 2).

• We present our runtime estimation, which predicts the
performance of compression techniques (Section 3).

• We discuss the applicability of existing approaches for the
optimization of physical database designs and how they
perform for the task of compression selection (Section 4).

2 COLUMN COMPRESSION FRAMEWORK
Virtually every database management system for hybrid trans-
actional and analytical processing (HTAP) employs a variety of
compression schemes. Besides the advantage of reducing the
main memory footprint, light-weight compression can even im-
prove runtime performance, e.g., by reducing the memory traffic
(cf. [2, 4]) or broadening applicability of vectorization (cf. [17]).

But supporting a variety of compression schemes is challeng-
ing as it needs to balance maintainability and efficiency. Most
existing approaches optimize either (i) for performance while
hampering maintainability and increasing complexity or (ii) pro-
vide unified interfaces for improved maintainability which po-
tentially introduces runtimes issues.

2.1 Hyrise’s Storage Concept
Hyrise is a main memory-optimized database with a column-
major storage format [10]. Each table in Hyrise is horizontally
partitioned into n chunks with a predefined maximum size. Each
attribute of a table is hence distributed over all chunks whereby a
column in a chunk is referred to as a segment. Modifications (i.e.,
insertions or MVCC-enabled updates) are appended to the most
recent mutable chunk. When this chunk reaches its size limit,
the chunk is considered immutable and a new mutable chunk is
created. Immutable chunks might be compressed asynchronously.
Hyrise encodes and compresses segments independently.

2.2 Balancing Performance and
Maintainability

There are multiple approaches to integrate column compression
schemes into the database system. One is to decompress vectors
before an operator accesses the data, eliminating the need to
handle different compression schemes in every operator. While
this approach might be sufficient for analytical purposes which
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are dominated by sequential operations, it is not feasible for
HTAP processing where single row accesses are frequent.

Another approach is to adapt operators so that they can di-
rectly execute on compressed data using late materialization.
This approach lowers the memory bandwidth required and fur-
ther allows to exploit encoding-specific optimizations (e.g., early
exiting a predicate when the searched value does not exist in the
dictionary). While this approach promises the best performance,
it also increases maintenance efforts significantly.

The middle ground between the upfront decompression of seg-
ments and encoding-specialized operators are abstraction layers
that provide a unified interface to access data (cf. [2, 14]). How-
ever, this approach usually introduces dynamic polymorphism
and thus virtual method calls per tuple, which are prohibitively
expensive in analytical scenarios [5]. Dynamic polymorphism
adds instructions, impedes cache utilization, and further hinders
compilers to automatically apply vectorization primitives.

2.3 Integrating Compression Schemes
To overcome the issues mentioned in the previous section, Hyrise
implements an efficient abstraction layer that provides a uni-
fied interface while still allowing encoding-specific optimization
when desirable. The implementation uses zero-cost abstractions
based on C++ metaprogramming and templating.

The column compression framework handles both encoding
as well as decoding of compressed segments. The framework
separates the various concerns by splitting data storage, encod-
ing, and decoding into separate components. To decode columns,
Hyrise uses C++’s iterator concept which – amongst other ad-
vantages – allows to apply algorithms of the standard library
as if data would simply reside unencoded in an std::vector.
Moreover, iterators can have state which enables block-based
compression schemes to cache the most recently decoded block
for potential upcoming accesses to the same block.

In Hyrise, column segments are usually accessed in two ways:
fully sequentially or semi-randomly via a position list. As a con-
sequence, each compression scheme provides these two access
paths via a sequential iterator and a point-access iterator which
accepts a position list. The impact of providing a positional access
path over upfront decompression is shown in Figure 1.

Following the separation presented in [8], Hyrise distinguishes
between logical-level and physical-level compression techniques
and allows to cascade them. The logical-level techniques cur-
rently implemented are dictionary, frame of reference, and run
length encoding. The physical-level techniques include fixed-size
byte-aligned (FSBA) compression and SIMD-BP128 compression
(cf. [8] for more details on the mentioned techniques).

Implementation Aspects: Hyrise is written using C++17 and
uses of Boost Hana1 for metaprogramming. To provide static in-
terfaces within the encoding framework, we use the curiously re-
curring template pattern (CRTP). The runtime effects of static over
dynamic polymorphism are shown in Figure 1. The combination
of Boost Hana, CRTP, and C++14’s generic lambda expressions
allows us to avoid typical type resolving patterns such as the
visitor pattern or hardly maintainable switch/case statements.

Hyrise’s Execution Model: The mentioned iterators cover both
major reading access patterns: full sequential and point accesses.
The basic execution model in Hyrise (with few exceptions for the
query compilation engine) follows the principles used in most

1Boost Hana: https://boostorg.github.io/hana/
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Figure 1: Positional aggregation (i.e., aggregating 25% of
the tuples via a given position list) on a vector of 1M in-
tegers. Top: impact of decompressing the full column up-
front vs. positional accesses. Bottom: impact of dynamic
polymorphism vs. static polymorphism for row accesses.

modern columnar databases (cf. [1]). Predicates are descendingly
ordered by their estimated costs and executed successively where
each operator passes a list of qualifying positions to the next
operator (i.e., position lists instead of materialized vectors). When
parallel reads are preferable (e.g., as SIMD can be used), filters
are executed in parallel and the results are intersected afterwards.
Hence, the sequential iterator is typically used for the first filter
predicate, while the following operators (e.g., following filters,
joins, and aggregates) use the point-access iterator.

3 ESTIMATING PERFORMANCE
In order to decide for one compression technique over another,
the runtime performance as well as the resulting storage require-
ments need to be estimated. Estimating runtime of a particular
action is implemented in any database that optimizes incoming
queries and needs to decide on the order of actions to some ex-
tent. However, we think that existing approaches are by far too
inaccurate for our goals. The reason is that most databases do not
optimize for the accuracy of each runtime prediction they make,
but rather optimize to correctly estimate the order of alternative
decisions to take. As soon as the order is sufficiently accurate,
better models with smaller errors do not provide any further
advantages. We argue, however, that for any reasonable decision
on the physical database design, both the potential advantages
(here, reduction of allocated memory) as well as the drawbacks
(here, potentially increased runtimes) need to be known upfront.

While storage requirements are rather straightforward to es-
timate for most compression techniques (assuming knowledge
about, e.g., the row count and the number of distinct elements),
we found manually crafted cost models for runtime predictions
to be problematic. Due to the various CPU and compiler optimiza-
tion techniques on modern platforms (e.g., out of order execution,
branch prediction, code reordering) manually crafted runtime
models often turn out to be too inaccurate and cumbersome.

To accurately estimate runtimes nonetheless, we create an
array of regression models for each compression technique (e.g.,
for different data types). We measured the runtimes of sequential
as well as random accesses to compressed data structures. Note
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that we do not estimate the compression runtime or write perfor-
mance of encoded schemes for two reasons. First, Hyrise ensures
that mutable chunks are never compressed but only immutable
chunks are. Hence, no writes to immutable chunks occur apart
from MVCC modifications. Second, the decoding of segment
columns for reading happens significantly more often than en-
coding. Thus, we consider the compression costs to be amortized
soon after anyways and ignore them.

We evaluated three established regression methods: gradient-
boosted regression trees (in our case, XGBoost [7]) and two linear
regressions with different minimization objectives. One linear
regression variant uses ordinary least squares (OLS) and the other
has been adapted to use a relative (normalized) error metric. The
reason to use a model minimizing relative errors is that non-
normalizing models are less suitable in our case as they tend to
optimize the prediction of long runtimes.

Typically, the runtimes of database operators are, however,
heteroscedastic, meaning that the variance differs significantly
for varying input parameters (e.g., the selectivity or the table
size). As a result, when estimating runtimes of operations with
very short expected runtimes (e.g., a scan operation on a small
dimension table with a low selectivity), extrapolating models
often estimate negative runtimes. In our case, a relative error
metric is a better fit as estimation errors are equally important
on short and long running operations.

Table 1 shows the error rates on the example of the dictionary-
encoded model for integer values. We evaluated three data sets
(each set has previously been split for training and testing), one
including all measurements, one including measurements below
the median runtime, and one including measurements equal to or
above the median runtime. For typical regression metrics, such
as the mean squared error (MSE), XGBoost shows the best results
for all data sets. However, looking at the relative error metrics
mean average percentage error (MAPE) and Ln Q [15] shows that
the adapted linear regression has a lower error on two of the
three data sets. In Hyrise, we consider relative error metrics to be
superior as the resulting model’s applicability increases. On top
of determining accurate rankings during access path selection, it
can also be used to estimate the runtime of complex queries (e.g.,
queries containing nested queries which are short running but
executed many times).

Quartiles Metric Linear Regression XGBoost

(OLS) (adapted)

MSE 498 499 323
(Q1 −Q4) MAPE 1.18 1.03 2.07

Ln Q 0.000 250 0.000 172 0.001 72

MSE 3.34 3.34 2.80
(Q1,Q2) MAPE 1.39 1.10 3.29

Ln Q 0.000 352 0.000 196 0.003 35

MSE 993 995 643
(Q3,Q4) MAPE 0.971 0.969 0.855

Ln Q 0.000 148 0.000 148 0.000 099 0

Table 1: Comparison of three regression models and vary-
ing error metrics (model for dictionary-encoded columns
storing integers; green showing the best model).

As a consequence, we decided for the adapted linear regression
model as it yields lower estimation errors and has two further
advantages over more sophisticated approaches such as gradient-
boosted trees or net-based approaches. First, most tree-based
approaches do not support inter- and extrapolating predictions

of out of sample values, which regularly happens in our scenario.
Second, both learning as well as predicting of linear models is
efficient, fast, and can be implemented without additional depen-
dencies in a comparably short time frame.

While the current approach to estimate runtimes is suitable
for the scenario described here, i.e., finding the best configuration
for a given memory budget, it is not sufficiently covering other
important scenarios. Besides storage constraints, one common
constraint is limiting the expected end-to-end runtime for a given
workload to be at most n% larger than the runtime with the
current configuration. Think of cloud scenarios where a database
system can be redeployed on another (potentially virtualized)
server at any time. A given workload in this example can consist
of a set of queries with tight runtime constraints (e.g., caused by
existing service level agreements).

4 COMPRESSION SELECTION
Selecting a suitable compression configuration requires knowl-
edge about the particular data characteristics as well as the work-
load. Most current databases use simple heuristics to choose a
compression scheme for a given column. However, those ap-
proaches neglect three major issues that we deem crucial: Com-
pression configurations ought to be (i) adaptable with respect to
a given memory budget, (ii) consider its impact on the decisions
the query optimizer is going to make given the configuration, and
(iii) consider opportunity costs usually exploitable in real-world
systems and workloads.

While cost considerations always played an important role in
database systems, the current trend towards self-adapting cloud
systems emphasizes the need to reduce the memory consumption
(amongst others) as much as possible while ensuring acceptable
performance. In fact, a large database vendor told us that formany
cloud installations, TCO (total cost of ownership) reductions are
a far more pressing issue than performance.

As such, the database must understand the performance im-
pact of varying memory budgets. It needs to understand the
interplay between space consumption and performance, e.g., to
apply maximum compression to a table that is virtually never
accessed. At the same time, such a memory budget-driven system
should degrade gracefully for decreasing budgets.

Our selection framework accepts a given memory budget that
should not be exceeded. The system uses heavier compression
schemes for data that is rarely accessed or whose access patterns
do not suffer from heavy compression, while frequently accessed
tables might use light-weight compression schemes or no com-
pression at all. With the workload at hand, it might make sense
to lose certain performance by applying heavier compression
for a less often accessed table and invest that gained space to
frequently accessed tables (cf. opportunity costs).

4.1 Greedy Selection Heuristics
The goal of compression selection is to determine a compression
configuration for a given data set and workload. The selected
configurations should gracefully degrade for decreasing memory
budgets. The memory consumption of the resulting compression
configuration ought to be within the given memory budget. We
evaluated two heuristics and static configurations for a syntheti-
cally generated CH-benCHmark-like workload.

To gather workload information, Hyrise parses the database’s
query plan cache. This information is fed to the selection heuris-
tics and includes for each physical column, e.g., which operations
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are executed with which access path taken (e.g., full linear ac-
cesses or random probing accesses).

We implemented two greedy heuristics which have been pro-
posed for a related field of physical design optimization: in-
dex selection. As the first heuristic, we implemented a density-
based heuristic that chooses the first compression technique from
all applicable techniques ordered ascendingly by their size-to-
performance improvement ratio, comparable to [16]. As the sec-
ond heuristic, we implemented a performance-greedy heuristic
that selects compression schemes ordered ascendingly by their
expected performance improvement, comparable to [11].

The results are shown in Figure 2. We make two observations.
First, the “All FOR (FSBA)” configuration has shown to be a good
trade-off between performance and memory consumption. No
heuristic was able to find a comparable configuration as FOR
encoding is often neglected by both greedy heuristics. Second,
simple greedy heuristics are not sufficient as they (i) fall short in
covering the whole range of permitted memory budgets and (ii)
can even be outperformed by simple static heuristics.
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Figure 2: Comparison of static compression configura-
tions and budget-driven heuristics.

The reason is that simple heuristics do not incorporate in-
teractions affecting the optimization of query plans (cf. index
interaction). One simple example is the effect of ordering conjunc-
tive filter chains when the predicate with the lowest selectivity
(hence, preferably being executed first) happens to be heavily
compressed and hence slow to access. Optimizers using non-
logical cost models – as done in Hyrise – might yield completely
different query plans. To cover such cases, we think more elabo-
rate selection approaches (e.g., recursive approaches as [3] and
[6], or ILP-based approaches as [9]) are a necessary next step.

4.2 Robustness
The robustness of compression configurations is another crucial
aspect. The more a segment is compressed as the expected work-
load is infrequently or not accessing it at all, the more expensive
this decision might turn out when workloads shift.

To provide robust configurations, we use a simple framework
to generate additional workloads which are evaluated together
with the actually provided workload. Instead of selecting the
compression configuration with the lowest runtime for the given
workload, we choose the configuration minimizing the aggre-
gated runtime of all workloads.

The creation of alternative workloads is done by shuffling
and adding queries. First, for every query being part of the pro-
vided workload, we randomly select a new execution count based
on the normal distribution around the actual execution count.

Second, to counter the problem of heavy-weight compression
for infrequently accessed segments, we manually add a query
for each table to the workload that projects all columns. Both
the number of generated workloads as well as the number of
executions for the manually added query are configurable.

5 RELATEDWORK
The object of integrating and selecting compression schemes
has been researched in several previous works. Abadi et al. pre-
sented their C-Store extension to support various compression
schemes [2] allowing operations directly on compressed data. A
unified interface allows exploiting several compression scheme-
unique optimizations while some operations have to fall back to a
virtual method call-based interface. Further, the authors proposed
a decision tree for the selection of compression schemes which
uses both workload and data properties, but which does not adapt
to changing environments nor considers memory budgets.

Lemke et al. presented a performance-optimized approach for
TREX, the predecessor to SAP HANA [14]. At the cost of code
complexity and maintenance efforts, compression schemes are
explicitly handled within most database operators allowing to
fully exploit vectorization and other optimizations.

Lang et al. presented data blocks for HyPer [13]. The authors
focus the interplay of vectorizing operation on compressed vec-
tors and their query compilation engine. HyPer selects compres-
sion schemes based on data characteristics.

6 CONCLUSION
We presented the current state of column compression in Hyrise.
We think that compression selection will be an increasingly cru-
cial topic. Mostly caused by (i) an increasing autonomy of data-
base systems adapting themselves to changing environments and
(ii) the move from on-premise to cloud-based installations which
emphasizes the need for reduced main memory footprints.
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