
The Power of SQL Lambda Functions
Maximilian E. Schüle

schuele@in.tum.de
Dimitri Vorona
vorona@in.tum.de

Linnea Passing
passing@in.tum.de

Harald Lang
harald.lang@in.tum.de

Alfons Kemper
kemper@in.tum.de

Stephan Günnemann
guennemann@in.tum.de

Thomas Neumann
neumann@in.tum.de

Technical University of Munich

ABSTRACT
This work demonstrates a wide range of applications that use
lambda expressions in SQL. Such injected code snippets form a
useful technique required by data mining algorithms to overcome
the inflexibility of the SQL language, as the language is limited to
predefined aggregations only. Following the ’move computation
to the data’ paradigm, we extend SQL lambda functions—also
known from common programming languages—for machine-
learning tasks.

As machine-learning relies mostly on gradient descent and
tensor data types, we use lambda expressions for clustering and
graph-mining algorithms as well as to formulate loss functions
and label data. To underline the flexibility gained in SQL, this
work demonstrates a main memory database system with inte-
grated lambda expressions accessible through table functions in
SQL. By reusing SQL and performing data mining and machine-
learning tasks faster than can dedicated tools, this demonstration
aims at convincing data scientists of the capabilities of database
systems for computational tasks.

1 INTRODUCTION
Database systems are commonly used for the initial analysis
of data, whereas data analysis happens in specialised systems,
covering the expensive Export, Transform, Load (ETL) process. In
consequence, database systems are often underused as a storage
system only, ignoring the advantages coming along with SQL
as the declarative query language and the benefits of database
systems as providing index structures for fast data retrieval.

Actually, data mining blends well with SQL: Using the same
data types, we need only minor adjustments as iterations in SQL
or injected code snippets. MADlib [3] proposes a data mining
library for extending database systems such as PostgreSQL and
Greenplum. The extension uses algorithms that are programmed
in Python and can be used as table functions in SQL.Modernmain
memory database systems try to integrate datamining algorithms
in the code generation phase. EmptyHeaded [1] generates and
combines code out of special algorithms and relational algebra,
whereas HyPer [5] provides specialised operators for data mining
tasks. The latter provides flexibility for data mining by so-called
SQL lambda functions, which allow for modifications to existing
database operators by injecting user-defined code.

Although modern database systems provide data mining al-
gorithms, machine-learning functionalities are still not covered.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Operator

Left Pipeline Right Pipeline
λ

Injected Code

Figure 1: Lambda expression for code injection into an ex-
isting operator: The expression can be used inside unary
operators to define functions on different tuples of the
same relation and inside binary operators to combine tu-
ples of different relations.

As machine-learning tasks often rely on tensors and gradient
descent, providing an additional tensor data type and flexible loss
functions for gradient descent contribute to in-database machine-
learning.

Let us shift the boundary between database systems and the
specialised tools to save ETL costs and to enjoy the benefits
of database systems a bit more throughout the process. We ar-
gue that lambda functions can be adapted for machine-learning
tasks and extend SQL to a powerful query language for machine-
learning. This results in a computational engine, which merits
the full benefits of database systems and can be addressed in SQL.

This work demonstrates the first database system to incorpo-
rate lambda expressions for minimisation problems. An extended
HyPer is presented in detail. The main memory database sys-
tem developed at the chair of database systems at TU Munich
is already familiar with flexible clustering algorithms. It is now
extended by flexible PageRank, gradient descent and labelling
algorithms for machine-learning. A gradient descent operator
and the integrated tensor data type allow supervised machine-
learning tasks. As lambda expressions are part of the database
system’s core, the query optimiser implicitly performs optimi-
sations, such as predicate push-down, and reduces unnecessary
overhead.

The remainder of this paper is structured as follows. First, the
paper recaps lambda expressions and shows how they extend
database systems to a uniform tool for solving machine-learning
tasks. In the evaluation section, we discuss the measurement
of the performance of database systems with lambda functions
in comparison to dedicated tools to show the competitiveness.
Our demonstration scenario allows users to interact with the
database system and to create self-defined lambda expressions,
for example, to apply gradient descent, to label data or to measure
distances in clustering algorithms. The impact of computational

Demonstration

 

 

Series ISSN: 2367-2005 534 10.5441/002/edbt.2019.49

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.49


database systems—replacing dedicated machine-learning tools—
is summarised in the section on benefits.

2 LAMBDA FUNCTIONS
Lambda functions originate from the lambda calculus invented
in 1936 by Alonzo Church [2] and later adapted for programming
languages to provide anonymous functions. For use in SQL, the
concept of anonymous expressions is adapted to ’inject user-
defined code’ [4] into analytic operators. Lambda expressions
allow a user-friendly way for data scientists—who are already
familiar with SQL and lambda functions from other programming
languages—to customise algorithms without any modifications of
the operators in the database system’s core. Another advantage
of lambda functions is the implicit deduction of input and output
data types from the input tables’ attributes without requiring
further specification.

Lambda expressions in HyPer have been used in clustering
algorithms as distance metrics and in graph-mining algorithms,
such as PageRank to specify the edges. As lambda functions
allow ’variation points’ [6] in inflexible data mining algorithms,
their usage can be transferred to machine-learning algorithms
to specify loss functions. Lambda expressions are composed as
follows:

λ(< name1 >, < name2 >, ...)(< arithmeticexpression >).

In the lambda function’s header, the arguments name the rela-
tions whose table attributes are used in the arithmetic expression
itself. The number of expected arguments is hard-coded in the
operators as well as in the relations referenced by the arguments.
More precisely, in unary operators, all arguments reference one
input pipeline, whereas, in binary operators, the references de-
pend on a certain application. Internally, lambda expressions
are treated as arithmetic expressions in HyPer like those in the
projection operator. Therefore, all known functions supported
by the referenced database types can be used inside the expres-
sion as long as the expression results in a single value. As HyPer
compiles SQL queries, lambda expressions are precompiled to
LLVM code and evaluated at runtime.

To demonstrate the use of lambda functions for data mining
and machine-learning, we selected two tasks out of each do-
main where lambda expressions broaden the application area of
database operators.

Clustering k-Means as a clustering algorithm assigns points
to a predefined number of k centres, which are iteratively
adjusted until the summed distance to each centre is min-
imised. Hereby, the distance function is given as a lambda
expression to specify Manhattan (L1) or Euclidean (L2)
distance.

Graph-mining PageRank is a graph-mining algorithm for
gathering the importance of nodes by the number of in-
coming edges per node weighted by the score of the source
node.

Optimisation Machine-learning algorithms rely on opti-
misation algorithms such as gradient descent. Given a
model function parametrised by some weights, one aims
to minimise the weights to obtain minimal loss in order to
predict the targets/labels of the data and a loss function
that measures the deviation from the true labels and their
predictions. To allow user-defined loss functions, we adapt

the concept of lambda expressions to work as a mathe-
matical function for minimisation on the training set’s
attributes.

Labelling To label test data, an operator adds the result of
a parametrised function to the input relation. Lambda
expressions define the loss function to be evaluated on the
test data set.

The algorithms for clustering and graph-mining are hard-
coded as materialising pipeline breakers in the database system’s
core, as various iterations are needed to compute the clusters
or the PageRank values. The operator for labelling—as part of
the pipeline—simply evaluates the lambda expression and adds
a new attribute to the input relation. The operator for gradient
descent uses a self-developed framework for automatic differen-
tiation based on placeholders for the input data and variables for
the weights and can be designed as either materialising or non-
materialising pipeline breaker. All operators define the usage of
the lambda functions according to the number of input pipelines.
As k-Means and PageRank only need one input pipeline, lambda
expressions define the functions between the tuples of one in-
put relation. The lambda expression for the distance metrics in
k-Means takes two tuples S,T of the same relation R{[x,y]} as
argument (L2 distance, for example):

λ(S,T )((S .x −T .x)2 + (S .y −T .y)2).

PageRank—contrary to the other operators—needs two lambda
expressions to specify the edges: one for the source node and
the second one for the destination node of the input relation
R{[src,dst]}:

λ(R)(R.src), λ(R)(R.dst).

For gradient descent and labelling, we need data for the place-
holders and weights for the variables. Therefore, the lambda
expression takes one tuple from each of the two input relations
R{[a,b]} (initial weights) and S{[x,y]} (training data) to formu-
late the loss function:

λ(R, S)(R.a ∗ S .x + R.b − S .y)2.

As lambda expressions are part of the database system, they
are taken into account by the database’s query optimiser. When
the data is stored column-wise, only the relevant data for the
lambda expression is loaded.

3 EVALUATION
The evaluation section presents the runtimes of the lambda-based
operators. The experiments were run on an Intel Xeon E5-2660
v2 (20 cores of 2.20 GHz) server with 256 GB main DDR4 RAM
running on Ubuntu 18.04 LTS. The test data was one-month
excerpt of the Chicago taxi rides dataset1 (> 1.7 ∗ 106 tuples),
on which we performed clustering with k-Means and logistic
regression by gradient descent, and the LDBC data set with scale
factor 10 for graph-mining with PageRank.

Using k-Means, we clustered the taxi dataset geographically by
the trip’s destination expecting 10 clusters. By logistic regression,
we predicted the payment type depending on the distance of a trip
and the ages of the customers. We reused the predicted weights to
label the data. We take the person-knows-person-relationship from
the LDBC benchmark to calculate the PageRank values of each
person. Each test varied the input sizes to compare the runtime
of our extended operators with the lambda functions in HyPer to
the runtime of PostgreSQL 9.6.8 with its MADlib v1.13 extension
1https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew

535



101 102 103 104 105 106
10−1

100

101

102

Number of Tuples

T
im

e
in

s

R TensorFlow

HyPer Lambda

(a) k-Means (2 dims, 10 clusters).

101 102 103 104 105 106
10−4

10−3

10−2

10−1

100

101

Number of Edges
T
im

e
in

s

Madlib HyPer Lambda

HyPer Basic

(b) PageRank (100 iter., no damping).

101 102 103 104 105 106
10−1

100
101
102
103
104
105

Number of Tuples

T
im

e
in

s

R TensorFlow

MariaDB PSQL

HyPer Lambda MADlib

(c) Gradient Descent.

101 102 103 104 105 106

10−3

10−2

10−1

100

101

Number of Edges

T
im

e
in

s

HyPer Lambda

(d) Labeling.

Figure 2: Runtimes of the operators using lambda functions and of the competitors varying the number of input tuples.

(database system with a plugin), TensorFlow 1.3.0 without GPU
support (dedicated machine-learning tool) and R 3.4.2 (statistical
tool). The tests were run five times and the average runtimes
were taken.

As expected, all the operators scaled linearly in the size of the
input dataset and no overhead caused by lambda expressions in
SQL was measurable. Figure 2a shows k-Means in comparison to
R and TensorFlow (both use predefined library functions). Our
database operator with the included lambda function outper-
formed all dedicated tools by at least a factor of three.

The in-database PageRank function provided by the MADlib
library scaled linearly as well but was still four times slower than
the integrated operator (see Figure 2b). The lambda expressions
did not slow down the runtime of the database system as both
operators performed at quite the same time.

The currently introduced gradient descent operator (see Fig-
ure 2c) reduced the overhead caused by data extraction and trans-
fer as the data could be processed directly. The results were
performance gains of at least five times in comparison to R, the
fastest dedicated tool. The hard-coded gradient descent function
in PostgreSQL and the equivalent procedure in MariaDB ran
out of scope and the MADlib extension for logistic regression
performed as fast as our lambda-based operator only for small
input relations. Figure 2d shows the labelling of the attributes
that performed linearly in the size of the input tuples.

In summary, the lambda expressions broadened the application
area of the database systems without performance losses and
eliminated the need for dedicated tools.

4 DEMONSTRATION
The demonstration convinces by the simplicity of using SQL for
machine-learning: the central part is an extended web interface
for HyPer with SQL for the input queries and a tabular output
representation (see Figure 3). To facilitate the use of database
systems for data scientists, data visualisation—comparable to
those of business intelligence tools—enriches the output by sim-
ple dragging and dropping the table’s attributes on the axes of
different sorts of diagrams (pie/bar/line charts). As an additional
feature, a box for specifying lambda functions with their input
weights allows the plotting of lambda expressions as mathemati-
cal functions inside the diagrams.

The database system is fed with an excerpt of the Chicago taxi
dataset and the current OpenFlights dataset2. The web interface
lets users choose between predefined example queries with sam-
ple lambda expressions or lets them create their own queries. Our

2https://openflights.org/data.html

predefined examples cover supervised machine-learning tasks
based on gradient descent (see Listing 3), labelling and data min-
ing tasks such as clustering (see Listing 1) and PageRank (see
Listing 2).

In our demonstration scenario, the user is encouraged to per-
formmachine-learning tasks, such as the predefined regression to
predict, for example, the number of tips given or the kind of pay-
ment in dependency of the length of a trip. In addition, the users
can specify any kind of loss functions to perform predictions or
other methods for the type of gradient descent.

To show the performance of the database systems, two charts—
one for the runtime and one for the operator tree—provide in-
formations about optimisations. This feature helps the user to
understand how operator reordering and predicate push-down
of integrated lambda expressions increase the performance.

5 CONCLUSION
In this demonstration, we presented SQL lambda functions for in-
database machine-learning and data mining with an interactive
web interface devoted to its use by data scientists.

We proposed extending already known lambda expressions
for use in machine-learning, especially to specify loss functions
for gradient descent. By this extension, we used database systems
with SQL as a universal computational engine, eliminated the
need for dedicated machine-learning tools and reduced the time
needed for data communication. To tackle the acceptance of
SQL with lambda functions, we created a web interface that
interactively combines SQL with data visualisation and provides
informations about the optimised query plans.

This work aimed at adding lambda functions in standardised
SQL to allow changing the database system as an underlying
machine-learning tool. Lambda functions are essential for provid-
ing a higher-order machine-learning language to be used by data
scientists. For that purpose, a declarative language is needed to
further increase the acceptance of database systems and should
be designed to be compiled to SQL or an executable to call the
application interfaces of current dedicated tools.

536



Figure 3:We adapted our HyPerInsight web interface for demonstrating lambda functions. On the left side, we see the SQL
interface with an exemplary lambda expression as a distance metric (top) with tabular output and visualisation (bottom).
The right side shows the runtimes of the different algorithms (top) and the operator optimisations (bottom).

CREATE TABLE data(x FLOAT , y INTEGER);

CREATE TABLE center(x FLOAT , y INTEGER);

INSERT INTO ...

SELECT * FROM kmeans(

(SELECT x,y FROM data),

(SELECT x,y FROM center),

-- the distance function

λ(a, b) (a.x-b.x)^2+(a.y-b.y)^2,

3 -- max. number of iterations

);

Listing 1: k-Means.

CREATE TABLE edges (a BIGINT , b BIGINT);

INSERT INTO ...

SELECT * FROM pagerank(

(SELECT * FROM edges),

λ(src) src.a, -- source

λ(dst) dst.b, -- destination

0.85, -- damping factor

0.00001 , -- threshold

100 -- iterations

);

Listing 2: PageRank.

CREATE TABLE data (x FLOAT , y FLOAT);

CREATE TABLE weights(a FLOAT , b FLOAT);

INSERT INTO ...

SELECT * FROM gradientdescent(

-- the loss function

λ(d, w) (w.a*d.x+w.b-d.y)2,
-- training data set

(SELECT x,y FROM data d),

-- initial weights

(SELECT a,b FROM weights w),

0.05, -- learning rate

100 -- max. number of iteration

);

Listing 3: Gradient descent.

Figure 4: Examples of using lambda functions in SQL.

ACKNOWLEDGEMENTS
This work is part of the TUM Living Lab Connected Mobil-
ity (TUM LLCM) project and has been funded by the Bavarian
Ministry of Economic Affairs, Energy and Technology (StMWi)
through the Centre Digitisation.Bavaria, an initiative of the Bavar-
ian State Government. Linnea Passing and Dimitri Vorona have
been sponsored in part by the German Federal Ministry of Ed-
ucation and Research (BMBF), grant TUM: 01IS12057. This re-
search was supported by the German Research Foundation (DFG),
grant NE 1677/1-1 and has received funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No
725286).

REFERENCES
[1] C. R. Aberger, A. Lamb, K. Olukotun, and C. Ré. Mind the gap: Bridging

multi-domain query workloads with emptyheaded. PVLDB, 10(12):1849–1852,
2017.

[2] A. Church. An unsolvable problem of elementary number theory. American
journal of mathematics, 58(2):345–363, 1936.

[3] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S.
Ng, C. Welton, X. Feng, K. Li, and A. Kumar. The madlib analytics library or
MAD skills, the SQL. PVLDB, 5(12):1700–1711, 2012.

[4] N. Hubig, L. Passing, M. E. Schüle, D. Vorona, A. Kemper, and T. Neumann.
Hyperinsight: Data exploration deep inside hyper. In Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, CIKM 2017,
Singapore, November 06 - 10, 2017, pages 2467–2470, 2017.

[5] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap main memory database
system based on virtual memory snapshots. In Proceedings of the 27th Interna-
tional Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover,
Germany, pages 195–206, 2011.

[6] L. Passing, M. Then, N. Hubig, H. Lang, M. Schreier, S. Günnemann, A. Kemper,
and T. Neumann. SQL- and operator-centric data analytics in relational main-
memory databases. In Proceedings of the 20th International Conference on
Extending Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017.,
pages 84–95, 2017.

537


	Demonstrations
	The Power of SQL Lambda FunctionsMaximilian Schüle, Dimitri Vorona, Linnea Passing, Harald Lang, Alfons Kemper, Stephan Günnemann, Thomas Neumann


