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ABSTRACT
Streaming join is an essential operation in many real-time ap-
plications. A lot of research has been devoted to the study of
distributed streaming join algorithms. However, existing solu-
tions rely on heuristics and cannot handle data skew optimally.
On non-streaming, static data, the HyperCube algorithm ensures
a balanced load across all processors in an optimal way. In this
paper, we extend this algorithm to the streaming setting, which
can adapt the HyperCube configuration depending on the cur-
rent data distribution. Some preliminary experimental results are
provided to demonstrate the efficiency our algorithm.

1 INTRODUCTION
The prevalence of applications in financial trading, sensor net-
works, traffic analysis and web data management has brought
attention to query processing over data streams. Various Dis-
tributed Stream Processing Systems (DSPSs) have emerged such
as Flink [1], Spark Streaming [2] and Apache Storm [3]. As one
of the most critical operations in database management systems,
join has been extensively studied in the literature both in static
models [5–8, 14, 16] and streaming models [11, 12, 17, 18].

Low latency and high throughput are two essentials for an effi-
cient streaming join algorithm. In a massively distributed system,
a key to achieving these goals is to ensure a good load balance
among the workers. Over static data, the HyperCube algorithm
[6] and its extensions [8] achieve an optimal load balance. How-
ever, this algorithm crucially depends on the data statistics, in
particular, the set of heavy hitters and their frequencies. In a dy-
namic setting like streaming data, these statistics are changing all
the time, which renders the HyperCube algorithm inapplicable.

In this paper, we propose Streaming HyperCube (SHC), an
adaption of the HyperCube algorithm to the streaming setting.
A key challenge in designing SHC is how to adaptively change
the HyperCube configuration as the data statistics change over
time. On the one hand, we want to keep the configuration as
close as possible to the optimal setting the HyperCube uses for
static data. On the other hand, we also want to avoid too frequent
configuration changes, since each configuration change requires
migration of states, which introduces communication overhead
and stalls streaming processing. The SHC algorithm supports
both full-stream joins as well as joins over a sliding window.

Below, we first review the related work in Section 2, in par-
ticular the static HyperCube algorithm. In Section 3 we describe
the Streaming HyperCube algorithm. We have implemented the
algorithm in Flink. In Section 4 we describe its implementation
and show some preliminary experimental results comparing with
some state-of-the-art stream join algorithms.
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2 RELATEDWORK
2.1 Parallel Hash Join
The Parallel Hash Join (PHJ) algorithm is the default join algo-
rithm used in many state-of-the-art DSPSs [2, 3, 10, 19], including
Flink. Consider a (natural) join R(A,B) Z S(B,C). Let p be the
number of workers in the system, numbered 1, 2, . . . ,p. The algo-
rithm utilizes a random hash function h : B → [p] = {1, . . . ,p}
to assign tuples (a,b) ∈ R and (b, c) ∈ S to worker h(b). Each
worker is responsible for producing the join results on all tuples
assigned to it. More precisely, it maintains two hash tables built
on attribute B, one for tuples from R, one for tuples from S . Upon
the arrival of a tuple (a,b) ∈ R, it inserts it to the hash table on
R, and probes the hash table on S with key b to find all tuples in
S that can join with (a,b).

When there is no skew, this algorithm performs relatively well.
However, when there are heavy hitters, namely, many tuples in R
or S share the same value on attribute B, the load may no longer
be balanced, since all tuples with the same b value must be sent
to the same worker. In the worst case, if all tuples have the same
value on b, the join degenerates into a Cartesian product, and one
worker will be doing all the work while the other p − 1 workers
are idle.

2.2 HyperCube
The worst case scenario of the aforementioned PHJ algorithm
happens when there is only a single value b ∈ B. In this case,
the join degenerates into a Cartesian product. This problem was
solved in [6] by the following HyperCube algorithm.

1 . . .
hR (a)

. . . pR
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. . .

hS (c)

. . .
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Figure 1: The HyperCube algorithm. Tuple (a,b) is sent to
all workers in the column hR (a), and the tuple (b, c) is sent
to all workers in the row hS (c). The worker at coordinate
(hR (a),hS (c)) produces the join result (a,b, c).

The p workers are organized into a pR ×pS grid (see Figure 1),
where pR = |R |

√
p

|R | · |S | , pS = |S |
√

p
|R | · |S | . Two hash functions

hR : A → [pR ], hS : C → [pS ] are used. Each tuple (a,b) ∈ R is
sent to all workers with coordinates (hR (a), ∗) and each (b, c) ∈ S
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is sent to all workers (∗,hS (c)). As figure 1 shows, each output
tuple is handled by exactly one worker. With high probability,
each worker receives

Õ

(
|R |

pR
+

|S |

pS

)
= Õ

(√
OUT

p

)
tuples, where the output sizeOUT = |R | · |S | for Cartesian product.
Assuming |R | = |S |, this is better than the O(|R |) load of the PHJ
algorithm by an O(√p) factor.

Beame et al. [8] have generalized this algorithm to general
joins. Let R(b) = σB=bR, and similarly define S(b). The idea is to
first partition the join attribute B into heavy hitters BH and light
hitters BL . Let N denote the total number of tuples:

BH =

{
b ∈ B

���� |R(b)| > N

p
or |S(b)| >

N

p

}
and BL is the remaining attribute values. The light hitters BL will
be handled by the PHJ algorithm. Since there is no skew in the
light hitters, the load is bounded by Õ(N /p) for any worker. For
each heavy value b ∈ BH , p(b) workers are allocated to handle it
using the shares algorithm, where

p(b) =
OUT (b)

OUTH · p =
|R(b)| · |S(b)|

OUTH · p

and OUTH =
∑
b ∈BH OUT (b) denotes the output size generated

by all heavy hitters. The load of each worker for handling heavy
hitters is upper bounded by Õ(

√
OUT /p). Therefore, the total

load is Õ
(
N
p +

√
OUT
p

)
, which has been shown to be optimal.

However, this algorithm does not work in the streamingmodel,
because it needs all the heavy hitter information to decide the
configuration of each cube, namely how to set p(b) for all the
b’s, and how to set the dimensions of each cube. Furthermore,
the heavy hitter set may change throughout stream processing,
which requires the HyperCube configuration to change corre-
spondingly. These will be solved by our algorithm described in
section 3.

2.3 BiStream Join
Lin et al. [17] proposed the Join-Biclique (JB) algorithm for com-
puting joins over distributed streaming data. Their BiStream sys-
tem divides the join into two stages, a routing stage for storage
and a joining stage for producing outputs. Their work outper-
forms existing systems [11] in terms of memory consumption,
scalability, latency and throughput. However, the algorithm re-
lies on heuristics and does not work well on highly skewed data.
We will compare SHC with a Flink implementation of the Join-
Biclique algorithm in Section 4.

2.4 Cell Join
Cell Join presented by Gedik et al. [12] solves the windowed
streaming join problem specifically on Cell processors. Following
the three-step procedure described by Kang et al. [15], the algo-
rithm parallelizes the scan task of streams over available work-
ers to achieve high performance. However, since re-partition is
needed whenever a new tuple arrives, this algorithm suffers from
scalability issues. Although it supports band joins and can be
extended to multi-way joins, its framework is solely designed for
the IBM’s cell processor.

Dispatcher

Task 1

Task 2

Task 3

Task 4

. . .

Task k

Worker 1

Worker 2

. . .

Worker p

Sink
source

Figure 2: System Architecture.

2.5 Handshake Join
Roy et al. [18] presented a highly parallelizable handshake join
for window streams. Hardware acceleration was implemented
to achieve high data throughput. The algorithm uses similar
window semantics to the ones in [15] by dividing the window into
subwindows. The two streams flow in opposite directions so that
each pair of subwindows has a handshake. This algorithm adopts
the batch-processing model and may introduce disorder in the
output tuple sequence, meaning it is not suitable for applications
requiring instant outputs.

3 STREAMING HYPERCUBE
3.1 System Architecture
Figure 2 describes the architecture of our system. There are
p workers along with a dispatcher and a sink. The dispatcher
preprocesses input tuples after receiving them. The tuples are
partitioned into tasks, which are then dynamically allocated to
physical workers at runtime. The workers compute join results
on-the-fly and pass them to the sink. Our system adopts the
event-triggered model of Flink, where the output is updated im-
mediately after the arrival of each tuple to ensure low latency.

3.2 Algorithm
The dispatcher runs an approximate heavy hitters tracking al-
gorithm [9] to keep track of the heavy hitters and their approx-
imate frequencies. Specifically, it classifies a join value b ∈ B

to be heavy hitter if N (b) = |R(b)| + |S(b)| > N
p and light hit-

ter if N (b) < ( 1p − ϵ)N , N is the current stream length (for full
stream joins) or window length (for sliding window joins), and ϵ
is some small constant. A value with frequency in between may
be either heavy or light. As long as ϵ ≤ 1

2p , there are at most 2p
heavy hitters. Note that the heavy hitter tracking algorithm also
maintains approximated frequencies |R(b)| and |S(b)| for each
heavy hitter b, each with at most ϵN additive error. Therefore
the corresponding output size OUT (b) = |R(b)| · |S(b)| can be
estimated with at most 2ϵN additive error. Summing over all the
heavy values, we obtain an estimate ofOUTH , the output size of
all heavy hitters, with no more than 2pϵN additive error.

Similar to the HyperCube algorithm, the dispatcher treats
heavy and light hitters differently. The light hitters are handled by
the PHJ algorithm using p tasks and an associated hash function
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hL : B → [p].1 Each heavy value b occupies p(b) tasks organized
into a pR(b) ×pS (b) grid. Two hash functions hR(b) : A → [pR(b)]
and hS (b) : C → [pS (b)] are involved.

Suppose a tuple (a,b) ∈ R arrives at time t . The dispatcher first
reflects the update to the heavy-hitter tracking algorithm, so that
the heavy hitter set and its statics are still valid approximations.
If b is a light hitter, it is sent to task hL(b) for light hitters and
the assigned worker produces the output. If b is a heavy hitter, it
is sent to all tasks labeled (hR(b)(a), ∗) in the pR(b) × pS (b) grid
allocated to b.

A key difference between SHC and the static HyperCube algo-
rithm is that the number of tasks allocated to each heavy hitter, as
well as the grid dimensions, may change over time. This is done
by a state migration between tasks. To see why this is necessary,
consider a value b, which starts light but continuously receives
tuples over time. If only a single task is allocated to handle it,
that worker will have a huge load. For efficient state migration,
the dispatcher stores the current number of tasks pR(b) × pS (b)
allocated for each heavy hitter b. According to the estimated
statistics, it can also calculate a desired number of tasks for b,
namely

pdR(b) =
|R(b)|

√
OUTH

√
p, and pdS (b) =

|S(b)|
√
OUTH

√
p

When the estimates of OUTH , |R(b)|, and |S(b)| change over
time, the dispatcher will compare the currently assigned grid
dimension with the desired one. If pR(b) > 2pdR(b), we reduce
pR(b) to half. Specifically, each task

(x,y), x =
1
2
pR(b) + 1, . . . ,pR(b),y = 1 . . . ,pS (b)

sends all its tuples in R(b) to task (x − 1
2pR(b),y) and then gets

released. If pR(b) < 1
2p

d
R(b), double pR(b). Specifically, create p(b)

new tasks and extend the grid to 2pR(b) × pS (b). Each task

(x,y), x = 1, . . . ,pR(b),y = 1 . . . ,pS (b)

sends all its tuples in S(b) to (x +pR(b),y). For each tuple (a′,b) ∈
R(b) in the task, apply a new hash function h′ : A → {0, 1} to it,
where 0 means that the tuple stays, and 1 means the tuple gets
sent to task (x +pR(b),y). The new hash function associated with
pR(b) is hR(b) + pR(b) · h′ : A → 2pR(b). It is similar for pS (b).

Finally, the dispatchermanages assignment of tasks to workers.
Since the tasks are almost balanced, the dispatcher keeps a count
on the total number of tasks each worker is currently handling.
When a new task is created, it will be sent to the worker with the
minimumnumber of tasks.When a task is released, the dispatcher
decreases the count of the corresponding worker by 1. Note that
some tasks may be assigned to the same worker, so that they
are only logically separated, but the communication between
them can be easily achieved. The worker nodes receiving tasks
compute join results, and send it to the sink.

3.3 A Running Example
Figure 3 gives a running example of state migration. Suppose
at some point of the algorithm, 500 tuples have been received,
where 200 tuples contain b1 and 250 tuples contain b2. There are
50 other tuples of light hitters. The output size from heavy hitters
is

OUTH = |R(b1)| · |S(b1)| + |R(b2)| · |S(b2)| = 20k

1[p] = {1, . . . , p }

Heavy Hitters Light Hitters
b1

|R(b1)| = 100
|S(b1)| = 100

b2

|R(b2)| = 50
|S(b2)| = 200

|R(b1)| = 100
|S ′(b1)| = 300

N = 500
OUTH = 20k

N ′ = 700
OUT ′H = 40k

Figure 3: Example task allocation for p = 8. There are 8
tasks for light hitters. 2 heavy values b1 and b2 each occu-
pies 4 tasks. The dotted circles represents the new tasks
created in state migration.

Also assume task allocation is optimal at this time. Indeed,pR(b1) =
2,pS (b1) = 2,pR(b2) = 1,pS (b2) = 4. Note that the task layouts are
different between two heavy hitters because they have different
internal skew.

Suppose after this state, we received 300 more tuples from
S(b1) and no other tuples. Consider b1, the dispatcher calculates
the new desired number of tasks as:

pdR(b1)
=

|R(b1)|
√
OUTH

√
p

=
100

√
40, 000

√
8 = 1.414

Since 2 = pR(b1) ≤ 2pdR(b1), state migration does not need to be
performed for pR (b1). However,

pdS (b1)
=

|S(b1)|
√
OUTH

√
p

=
300

√
40, 000

√
8 = 4.243

indicates that 2 = pS (b1) <
1
2p

d
S (b1)

. The dispatcher decidespS (b1)
should be doubled, and creates 4more tasks to handle it. As Figure
3 illustrates, the 2×2 grid is extended to a 2×4 one, where arrows
denote the flow of tuples.

For b2, the desired numbers are 0.707 and 2.828 respectively.
No migration is needed since the original 1 × 4 grid is sill an
optimal configuration, up to a factor of 2.

4 EVALUATION
In this section, we discuss implementation details and provide
comparative evaluations of our algorithm with the widely im-
plemented PHJ algorithm and state-of-the-art Join-Biclique (JB)
[17] algorithm.

4.1 Implementation
In the current implementation of our SHC algorithm, wemaintain
a copy of each stream in the dispatcher node in the form of
a hash table. The dispatcher is responsible for redistributing
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Figure 4: Zipf, varying α . Figure 5: Zipf, varying IN .

certain parts of the state hashtables to the join processingworkers
according to state migration policies. In addition, the dispatcher
may invalidate the state of certain heavy hitters from specific
workers.

4.2 Experimental Setup
Environment.We conduct all experiments on an Intel(R) Xeon(R)
CPU E5-2650 v4 @ 2.20GHz server that has 12 cores with 4
threads each and runs Red Hat 4.8.5. The server has 256 GB of
memory, which suffices for maintaining all raw and intermediate
data even if all tuples are sent to one processor only. Flink 1.4.2
is installed on the server and the implemented algorithms have
maximum parallelism of p = 48 processing units.
Data sets. Our preliminary experiments focus on full-stream
joins. We use two synthetic and one real data sets to evaluate our
algorithm.

The first synthetic data set is generated from the Zipf distri-
bution with varying value for α , which controls the level of the
skewness. The second synthetic data set is the TPC-H benchmark
[4]. Specifically, we choose to experiment on the Q5.

For the real data set, we use the same COREL dataset as in [13]
for applying SRHC on similarity joins. The data set contains a set
of 15,000 points with dimentionality 64. Each point corresponds
to a histogram of a unique color image collected from the COREL
repository. Based on a provided similarity threshold we apply a
locality-sensitive hash function on every point, and afterwards
we perform a self-join on the produced hash codes.

4.3 Performance Analysis
4.3.1 Zipf Distribution. Figure 4 and 5 demonstrates the per-

formance of three algorithms on the generated Zipf data set, with
respect to varying skewness and input size. For the JB algorithm,
we present the performance of the best setting, namely JBx48-
y24. The y parameter determines the number of groups that the
processing units are organized into. SHC clearly outperforms
both existing methods in terms of execution time.

4.3.2 TPC-H Benchmark. All TPC-H queries consists of pri-
mary key-foreign key joins, i.e., the join key is not skewed in one
side of each join. Under this scenario, SHC will only assign a
1 × p(b) grid for each heavy value, which is simply broadcast-
ing the primary key tuple to all allocations of the other stream.
For JB, we observe that the more groups used, the less efficient
the algorithm is. PHJ seems to yield the best performance. We
stress that SHC algorithm is better on many-many joins, where
skewness exists in both relations.

4.3.3 COREL data set. We perform self similarity join on this
high dimensional data set utilizing a (r , 10r , 0.9, 0.1)-sensitive
family of hash functions, i.e. points within r distance are hashed
to the same bucket with at least 0.9 probability and points with

Figure 6: TPC-H, varying α . Figure 7: COREL, varying r .

more than 10r distance have only 0.1 probability to be hashed to
the same bucket. This similarity join is a many-many join. Again,
SHC algorithm outperforms the other two in terms of execution
time. It is better especially when r is large, meaning a higher
skewness.

5 CONCLUDING REMARKS
In this paper, we proposed the Streaming HyperCube algorithm
that extends the static HyperCube algorithm to the streaming
setting. The algorithm continuously maintains an approximation
(up to a factor of 2) of the optimal HyperCube configuration,
while inuring small state migration overhead. In the future, we
plan to conduct a more thorough theoretical analysis and extend
it to multi-way joins.
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