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ABSTRACT
The discrete Fréchet distance (DFD) is widely used to measure

the similarity between two trajectories. Trajectory range query

has been extensively studied in trajectory analytical applications,

e.g., outlier detection, movement pattern analysis. With the dis-

crete Fréchet distance, the above applications are computation

bound rather than disk I/O bound. In this work, we propose

new lower and upper bound functions to speedup the evaluation

of trajectory range queries. Experimental studies on three real

datasets demonstrate the superiority of our proposal.

1 INTRODUCTION

The range query problem on trajectory dataset is a core

subroutine in trajectory analytical applications, e.g., anomaly

monitoring [3], traffic analysis [4]. In particular, given a query

trajectory q and trajectory database T , the trajectory range

query problem returns a subset S ⊆ T such that for each

t ∈ S , the distance between t and q is within given threshold

θ , i.e., dist(t,q) ≤ θ . Specifically, we use the discrete Fréchet

distance (DFD) dF , a widely used trajectory similarity mea-

sure [1, 5]. Given two trajectories t = ⟨t[1], t[2], · · · , t[n]⟩ and
q = ⟨q[1],q[2], · · · ,q[m]⟩, a coupling L between t and q is a

sequence ⟨(t[a1],q[b1]), (t[a2],q[b2]), · · · , (t[al ],q[bl ])⟩, where
a1 = 1,b1 = 1,al = n,bl = m, and for all i = 1, · · · , l , we have
ai+1 = ai or ai+1 = ai + 1, and bi+1 = bi or bi+1 = bi + 1. The
discrete Fréchet distance between t and q is defined as

dF (t,q) = min

L∈Ω
max

(t [ai ],q[bi ])∈L
| |t[ai ] − q[bi ]| |,

where Ω is the set of all possible couplings between t and q.
Figure 1(a) illustrates the discrete Fréchet distance (DFD) be-

tween two trajectories t and q. Computing discrete Fréchet dis-

tance between t and q is equivalent to find a path from (t[1],q[1])
to (t[n],q[m]) in a free space diagram such that (i) the path

travels along non-decreasing positions, and (ii) the maximum

| |t[ai ] − q[bi ]| | along the path is minimized [5]. For instance, the

value of dF (t,q) in Figure 1 is determined by the gray path in

Figure 1(b). Since it can be computed via dynamic programming,

the time complexity of DFD computation is O(mn).
In the literature, several lower and upper bounds have been

proposed for DFD [2, 5]. We will introduce these bounds in Sec-

tion 2. Nevertheless, the trajectory range query problem is still a

computationally intensive problem, takingO(|T |mn) time, where

|T | is the cardinality of trajectory dataset. To improve the query

performance, we devise new lower and upper bound functions

in this paper. Our experimental studies on real datasets reveal
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(a) DFD illustration (b) DFD computation

Figure 1: DFD illustration and computation

that our proposal improves the range query performance onDFD
by up to an order of magnitude when compared to a baseline

approach based on existing techniques.

The remainder of this paper is organized as follows. Section 2

formulates trajectory range query problem and presents the base-

line solution adapted from existing works. We present our novel

techniques in Section 3. Section 4 demonstrates the efficiency

of our proposal with experiments on real datasets. Finally, we

conclude the paper in Section 5.

2 PRELIMINARIES

In this section, we first define the trajectory range query prob-

lem in Section 2.1, then we present the baseline solution for it by

adapting existing techniques in Section 2.2.

2.1 Problem Definition
Definition 2.1 (Trajectory Range Query Problem). Given a query

trajectory q, and a trajectory dataset T and distance threshold

θ , the trajectory range query returns a subset S ⊆ T such that

for each trajectory t ∈ S , the discrete Fréchet distance (DFD)
between t and q is at most θ , i.e., dF (t,q) ≤ θ .

A straightforward approach for this problem (cf. Definition 2.1)

is to compute the exact discrete Fréchet distance (DFD) between
each trajectory t ∈ D and the query trajectory q. Its time com-

plexity isO(|T |mn), rendering it impractical for a large trajectory

dataset.

2.2 Baseline Solution
In this section, we briefly introduce a baseline approach for

the trajectory range query problem (cf. Definition 2.1) which

employs existing techniques in the literature. It follows the

filter-and-refinement paradigm. Let LB(t,q) and UB(t,q) de-

note the lower and upper bounds of dF (t,q) respectively, i.e.,
LB(t,q) ≤ dF (t,q) ≤ UB(t,q). A candidate t cannot be a result if
LB(t,q) > θ . A candidate t is definitely a result ifUB(t,q) ≤ θ . In
these two cases, we save an expensive exact DFD computation.
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(a) Group-based trajectory (b) Group-based bounds

Figure 2: Group-based DFD illustration and computation

We introduce existing lower and upper bounds as follows.

Cell-based lower bound LBcell (from [5]): The cell-based

lower bound is defined as

LBcell (t,q) = max(| |t[1] − q[1]| |, | |t[n] − q[m]| |).

The idea of LBcell is that any coupling L between q and t must

start from (1, 1) and end at (n,m). Its computation cost is O(1).

Row-based lower bounds LBrow and LBcross (from [5]): The
row-based and column-based lower bounds are defined as fol-

lows:

LBrow (t,q) = min

bi ∈[1,m]
(| |t[2] − q[bi ]| |).

LBcol (t,q) = min

ai ∈[1,n]
(| |t[ai ] − q[2| |).

The path leading to DFD pass through the second column and

row certainly contribute these two bounds. Both of them have

O(n) time complexity.

For example, the row-based and column-based lower bounds

for trajectory t and q are LBrow (t,q) = min{2, 4, 1, 4, 7, 7} = 1

and LBcol (t,q) = min{7, 6, 7, 5, 4, 3} = 3, respectively.

By combining row-based and column-based lower bounds, we

obtain a cross-based lower bound as follows.

LBcross (t,q) = max(LBrow (t,q), LBcol (t,q)).

Group-based bounds LBд andUBд (from [5]): The idea is to
partition a trajectory t (in Figure 1(a)) to a grouped trajectoryдt =
{дt[1],дt[2],дt[3]} (in Figure 2(a)), which can be represented by

a sequence of minimum bounding rectangles (MBRs). The length

of group-based trajectory is denoted as τ . The minimum and

maximum distance between дt[ai ] and дq[bi ] (two MBRs) are

denoted as dlbG (дt[ai ],дq[bi ]) and d
ub
G (дt[ai ],дq[bi ]).

They can be derived in O(1) cost. For example, in Figure 2

dlbG (дt[2],дq[2]) and dubG (дt[2],дq[2]) are 1 and 4, respectively.

The DFD computing procedure with group-based trajectory

adopts the minimum or maximum distances between MBRs leads

a lower or upper bound of dF (t,q), as follows:

LBд(t,q) = min

L∈дΩ
max

(дt [ai ],дq[bi ])∈L
dlbG (дt[ai ],дq[bi ]),

UBд(t,q) = min

L∈дΩ
max

(дt [ai ],дq[bi ])∈L
dubG (дt[ai ],дq[bi ])

As shown in Figure 2(b), the lower and upper bound DFD
distance between group-based trajectoryдt andдq areLBд(t,q) =
2 andUBд(t,q) = 6, respectively. It reduces computation cost as

O(τ 2) < O(mn).

Greedy-based upper boundUBдr eedy (from [2]): In addition

to the above bounds, [2] proposed a greedy algorithm to compute

an upper bound for dF (t,q) with O(n) cost.
The idea of greedy algorithm is simple, e.g., the discrete Fréchet

distance (DFD) goes as follows: in every step, make the move

that minimizes the current distance, where a “move” is a step in
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Figure 3: Baseline approach for trajectory range query
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Figure 4: Running example

either one sequence or in both of them. The greedy algorithm

guarantees 2
Θ(n)

-approximation of the discrete Fréchet distance

with linear time cost O(n). As shown in Figure 1(b), the greedy

algorithm produces the path shown as the circled numbers.

Baseline approach: We construct the baseline approach by ex-

ploiting existing techniques. It applies a filter-and-refinement

framework, as shown in Figure 3. It computes exact DFD dis-

tance for a candidate t only if it cannot be dismissed by lower

bounds (i.e., LBcell , LBcross , LBд ) or upper bounds. Specifically,
the computation cost of employed bounds are in an order from

quick-but-dirty one to slow-but-accurate one.

3 PROPOSED OPTIMIZATIONS

To improve the performance of trajectory range query (cf.

Definition 2.1), we propose several novel optimizations in this

section.

3.1 Group-based border bounds
The lower bound distance between two grouped trajectories

дt and дq is LBд(t,q) = min

L∈дΩ
max

(дt [ai ],дq[bi ])∈L
dlbG (дt[ai ],дq[bi ]),

where dlbG (дt[ai ],дq[bi ]) is the lower bound of ground distance

between дt[ai ] and дq[bi ], shown as the dashed line with the

label 1 in Figure 2(a). The effectiveness of the group-based lower

bound pruning depends on term LBд(t,q).

Group-based border lower bound. Instead of using

dlbG (дt[ai ],дq[bi ]) in baseline approach, we devise a tighter lower
bound for ground distance between two groups (дt[ai ],дq[bi ])
by the crucial observation as follows. Consider (дt[2],дq[2]) in
Figure 4, the minimum distance of (дt[2],дq[2]) is determined

by the gray cells, as if the DFD path of trajectory t and q passes

though the group pair (дt[2],дq[2]), dF (t,q) must be larger than

635
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Figure 6: Advanced approach for trajectory range query

or equal to the minimum value in entrance cells (red rectangles)

and exit cells (blue rectangles).

In particular, theminimum value of entrance cells and exit cells

in given pair (дt[ai ],дq[bi ]) is defined as denmin (дt[ai ],дq[bi ])
and dexmin (дt[ai ],дq[bi ]), respectively. Thus, the entrance and

exit cell based lower bound of ground distance of group pair

(дt[ai ],дt[bi ]) is

dlbee (дt[ai ],дq[bi ]) = max{denmin (дt[ai ],дq[bi ]),d
ex
min (дt[ai ],дq[bi ])}.

Consequently, we have a tighter lower bound LBb (t,q) by

LBb (t,q) = min

L∈дΩ
max

(дt [ai ],дq[bi ])∈L
dlbee (дt[ai ],дq[bi ]).

There is a trade-off between the tightness of

denmin (дt[ai ],дt[bi ]) (the same as dexmin (дt[ai ],дt[bi ])) and

its computation cost. The quick-and-loose one is taking the

smaller distance of t[ainτ ] with the MBR of дq[bi ] and the MBR

of дt[ai ] with q[
bim
τ ]. The slow-and-tight one is computing the

smallest distance of t[ainτ ] with all points (i.e., 3, 7, 5, 6 in red

rectangle) in дq[bi ] and all points in дt[ai ] with q[bimτ ] (i.e.,

3, 5, 4, 6 in red rectangle). In terms of time complexity, the former

one is O(τ 2) and the later one is O(τn) for every group pairs in

дt and дq.

Group-based border upper bound. As shown in Figure 5, the

upper bound of ground distance between t[ainτ ]with the MBR of

дq[bi ] and the MBR ofдt[ai ]with q[
bim
τ ] for each (дt[ai ],дq[bi ])

pair are computed withO(τ 2) cost. The upper bound of the DFD
path from (t[1],q[1]) to (t[n],q[m]) is equivalent to find a path

from left-bottom corner to right-top corner, where the maximum

value in that path is minimized, as the red path shown.

We denote that DFD upper bound as UBb (t,q), it is 10 in the

example of Figure 5.

3.2 DFD path transfer directions
Take (дt[1],дq[1]) in Figure 4 as an example, the minimum dis-

tance between дt[1] and дq[1] is max{min{3, 4},min{4, 6}} = 4.

Computing LBд(t,q) is equivalent to find a DFD path from

(дt[1],дq[1]) to (дt[τ ],дq[τ ]) among the minimum distances of

each group pairs, i.e., dlbG (дt[ai ],дq[bi ]). Even the minimum dis-

tance of each group pair is improved by entrance and exit cell

bounds as above, it still can be optimized by exploiting the path

transfer direction. For example, as shown in Figure 4, if the path is

from (дt[1],дq[1]) to (дt[1],дq[2]), the lower bound contributes

from (дt[1],дq[1]) is the minimum value among the magenta

cells and yellow cells. Similarly, The path from (дt[1],дq[1]) to
(дt[2],дq[2]) must pass the yellow cell. Obviously, the minimum

value from (дt[1],дq[1]) to (дt[1],дq[2]), and from (дt[1],дq[1])
to (дt[2],дq[2]) are 6 and 7, which is larger than 4, i.e., the dis-

tance between дt[1] and дq[1] by entrance and exit cells bound.

In summary, the transfer-based minimum values are used to

tight the group-based DFD lower bound (i.e., LBb (t,q)) during
the DFD computation on grouped trajectories дq and дt .

3.3 DFD computation acceleration
As illustrated in Figure 3, for these candidate trajectories cannot

be pruned by its lower bound or be detected as true results, it

will incur expensive DFD computation O(mn). Specifically, it
computes the distance between any two points among t and q,
i.e., each cell in Figure 4, then computes the dF (t,q) via dynamic

programming. In the subsequential section, we devise two novel

techniques, namely early termination and invalid cell ignoring,

to reduce the DFD computation cost.

Early termination.We define layeri , j among trajectory t and
q (cf. Figure 4) as either t[i] or q[j] are considered in that cells.

Formally, the lower bound of layeri , j is defined as:

LB
i , j
layer (t,q) = min{ min

k ∈[1, j]
{| |t[i]−q[k]| |}, min

k ∈[1,i]
{| |t[k]−q[j]| |}}.

Lemma 3.1. LB
i , j
layer (t,q) ≤ dF (t,q)

Proof. The proof is trivial as the path from (t[1],q[1]) to
(t[n],q[m]) must pass through the at least one cell of layeri , j ,
thus, dF (t,q) is not smaller than the minimum value in layeri , j .

�

Thus, we terminate DFD computation if LB
i , j
layer (t,q) ≥ θ

with Lemma 3.1. Suppose the distance threshold θ = 2, consider

the layer3,3 in Figure 4, LB3,3layer (t,q) = min{3, 3, 4, 3, 4} = 3. We

terminate the exactDFD computation earlier as LB3,3layer (t,q) > θ .

It improves computation cost by ignoring a lot of ground distance

pair computation and the exact DFD computation.

Invalid cell ignoring. Consider the example in Figure 4, sup-

pose the distance threshold θ = 7. Given cell (t[i],q[j]) its dis-
tance computation can be avoided if | |t[i],q[j−1]| |, | |t[i−1],q[j]| |,
and | |t[i − 1],q[j − 1]| | are larger than θ . We define such kind of

cells as invalid cells, set their distances as∞, as shown in Figure 4

without incurring expensive distance computation.

Put all it together: We present the framework of our advanced

approach (AA) for trajectory range query (with discrete Fréchet

distance) in Figure 6. Our proposed techniques are enclosed by

red rectangles, e.g., LBb (t,q),UBb (t,q), and optimized exactDFD
computation.
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Figure 7: Response time vs. distance threshold θ

4 EXPERIMENTAL EVALUATION

We evaluate the performance of the baseline approach (BB,
cf. Section 2) and our advanced approach (AA, cf. Section 3)

for trajectory range queries. In our experiments, we report the

average measurements over 10 different query trajectories.

Dataset: We used three real world trajectory datasets with di-

verse geographical coverage and scales of sizes.

GeoLife.1 The GeoLife project in Microsoft Research Asia col-

lected this dataset from 182 users over five years (April 2007-

August 2012). It has 18,655 trajectories and 24.9 million GPS

points.

OSM-FULL.2 This dataset contains 7.5 years of OpenStreetMap

trajectory data around the world. It includes total 2.4 million

trajectories constructed by 2.7 billion GPS points.

OSM-DE. It is a subset of OSM-FULL. We extracted trajecto-

ries that are located in Germany. OSM-DE has the highest data

density among all regions in OSM-FULL [6]. It has 0.5 million

trajectories and 0.5 billion GPS points in total.

We used C++ for the implementation and conducted all exper-

iments (with single thread) on a machine with AMD A10-7850K

3.70GHz processor and 16GB main memory.

Overall performance evaluation: We compare the perfor-

mance of BB and AA for trajectory range query problem on

all three real world datasets by varying distance threshold in

Figure 7. AA is faster than BB by 2.42 to 50.1 times. In addition,

the performance gap between AA and BB becomes large with the

rise of distance threshold θ . It also confirms AA is scalable. The

trajectories in GeoLife are much denser than other two datasets,

and that is the reason why range queries perform slower though

OSM-FULL and OSM-DE have large sizes.

Effect of optimizations: We then evaluate the effectiveness of

our proposed optimization techniques, e.g., group border-based

bound, path transfer direction-aware bound, etc. Due to space

limitation, we omit the experiment results onOSM-DE andOSM-
FULL as they are similar to GeoLife. The group-size τ is 8 in all

the experiments.

Table 1 illustrates the number ofDFD executions (per query) of

BB and AA with regard to distance threshold θ , respectively. Ob-
viously, our advanced approach outperforms baseline approach.

We then investigate the effectiveness of DFD lower and upper

bounds. Our proposed LBb is much better than LBд while both

withO(τ 2) cost. In addition LBb withO(τn) cost is slightly better

1
https://bit.ly/2E4sntq

2
https://bit.ly/2zwrKVH

Table 1: DFD executions on GeoLife dataset

θ 0.1 km 0.5 km 1km 5 km

BB 6.60 48.97 125.33 550.01

AA 1.87 21.15 19.32 88.1
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Figure 8: Tightness of DFD lower and upper bounds

than with O(mn), as shown in Figure 8(a). UBb is better than

UBдr eedy andUBд as illustrated in Figure 8(b).

5 CONCLUSION

In this paper, we propose several novel techniques (e.g., group

border-based bound, DFD computation acceleration) to speedup

the trajectory range query problem on discrete Fréchet distance.

Our advanced approach is up to 50 times faster than the baseline

solution we construct from the literature. A promising direc-

tion for future work is to devise error-guaranteed approximate

solutions for the trajectory range query problem.
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