
Semantic and Influence aware k-RepresentativeQueries over
Social Streams

Yanhao Wang
National University of Singapore
yanhao90@comp.nus.edu.sg

Yuchen Li
Singapore Management University

yuchenli@smu.edu.sg

Kian-Lee Tan
National University of Singapore

tankl@comp.nus.edu.sg

ABSTRACT
Massive volumes of data continuously generated on social plat-
forms have become an important information source for users. A
primary method to obtain fresh and valuable information from
social streams is social search. Although there have been exten-
sive studies on social search, existing methods only focus on the
relevance of query results but ignore the representativeness. In
this paper, we propose a novel Semantic and Influence aware
k-Representative (k-SIR) query for social streams based on topic
modeling. Specifically, we consider that both user queries and
elements are represented as vectors in the topic space. A k-SIR
query retrieves a set of k elements with the maximum repre-
sentativeness over the sliding window at query time w.r.t. the
query vector. The representativeness of an element set comprises
both semantic and influence scores computed by the topic model.
Subsequently, we design two approximation algorithms, namely
Multi-Topic ThresholdStream (MTTS) and Multi-Topic Th-
resholdDescend (MTTD), to process k-SIR queries in real-time.
Both algorithms leverage the ranked lists maintained on each
topic for k-SIR processing with theoretical guarantees. Extensive
experiments on real-world datasets demonstrate the effectiveness
of k-SIR query compared with existing methods as well as the
efficiency and scalability of our proposed algorithms for k-SIR
processing.

1 INTRODUCTION
Enormous amount of data is being continuously generated by
web users on social platforms at an unprecedented rate. For ex-
ample, around 650 million tweets are posted by 330 million users
on Twitter per day. Such user generated data can be modeled as
continuous social streams, which are key sources of fresh and
valuable information. Nevertheless, social streams are extremely
overwhelming for their huge volumes and high velocities. It
is impractical for users to consume social data in its raw form.
Therefore, social search [7–9, 17, 19, 28, 33, 37, 39] has become the
primary approach to facilitating users on finding their interested
content from massive social streams.

Existing search methods for social data can be categorized into
keyword-based approaches and topic-based approaches based on
how they measure the relevance between queries and elements.
Keyword-based approaches [7–9, 17, 28, 33, 37] adopt the textual
relevance (e.g., TF-IDF and BM25) for evaluation. However, they
merely capture the syntactic correlation but ignore the semantic
correlation. Considering the tweets in Figure 1, if a query “soccer”
is issued, no results will be found because none of the tweets
contains the term “soccer”. It is noted that the words like “as-
roma” and “LFC” are semantically relevant to “soccer”. Therefore,
elements such as e1, e2 are relevant to the query but missing

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

from the result. Thus, overlooking the semantic meanings of user
queries may degrade the result quality, especially against social
data where lexical variation is prevalent [14].

To overcome this issue, topic-based approaches [19, 39] project
user queries and elements into the same latent space defined by a
probabilistic topic model [5]. Consequently, queries and elements
are both represented as vectors and their relevance is computed
by similarity measures for vectors (e.g., cosine distance) in the
topic space. Although topic-based approaches can better capture
the semantic correlation between queries and elements, they fo-
cus on the relevance of results but neglect the representativeness.
Typically, they retrieve top-k elements that are the most coherent
with the query as the result. Such results may not be represen-
tative in the sense of information coverage and social influence.
First, users are more satisfied with the results that achieve an
extensive coverage of information on query topics than the ones
that provide limited information. For example, a top-2 query on
topic θ1 in Figure 2 returns {e3, e4} as the result. Nevertheless,
compared with e4, e6 can provide richer information to comple-
ment the news reported by e3. Therefore, in addition to relevance,
it is essential to consider information coverage to improve the
result quality. Second, influence is another key characteristic to
measure the representativeness of social data. Existing methods
for social search [7, 8, 19, 37] have taken into account the in-
fluences of elements for scoring and ranking. These methods
simply use the influences of authors (e.g., PageRank [24] scores)
or the retweet/share count to compute the influence scores. Such
a naïve integration of influence is topic-unaware and may lead
to undesired query results. For example, e6 in Figure 1, which is
mostly related to θ1, may appear in the result for a query on θ2 be-
cause of its high retweet count. In addition, they do not consider
that the influences of elements evolve over time, when previ-
ously trending contents may become outdated and new posts
continuously emerge. Hence, incorporating a topic-aware and
time-critical influence metric is imperative to capture recently
trending elements.

To tackle the problems of existing search methods, we define
a novel Semantic and Influence aware k-Representative (k-SIR)
query for social streams based on topic modeling [5]. Specifi-
cally, a k-SIR query retrieves a set of k elements from the active
elements corresponding to the sliding windowWt at the query
time t . The result set collectively achieves the maximum repres-
entativeness score w.r.t. the query vector x, each dimension of
which indicates the degree of interest on a topic. We advocate the
representativeness score of an element set to be a weighted sum
of its semantic and influence scores on each topic. We adopt a
weighted word coverage model to compute the semantic score so
as to achieve the best information preservation, where the weight
of a word is evaluated based on its information entropy [31, 42].
The influence score is computed by a probabilistic coveragemodel
where the influence probabilities are topic-aware. In addition, we
restrict the influences within the sliding windowWt so that the
recently trending elements can be selected.

 

 

Series ISSN: 2367-2005 181 10.5441/002/edbt.2019.17

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.17


ID Tweet Retweets
e1 @asroma win but it’s @LFC joining @realmadrid in the #UCL final 3154
e2 #OnThisDay in 1993, @ManUtd were crowned the first #PL champion 1476
e3 @Cavs defeats @Raptors 128-110 and leads the series 2-0 in #NBAPlayoffs 2706
e4 LeBron is great! #NBAPlayoffs 2
e5 Congratulations to @LFC reaching #UCL Final!! #YNWA 2167
e6 LeBron is the 1st player with 40+ points 14+ assists in an #NBAPlayoffs game 3489
e7 Hope this post inspires us to win #PL champions again in 2018-19 4
e8 Schedule for #PL and #NBAPlayoffs tonight 25

Figure 1: A list of exemplar tweets

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

 
!
(s
o
cc
e
r)

 " (basketball)

e7

e1

e8

e2

e5

e3

e6

e4

Figure 2: Topic distribution

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

Figure 3: References

The challenges of real-timek-SIR processing are two-fold. First,
the k-SIR query is NP-hard. Second, it is highly dynamic, i.e., the
results vary with query vectors and evolve quickly over time. Due
to the submodularity of the scoring function, existing submodular
maximization algorithms, e.g., CELF [16] and SieveStreaming [2],
can provide approximation results for k-SIR queries with theoret-
ical guarantees. However, existing algorithms need to evaluate
all active elements at least once for a single query and often
take several seconds to process one k-SIR query as shown in our
experiments. To support real-time k-SIR processing over social
streams, we maintain the ranked lists to sort the active elements
on each topic by topic-wise representativeness score. We first
devise theMulti-Topic ThresholdStream (MTTS) algorithm
for k-SIR processing. Specifically, to prune unnecessary evalu-
ations, MTTS sequentially retrieves elements from the ranked
lists in decreasing order of their scores w.r.t. the query vector
and can be terminated early whenever possible. Theoretically, it
provides ( 12 −ε)-approximation results for k-SIR queries and eval-
uates each active element at most once. Furthermore, we propose
the Multi-Topic ThresholdDescend (MTTD) algorithm to im-
prove upon MTTS. MTTD maintains the elements retrieved from
ranked lists in a buffer and permits to evaluate an element more
than once to improve the result quality. Consequently, it achieves
a better (1 − 1

e − ε)-approximation but has a higher worst-case
time complexity than MTTS. Despite this, MTTD shows better
empirical efficiency and result quality than those of MTTS.

Finally, we conduct extensive experiments on three real-world
datasets to evaluate the effectiveness of k-SIR as well as the effi-
ciency and scalability of MTTS and MTTD. The results of a user
study and quantitative analysis demonstrate that k-SIR achieves
significant improvements over existing methods in terms of in-
formation coverage and social influence. In addition, MTTS and
MTTD achieve up to 124x and 390x speedups over the baselines
for k-SIR processing with at most 5% and 1% losses in quality.

Our contributions in this work are summarized as follows.
• We define the k-SIR query to retrieve representative ele-
ments over social streams where both semantic and influ-
ence scores are considered. (Section 3)
• We propose MTTS and MTTD to process k-SIR queries in
real-time with theoretical guarantees. (Section 4)
• We conduct extensive experiments to demonstrate the
effectiveness of k-SIR as well as the efficiency and scal-
ability of our proposed algorithms for k-SIR processing.
(Section 5)

2 RELATEDWORK
SearchMethods for Social Streams.Manymethods have been
proposed for searching on social streams. Here, we categorize
existing methods into two types: keyword-based approaches and
topic-based approaches.

Keyword-based approaches [7–9, 17, 28, 33, 37, 40] typically
define top-k queries to retrieve k elements with the highest scores

as the results where the scoring functions combine the relevance
to query keywords (measured by TF-IDF or BM25) with other
contexts such as freshness [17, 28, 33, 37], influence [8, 37], and
diversity [9]. They also design different indices to support instant
updates and efficient top-k query processing. However, keyword
queries are substantially different from the k-SIR query and thus
keyword-based methods cannot be trivially adapted to process
k-SIR queries based on topic modeling.

As the metrics for textual relevance cannot fully represent
the semantic relevance between user interest and text, recent
work [19, 39] introduces topic models [5] into social search,
where user queries and elements are modeled as vectors in the
topic space. The relevance between a query and an element is
measured by cosine similarity. They define top-k relevance query
to retrieve k most relevant elements to a query vector. However,
existing methods typically consider the relevance of results but
ignore the representativeness. Therefore, the algorithms in [19, 39]
cannot be used to process k-SIR queries that emphasize the repr-
esentativeness of results.

Social Stream Summarization. There have been extensive
studies on social stream summarization [1, 4, 23, 25–27, 29, 36] :
the problem of extracting a set of representative elements from
social streams. Shou et al. [27, 36] propose a framework for so-
cial stream summarization based on dynamic clustering. Ren et
al. [26] focus on the personalized summarization problem that
takes users’ interests into account. Olariu [23] devise a graph-
based approach to abstractive social summarization. Bian et al. [4]
study the multimedia summarization problem on social streams.
Ren et al. [25] investigate the multi-view opinion summariza-
tion of social streams. Agarwal and Ramamritham [1] propose
a graph-based method for contextual summarization of social
event streams. Nguyen et al. [31] consider maintaining a sketch
for a social stream to best preserve the latent topic distribution.

However, the above approaches cannot be applied to ad-hoc
query processing because they (1) do not provide the query inter-
face and (2) are not efficient enough. For each query, they need
to filter out irrelevant elements and invoke a new instance of the
summarization algorithm to acquire the result, which often takes
dozens of seconds or even minutes. Therefore, it is unrealistic to
deploy a summarization method on a social platform for ad-hoc
queries since thousands of users could submit different queries at
the same time and each query should be processed in real-time.

Submodular Maximization. Submodular maximization has
attracted a lot of research interest recently for its theoretical
significance and wide applications. The standard approaches to
submodular maximization with a cardinality constraint are the
greedy heuristic [22] and its improved version CELF [16], both
of which are (1− 1

e )-approximate. Badanidiyuru and Vondrak [3]
propose several approximation algorithms for submodular maxi-
mization with general constraints. Kumar et al. [15] and Badani-
diyuru et al. [2] study the submodular maximization problem
in the distributed and streaming settings. Epasto et al. [12] and

182



Wang et al. [34] further investigate submodular maximization in
the sliding window model. However, the above algorithms do not
utilize any indices for acceleration and thus they are much less
efficient for k-SIR processing than MTTS and MTTD proposed
in this paper.

3 PROBLEM FORMULATION
3.1 Data Model
Social Element. A social element e is represented as a triple
⟨ts,doc, re f ⟩, where e .ts is the timestamp when e is posted, e .doc
is the textual content of e denoted by a bag of words drawn from
a vocabulary V indexed by {1, . . . ,m} (m = |V|), and e .re f
is the set of elements referred to by e . Given two elements e
and e ′ (e ′.ts < e .ts), if e refers to e ′, i.e., e ′ ∈ e .re f , we say
e ′ influences e , which is denoted as e ′ { e . In this way, the
attribute re f captures the influence relationships between social
elements [30, 35]. If e is totally original, we set e .re f = �. For
example, tweets on Twitter shown in Table 1 are typical social
elements and the propagation of hashtags can be modeled as
references [18, 30]. Note that the influence relationships vary for
different types of elements, e.g., “cite” between academic papers
and “comment” on Reddit can also be modeled as references.

Social Stream. We consider social elements arrive continu-
ously as a data stream. A social stream E comprises a sequence
of elements indexed by {1, 2, 3, . . .}. Elements are ordered by
timestamps and multiple elements with the same timestamp may
arrive in an arbitrary manner. Furthermore, social streams are
time-sensitive: elements posted or referred to recently are more
important and interesting to users than older ones. To capture
the freshness of social streams, we adopt the well-recognized
time-based sliding window [11] model. Given the window length
T , a sliding windowWt at time t comprises the elements from
time t −T + 1 toT , i.e.,Wt = {e ∈ E |e .ts ∈ [t −T + 1, t]}. The set
of active elements At at time t includes not only the elements in
Wt but also the elements referred to by any element inWt , i.e.,
At = Wt ∪ {e

′ ∈ E |e ∈ Wt ∧ e
′ ∈ e .re f }. We use nt = |At | to

denote the number of active elements at time t .
Topic Model.We use probabilistic topic models [5] such as

LDA [6] and BTM [38] to measure the (semantic and influential)
representativeness of elements and the preferences of users. A
topic model Θ = {θ1, . . . , θz } consisting of z topics is trained
from the corpus E = {e .doc |e ∈ E} and the vocabulary V .
Each topic θi is a multinomial distribution over the words in
V , where pi (w) is the probability of a wordw distributed on θi
and

∑
w ∈V pi (w) = 1. The topic distribution of an element e is a

multinomial distribution over the topics in Θ, where pi (e) is the
probability that e .doc is generated from θi and

∑z
i=1 pi (e) = 1.

The selection of appropriate topic models is orthogonal to our
problem. In this work, we consider any probabilistic topic model
can be used as a black-box oracle to provide pi (w),∀w ∈ V and
pi (e),∀e ∈ E. Note that the evolution of topic distribution is
typically much slower than the speed of social stream [38, 41]. In
practice, we assume that the topic distribution remains stable for
a period of time. We need to retrain the topic model from recent
elements when it is outdated due to concept drift.

3.2 Query Definition
Query Vector. Given a topic model Θ of z topics, we use a z-
dimensional vector x = {x1, . . . , xz } to denote a user’s preference
on topics. Formally, x ∈ [0, 1]z and, xi indicates the user’s degree
of interest onθi .W.l.o.g., x is normalized to

∑z
i=1 xi = 1. Since it is

impractical for users to provide the query vectors directly for their
lack of knowledge about the topic model Θ, we design a scheme
to transform the standard query-by-keyword [17] paradigm in
our case: the keywords provided by a user is treated as a pseudo-
document and the query vector is inferred from its distribution
over the topics in Θ. Note that other query paradigms can also be
supported, e.g., the query-by-document [39] paradigm where a
document is provided as a query and the personalized search [19]
where the query vector is inferred from a user’s recent posts.

Definition of Representativeness. Given a set of elements
S and a query vector x, the representativeness of S w.r.t. x at time
t is defined by a function f (·, ·) : 2 |E | × [0, 1]z → R≥0 that
maps any subset of E to a nonnegative score w.r.t. a query vector.
Formally, we have

f (S, x) =
z∑
i=1

xi · fi (S) (1)

where fi (S) is the score of S on topic θi . Intuitively, the overall
score of S w.r.t. x is the weighted sum of its scores on each topic.
The score fi (S) on θi is defined as a linear combination of its
semantic and influence scores. Formally,

fi (S) = λ · Ri (S) +
1 − λ
η
· Ii ,t (S) (2)

where Ri (S) is the semantic score of S on θi , Ii ,t (S) is the influ-
ence score of S on θi at time t , λ ∈ [0, 1] specifies the trade-off
between semantic and influence scores, and η > 0 adjusts the
ranges of Ri (·) and Ii ,t (·) to the same scale. Next, we will intro-
duce how to compute the semantic and influence scores based
on the topic model Θ respectively.

Topic-specific Semantic Score. Given a topic θi , we define
the semantic score of a set of elements by the weighted word
coverage model. We first define the weight of a wordw in e .doc
on θi . According to the generative process of topic models [5],
the probability pi (w, e) that w ∈ e .doc is generated from θi is
denoted as pi (w, e) = pi (w) ·pi (e). Following [31, 42], the weight
σi (w, e) ofw in e .doc on θi can be defined by its frequency and
information entropy, i.e.,σi (w, e) = −γ (w, e)·pi (w, e)·logpi (w, e),
where γ (w, e) is the frequency ofw in e .doc . Then, the semantic
score of e on θi is the sum of the weights of distinct words in
e .doc , i.e., Ri (e) =

∑
w ∈Ve σi (w, e) where Ve is the set of distinct

words in e .doc . We extend the definition of semantic score to an
element set by handling the word overlaps. Given a set S and a
wordw , ifw appears in more than one element of S , its weight is
computed only once for the element e with the maximum σi (w, e).
Formally, the semantic score of S on θi is defined by

Ri (S) =
∑
w ∈VS

max
e ∈S

σi (w, e) (3)

whereVS = ∪e ∈SVe . Equation 3 aims to select a set of elements to
maximally cover the important words on θi so as to best preserve
the information of θi . Additionally, it implicitly captures the
diversity issue because adding highly similar elements to S brings
little increase in Ri (S).

Example 3.1. Table 1 gives a social stream extracted from
the tweets in Figure 1 and a topic model on the vocabulary
of elements in the stream. We demonstrate how to compute
the semantic score R2(S) where S = {e2, e7} on θ2. The fre-
quency of each word in any element is 1. The set of words in S is
VS = {w4,w9,w11}. The wordw9 only appears in e2. Its weight is
σ2(w9, e2) = 0.15. The wordsw4,w11 appear in both elements. As
σ2(w4, e2) = 0.18 > σ2(w4, e7) = 0.17 and σ2(w11, e2) = 0.20 >

183



Table 1: Example for social stream and topic model
(a) Elements extracted from tweets in Figure 1

Elem ID Time Words θ1 θ2 References
e1 1 w1,w6,w8,w14,w16 0.2 0.8 �

e2 2 w4,w9,w11 0.26 0.74 �

e3 3 w3,w5,w10,w13 0.89 0.11 �

e4 4 w7,w10 1 0 e3
e5 5 w6,w8,w16 0.29 0.71 e1
e6 6 w2,w7,w10,w12 0.7 0.3 e3
e7 7 w4,w11 0.33 0.67 e2
e8 8 w10,w11,w15 0.51 0.49 e2, e3, e6

(b) Topic-Word distribution – I

Word ID Word θ1 θ2
w1 asroma 0 0.03
w2 assist 0.06 0.04
w3 cavs 0.09 0
w4 champion 0.1 0.09
w5 defeat 0.05 0.04
w6 final 0.11 0.12
w7 lebron 0.12 0
w8 lfc 0 0.06

(c) Topic-Word distribution – II

Word ID Word θ1 θ2
w9 manutd 0 0.07
w10 nbaplayoffs 0.11 0
w11 pl 0 0.11
w12 point 0.15 0.14
w13 raptors 0.08 0
w14 realmadrid 0 0.07
w15 schedule 0.13 0.12
w16 ucl 0 0.11

σ2(w11, e7) = 0.19, σ2(w4, e2) and σ2(w11, e2) are the weights of
w4 andw11 for S . Finally, we sum up the weights of each word in
VS and get R2(S) = 0.53. In this example, e7 has no contribution
to the semantic score because all words in e7 are covered by e2.

Topic-specificTime-critical Influence Score.Given a topic
θi and two elements e ′, e ∈ E (e ′ ∈ e .re f ), the probability of in-
fluence propagation from e ′ to e on θi is defined by pi (e ′ { e) =
pi (e

′) · pi (e). Furthermore, the probability of influence propaga-
tion from a set of elements S to e on θi is defined by pi (S { e) =
1−

∏
e ′∈S∩e .r ef

(
1−pi (e ′ { e)

)
. We assume the influences from

different precedents to e are independent of each other and adopt
the probabilistic coverage model to compute the influence prob-
ability from a set of elements to an element. To select recently
trending elements, we define the influence score in the sliding
window model where only the references observed withinWt
are considered. Let It (e ′) = {e |e ′ ∈ e .re f ∧ e ∈ Wt } be the set
of elements influenced by e ′ at time t and It (S) = ∪e ′∈S It (e ′) be
the set of elements influenced by S at time t . The influence score
of S on θi at time t is defined by

Ii ,t (S) =
∑

e ∈It (S )

pi (S { e) (4)

Equation 4 tends to select a set of influential elements on θi at
time t . The value ofIi ,t (S)will increase greatly only if an element
e is added to S such that e is relevant to θi itself and e is referred
to by many elements on θi withinWt .

Example 3.2. We compute the influence score I2,8(S) of S =
{e2, e3} in Table 1 on θ2 at time t = 8. We consider the window
lengthT = 4 andWt = {e5, e6, e7, e8}. I8(S) at time 8 is {e6, e7, e8}
and e4 expires at time 8. First, p2(S { e6) = p2(e3 { e6) = 0.03.
Similarly, p2(S { e7) = p2(e2 { e7) = 0.50. For e8, we have
p2(S { e8) = 1 −

(
1 − p2(e2 { e8)

)
·
(
1 − p2(e3 { e8)

)
= 0.40.

Finally, we acquire I2,8(S) = 0.03 + 0.5 + 0.4 = 0.93. We can
see, although e3 is referred to by several elements, its influence
score on θ2 is low because e3 and the elements referring to it are
mostly on θ1.

Query Definition.We formally define the Semantic and In-
fluence aware k-Representative (k-SIR) query to select a set of
elements S with the maximum representativeness score w.r.t. a
query vector from a social stream. We have two constraints on
the result of k-SIR query S : (1) its size is restricted to k ∈ Z+, i.e.,
S contains at most k elements, to avoid overwhelming users with
too much information; (2) the elements in S must be active at
time t , i.e., S ⊆ At , to satisfy the freshness requirement. Finally,
we define a k-SIR query qt (k, x) as follows.

Definition 3.3 (k-SIR). Given the set of active elements At
and a vector x, a k-SIR query qt (k, x) returns a set of elements

S∗ ⊆ At with a bounded size k such that the scoring function
f (·, x) is maximized, i.e., S∗ = argmaxS ⊆At : |S | ≤k f (S, x), where
S∗ is the optimal result for qt (k, x) and OPT = f (S∗, x) is the
optimal representativeness score.

Example 3.4. We consider two k-SIR queries on the social
stream in Table 1. We set λ = 0.5, η = 2 in Equation 2 and
the window length T = 4. At time 8, the set of active elements
At contains all except e4. Given a k-SIR query q8(2, x1) where
x1 = (0.5, 0.5) (a user has the same interest on two topics), S∗ =
{e1, e3} is the query result and OPT = f (S∗, x1) = 0.65. We can
see e3, e1 obtain the highest scores on θ1, θ2 respectively and they
collectively achieve the maximum score w.r.t. x1. Given an k-SIR
query q8(2, x2) where x2 = (0.1, 0.9) (the user prefers θ2 to θ1),
the query result is S∗ = {e1, e2} and OPT = 0.94. e3 is excluded
because it is mostly distributed on θ1.

3.3 Properties and Challenges
Properties of k-SIR Queries. We first show the monotonicity
and submodularity of the scoring function f (·, ·) for k-SIR query
by proving that both the semantic function Ri (·) and the influ-
ence function Ii ,t (·) are monotone and submodular.

Definition 3.5 (Monotonicity & Submodularity). A functionд(·) :
2 |E | → R≥0 on the power set of E is monotone iff д(S ∪ {e}) ≥
д(S) for any e ∈ E \ S and S ⊆ E. The function д(·) is submodular
iff д(S ∪ {e}) − д(S) ≥ д(T ∪ {e}) − д(T ) for any S ⊆ T ⊆ E and
e ∈ E \T .

Lemma 3.6. Ri (·) is monotone and submodular for i ∈ [1, z].

Lemma 3.7. Ii ,t (·) is monotone and submodular for i ∈ [1, z] at
any time t .

The proofs are given in Appendices A.1 and A.2.
Given a query vector x, the scoring function f (·, x) is a non-

negative linear combination of Ri (·) and Ii ,t (·). Therefore, f (·, x)
is monotone and submodular.

Challenges of k-SIRQueries. In this paper, we consider that
the elements arrive continuously over time. We always maintain
the set of active elementsAt at any time t . It is required to provide
the result for any ad-hoc k-SIR query qt (k, x) in real-time.

The challenges of processing k-SIR queries in such a scenario
are two-fold: (1) NP-hardness and (2) dynamism. First, the follow-
ing theorem shows the k-SIR query is NP-hard.

Theorem 3.8. It is NP-hard to obtain the optimal result S∗ for
any k-SIR query qt (k, x).

The weighted maximum coverage problem can be reduced to k-
SIR query when λ = 1 in Equation 2. Meanwhile, the probabilistic
coverage problem is a special case of k-SIR query when λ = 0 in

184



Table 2: Frequently Used Notations

Notation Description

E , e , ei
E = {e1, . . . , en } is a social stream; e is an arbitrary
element in E ; ei is the i-th element in E .

T ,Wt , At
T is the window length;Wt is the sliding window at
time t ; At is the set of active elements at time t .

Θ, θi Θ is a topic model; θi is the i-th topic in Θ.
x, xi x is a z-dimensional vector; xi is the i-th entry of x.

Ri (·), Ii ,t (·)
Ri (·) is the semantic function on θi ; Ii ,t (·) is the influ-
ence function on θi at time t .

fi (·), f (·, ·)
fi (·) is the representativeness scoring function on θi ;
f (·, ·) is the scoring function w.r.t. a query vector.

qt (k , x)
qt (k , x) is a k -SIR query at time t with a bounded result
size k and a query vector x.

S∗, OPT
S∗ is the optimal result for qt (k , x); OPT = f (S∗, x) is
the optimal representativeness score.

δi (e), δ (e , x)
δi (e) = fi ({e }) is the score of e on θi ; δ (e , x) =
f ({e }, x) is the score of e w.r.t. x.

∆(e |S )
∆(e |S ) = f (S ∪ {e }, x) − f (S , x) is the marginal score
gain of adding e to S .

RLi
RLi is the ranked list maintained for the elements on
topic θi .

Equation 2. Because both problems are NP-hard [13], the k-SIR
query is NP-hard as well.

In spite of this, existing algorithms for submodular maximiza-
tion [22] can provide results with constant approximations to
the optimal ones for k-SIR queries due to the monotonicity and
submodularity of the scoring function. For example, CELF [16] is
(1 − 1

e )-approximate for k-SIR queries while SieveStreaming [2]
is ( 12 − ε)-approximate (for any ε > 0). However, both algorithms
cannot fulfill the requirements for real-time k-SIR processing ow-
ing to the dynamism of k-SIR queries. The results of k-SIR queries
not only vary with query vectors but also evolve over time for
the same query vector due to the changes in active elements
and the fluctuations in influence scores over the sliding window.
To process one k-SIR query qt (k, x), CELF and SieveStreaming
should evaluate f (·, x) for O(k · nt ) and O( logkε · nt ) times re-
spectively. Empirically, they often take several seconds for one
k-SIR query when the window length is 24 hours. To the best of
our knowledge, none of the existing algorithms can efficiently
process k-SIR queries. Thus, we are motivated to devise novel
real-time solutions for k-SIR processing over social streams.

Before moving on to the section for k-SIR processing, we
summarize the frequently used notations in Table 2.

4 QUERY PROCESSING
In this section, we introduce the methods to process k-SIR queries
over social streams. The architecture is illustrated in Figure 4.
At any time t , we maintain (1) Active Window to buffer the
set of active elements At , (2) Ranked Lists RL1, . . . ,RLz to sort
the lists of elements on each topic of Θ in descending order of
topic-wise representativeness score, and (3) Query Processor
to leverage the ranked lists to process k-SIR queries. In addition,
when the topic model is given, the query and topic inferences
become rather standard (e.g., Gibbs sampling [21]), and thus we
do not discuss these procedures here for space limitations. We
consider the query vectors and the topic vectors of elements have
been given in advance.

As shown in Figure 4, we process a social stream E in a batch
manner. E is partitioned into buckets with equal time length

Ranked Lists

Query Processor

Users

Query Inference Result

Sliding Window

… … … … … …

RL RL
z

… … … … … … …

Time

RL! RL"# 

… … … …

Active Window Topic 

Inference

Figure 4: The architecture for k-SIR query processing

L ∈ Z+ and updated at discrete time L, 2L, . . . until the end time
of the stream tn . When the window slides at time t , a bucket Bt
containing the elements between time t − L + 1 to t is received.
After inferring the topic vector of each e ∈ Bt with the topic
model, we first update the active window. The elements in Bt are
inserted into the active window and the elements referred to by
them are updated. Then, the elements that are never referred
to by any element after time t − T + 1 are discarded from the
active window. Subsequently, the ranked list RLi on each topic
θi is maintained for Bt . The detailed procedure for ranked lists
maintenance will be presented in Section 4.1.

Next, let us discuss the mechanism of k-SIR processing. One
major drawback of existing submodular maximization methods,
e.g., CELF [16] and SieveStreaming [2], on processing k-SIR
queries is that they need to evaluate every active element at
least once. However, real-world datasets often have two charac-
teristics: (1) The scores of elements are skewed, i.e., only a few
elements have high scores. For example, we compute the scores
of a sample of tweets w.r.t. a k-SIR query and scale the scores
linearly to the range of 0 to 1. The statistics demonstrate that
only 0.4% elements have scores of greater than 0.9 while 91%
elements have scores of less than 0.1. (2) One element can only be
high-ranked in very few topics, i.e., one element is about only one
or two topics. In practice, we observe that the average number of
topics per element is less than 2. Therefore, most of the elements
are not relevant to a specific k-SIR query. We can greatly improve
the efficiency by avoiding the evaluations for the elements with
very low chances to be included into the query result. To prune
these unnecessary evaluations, we leverage the ranked lists to
sequentially evaluate the active elements in decreasing order
of their scores w.r.t. the query vector. In this way, we can track
whether unevaluated elements can still be added to the query
result and terminate the evaluations as soon as possible.

Although such a method to traverse the ranked lists is similar
to the one for top-k query [39], the procedures for maintain-
ing the query results are totally different. A top-k query simply
returns k elements with the maximum scores as the result for a k-
SIR query. Although the top-k result can be retrieved efficiently
from the ranked lists using existing methods [39], its quality
for k-SIR queries is suboptimal because the word and influence
overlaps are ignored. Thus, we will propose theMulti-Topic Th-
resholdStream (MTTS) and Multi-Topic ThresholdDescend
(MTTD) algorithms for k-SIR processing in Sections 4.2 and 4.3.
They can return high-quality results with constant approxima-
tion guarantees for k-SIR queries while meeting the real-time
requirements.

185



Algorithm 1: Ranked List Maintenance
Input: A social stream E, the window length T , and the

bucket length L
1 t ← 0, initialize an empty ranked list RLi for i ∈ [1, z];
2 while t ≤ tn do
3 t ← t + L,Bt ← {e ∈ E |e .ts ∈ [t − L + 1, t]};
4 foreach e ∈ Bt do
5 foreach i : pi (e) > 0 do
6 δi (e) ← Ri (e), te ← e .ts;
7 create a tuple ⟨δi (e), te ⟩ and insert it into RLi ;
8 foreach e ′ ∈ e .re f do
9 foreach i : pi (e ′) > 0 ∧ pi (e) > 0 do
10 δi (e

′) ← fi ({e
′}), te ′ ← e .ts;

11 adjust the position of ⟨δi (e ′), te ′⟩ in RLi ;
12 foreach e : e is never referred to after t −T + 1 do
13 delete the tuples of e from RLi with pi (e) > 0;

4.1 Ranked List Maintenance
In this subsection, we introduce the procedure for ranked list
maintenance. Generally, a ranked list RLi keeps a tuple for each
active element on topic θi . A tuple for element e is denoted as
⟨δi (e), te ⟩ where δi (e) = fi ({e}) is the topic-wise representati-
veness score of e on θi and te is the timestamp when e is last
referred to. All tuples in RLi are sorted in descending order of
topic-wise score.

The algorithmic description of ranked list maintenance over
a social stream is presented in Algorithm 1. Initially, an empty
ranked list is initialized for each topic θi in the topic model
Θ (Line 1). At discrete timestamps t = L, 2L, . . . until tn , the
ranked lists are updated according to a bucket of elements Bt .
For each element e in Bt , a tuple ⟨δi (e), te ⟩ is created and in-
serted into RLi for every topic θi with pi (e) > 0 (Lines 4–7).
The score δi (e) is Ri (e) because the elements influenced by e
have not been observed yet. The time te when e is last referred
to is obviously e .ts . Subsequently, it recomputes the influence
score Ii ,t (e ′) for each parent e ′ of e . After that, it updates the
tuple ⟨δi (e ′), te ′⟩ by setting δi (e ′) to fi ({e

′}) and te ′ to e .ts . The
position of ⟨δi (e ′), te ′⟩ in RLi is adjusted according to the up-
dated δi (e ′) (Lines 8–11). Finally, we delete the tuples for expired
elements from RLi (Lines 12–13).

Complexity Analysis. The cost of evaluating δi (e) for any
element e is O(l) where l = maxe ∈At (|Ve | + |It (e)|). Then, the
complexity of inserting a tuple into RLi is O(lognt ). For each
e ′ ∈ e .re f , the complexity of re-evaluating Ii ,t (e ′) is also O(l).
Overall, the complexity of maintaining RLi for element e is
O
(
P(l + lognt )

)
where P = maxe ∈At |e .re f |. As the tuples for

e may appear in O(z) ranked lists, the time complexity of ranked
list maintenance for element e is O

(
zP(l + lognt )

)
.

Operations for Ranked List Traversal.We need to access
the tuples in each ranked list RLi in decreasing order of topic-wise
score for k-SIR processing. Two basic operations are defined to
traverse the ranked list RLi : (1) RLi .first to retrieve the element
w.r.t. the first tuple with the maximum topic-wise score from RLi ;
(2) RLi .next to acquire the element w.r.t. the next unvisited tuple
in RLi from the current one. Note that once a tuple for element e
has been accessed in one ranked list, the remaining tuples for e
in the other lists will be marked as “visited” so as to eliminate
duplicate evaluations for e .

Algorithm 2:Multi-Topic ThresholdStream
Input: The ranked list RLi for each i ∈ [1, z] and a k-SIR

query qt (k, x)
Parameter: ε ∈ (0, 1)
Result: Sts for qt (k, x)

1 Φ = {(1 + ε)j |j ∈ Z}, foreach ϕ ∈ Φ do Sϕ ← �;
2 foreach i ∈ [1, z] : xi > 0 do e(i) ← RLi .first;
3 δmax , TH← 0 and UB(x) ←

∑z
i=1 xi · δi (e

(i));
4 while UB(x) ≥ TH do
5 i∗ ← argmaxi ∈[1,z] xi · δi (e(i)), e ← e(i

∗);
6 δ (e, x) ←

∑z
i=1 xi · δi (e);

7 if δ (e, x) > δmax then δmax ← δ (e, x);
8 Φ = {(1 + ε)j |j ∈ Z ∧ δmax ≤ (1 + ε)j ≤ 2 · k · δmax };
9 delete Sϕ if ϕ < Φ;

10 foreach ϕ ∈ Φ do
11 if δ (e, x) ≥ ϕ

2k ∧ |Sϕ | < k then
12 if ∆(e |Sϕ ) ≥

ϕ
2k then Sϕ ← Sϕ ∪ {e};

13 e(i
∗) ← RLi∗ .next;

14 TH← minϕ∈Φ: |Sϕ |<k
ϕ
2k , UB(x) ←

∑z
i=1 xi · δi (e

(i));
15 return Sts ← argmaxϕ∈Φ f (Sϕ , x);

4.2 Multi-Topic ThresholdStream Algorithm
In this subsection, we present the MTTS algorithm for k-SIR
processing. MTTS is built on two key ideas: (1) a thresholding
approach [15] to submodular maximization and (2) a ranked list
based mechanism for early termination. First, given a k-SIR query,
the thresholding approach always tracks its optimal representat-
iveness score OPT. It establishes a sequence of candidates with
different thresholds within the range of OPT. For any element e ,
each candidate determines whether to include e independently
based on e’s marginal gain and its threshold. Second, to prune
unnecessary evaluations, MTTS utilizes ranked lists to sequen-
tially feed elements to the candidates in decreasing order of score.
It continuously checks the minimum threshold for an element
to be added to any candidate and the upper-bound score of un-
evaluated elements. MTTS is terminated when the upper-bound
score is lower than the minimum threshold. After termination,
the candidate with the maximum score is returned as the result
for the k-SIR query.

The algorithmic description of MTTS is presented in Algo-
rithm 2. The initialization phase is shown in Lines 1–3. Given a
parameter ε ∈ (0, 1), MTTS establishes a geometric progression
Φwith common ratio (1+ε) to estimate the optimal score OPT for
qt (k, x). Then, it maintains a candidate Sϕ initializing to � for
each ϕ ∈ Φ. The threshold for Sϕ is ϕ

2k . The traversal of ranked
lists starts from the first tuple of each list. We use e(i) to denote
the element corresponding to the current tuple from RLi . MTTS
keeps 3 variables: (1) δmax to store the maximum score w.r.t. x
among the evaluated elements, (2) TH to maintain the minimum
threshold for an element to be added to any candidate, and 3)
UB(x) to track the upper-bound score for any unevaluated ele-
ment w.r.t. x. Specifically, TH is the threshold ϕ

2k of the unfilled
candidate Sϕ (i.e., |Sϕ | < k) with the minimum ϕ. We set TH = 0
before the evaluation. If δ (e, x) < TH, e can be safely excluded
from evaluation. In addition, for any unevaluated element e , it
holds that δi (e) ≤ δi (e

(i)) because the tuples in RLi are sorted

186



e3 <0.65,8>

e6 <0.48,8>

e8 <0.17,8>

e2 <0.10,8>

e7 <0.06,5>

e1 <0.06,7>

e5 <0.05,5>

RL1

e1 <0.56,5>

e2 <0.48,8>

e5 <0.27,5>

e7 <0.18,7>

e8 <0.16,8>

e6 <0.13,8>

e3 <0.03,8>

RL2

e3 <0.65,8>

e6 <0.48,8>

e8 <0.17,8>

e2 <0.10,8>

e7 <0.06,5>

e1 <0.06,7>

e5 <0.05,5>

RL1

e1 <0.56,5>

e2 <0.48,8>

e5 <0.27,5>

e7 <0.18,7>

e8 <0.16,8>

e6 <0.13,8>

e3 <0.03,8>

RL2

UB  = 0.52 > TH = 0.09

! " #$ %(#$,  )

-4 0.35 {e&} 0.34

-3 0.46 {e&} 0.34

-2 0.59 {e&} 0.34

-1 0.77 {e&} 0.34

0 1 {e&} 0.34

1 1.3 {'*} 0.34

UB  = 0.22 < TH = 0.33

(a) Evaluating e3 (b) Evaluating e6,e2

! " #$ %(#$ ,  )

-4 0.35 {e+, e&} 0.65

-3 0.46 {e+, e&} 0.65

-2 0.59 {e+, e&} 0.65

-1 0.77 {e+, e&} 0.65

0 1 {-/, -*} 0.65

1 1.3 {1&} 0.34

Figure 5: Example for k-SIR processing using MTTS.

by topic-wise score. Thus, UB(x) =
∑z
i=1 xi · δi (e

(i)) can be used
as the upper-bound score of unevaluated elements w.r.t. x.

After the initialization phase, the elements are sequentially
retrieved from the ranked lists and evaluated by the candidates
according to Lines 4–14. At each iteration, MTTS selects an ele-
ment e(i∗) with the maximum xi · δi (e

(i)) as the next element e
for evaluation (Line 5). Subsequently, the candidate maintenance
procedure is performed following Lines 6–9. It first computes the
score δ (e, x) of e w.r.t. x. Second, it updates the maximum score
δmax . Third, the range of OPT is adjusted to [δmax , 2 · k · δmax ].
Fourth, it deletes the candidates out of the range for OPT. Next,
each candidate Sϕ determines whether to add e independently
according to Lines 10–12. If δ (e, x) < ϕ

2k or Sϕ has contained k
elements, e will be ignored by Sϕ . Otherwise, the marginal gain
∆(e |Sϕ ) = f (Sϕ ∪{e}, x)− f (Sϕ , x) of adding e to Sϕ is evaluated.
If ∆(e |Sϕ ) reaches

ϕ
2k , e will be added to Sϕ . Finally, it obtains the

next element in RLi∗ as e(i
∗) and updates TH, UB(x) accordingly

(Lines 13 and 14). The evaluation procedure will be terminated
when UB(x) < TH because δ (e ′, x) ≤ UB(x) < TH is satisfied for
any unevaluated element e ′, which can be safely pruned. Finally,
MTTS returns the candidate with the maximum score as the
result for qt (k, x) (Line 15).

Example 4.1. Following the example in Table 1, we show how
MTTS processes a k-SIR query q8(2, x) where x = (0.5, 0.5) in
Figure 5. We set ε = 0.3 in this example.

First of all, the traversals of RL1 and RL2 start from e3 and
e1 respectively. Initially, we have UB(x) = 0.61 and TH = 0.
Then, the first element to evaluate is e3 because x1 · δ1(e3) =
0.33 > x2 · δ2(e1) = 0.28. As δ (e3, x) = 0.34, the range of OPT is
[0.34, 1.36]. We have 0.34 ≤ 1.3−4 ≤ . . . ≤ 1.31 ≤ 1.36 and 6
candidates with j ∈ [−4, 1] are maintained. e3 can be added to
each of the candidates. After that, e6 is the next element from
RL1. UB(x) and TH are updated to 0.52 and 0.09 respectively. The
second element to evaluate is e1 from RL2. As δ (e1, x) = 0.31, the
candidate with j = 1 directly skips e1 for δ (e1, x) < ϕ

2k = 0.33.
Other candidates include e1 as ∆(e1 |Sϕ ) ≥

ϕ
2k . Then, e2 is the

next element from RL2. UB(x) decreases to 0.48while TH increases
to 0.33. Subsequently, e6, e2 are retrieved but skipped by all can-
didates. After evaluating e2, UB(x) decreases to 0.22 and is lower
than TH. Thus, no more evaluation is needed and Sts = {e1, e3}
is returned as the result for q8(2, x).

The approximation ratio of MTTS is given in Theorem 4.2.

Theorem 4.2. Sts returned by MTTS is a ( 12 −ε)-approximation
result for any k-SIR query.

The proof is given in Appendix A.3.
Complexity Analysis. The number of candidates in MTTS

is O( logkε ) as the ratio between the lower and upper bounds for
OPT is O(k). The complexity of retrieving an element from ranked
lists is O(lognt ). The complexity of evaluating one element for
a candidate is O(ld) where l = maxe ∈At (|Ve | + |It (e)|) and d
is the number of non-zero entries in the query vector x. Thus,
the complexity of MTTS to evaluate one element is O(lognt +
ld logk

ε ). Overall, the time complexity of MTTS is O
(
n′t (lognt +

ld logk
ε )

)
where n′t is the number of elements evaluated by MTTS.

4.3 Multi-Topic ThresholdDescend Algorithm
Although MTTS is efficient for k-SIR processing, its approxi-
mation ratio is lower than the the best achievable approxima-
tion guarantees, i.e., (1 − 1

e ) [13] for submodular maximization
with cardinality constraints. In addition, its result quality is also
slightly inferior to that of CELF. In this subsection, we propose
the Multi-Topic ThresholdDescend (MTTD) algorithm to im-
prove upon MTTS. Different from MTTS, MTTD maintains only
one candidate S from � to reduce the cost for evaluation. In ad-
dition, it buffers the elements that are retrieved from ranked lists
but not included into S so that these elements can be evaluated
more than once. This can lead to better quality as the chances of
missing significant elements are smaller. Specifically, MTTD has
multiple rounds of evaluation with decreasing thresholds. In the
round with threshold τ , each element e with δ (e, x) ≥ τ is con-
sidered and will be included to S once the marginal gain ∆(e |S)
reaches τ . When S contains k elements or τ is descended to the
lower bound, MTTD is terminated and S is returned as the result.
Theoretically, the approximation ratio of MTTD is improved to
(1 − 1

e − ε) but its worst-case complexity is higher than MTTS.
Despite this, the efficiency and result quality of MTTD are both
better than MTTS empirically.

The algorithmic description of MTTD is presented in Algo-
rithm 3. In the initialization phase (Lines 1–3), the candidate S and
the element buffer E ′ are both set to �. The traversals of ranked
lists are initialized in the same way as MTTS. The initial thresh-
old τ for the first round of evaluation is the upper-bound score
for any active element w.r.t. x and the termination threshold τ ′ is
0. After initialization, MTTD runs each round of evaluation with
threshold τ following Lines 4–11. It first retrieves the set of ele-
ments Eτ whose scores potentially reach τ from the ranked lists.
The method is shown in the procedure retrieve(τ) (Lines 13–
19), which generally uses the same idea as MTTS: it traverses
each ranked list sequentially in decreasing order of topic-wise
scores and continuously adds the element with the maximum
xi · δi (e

(i)) to Eτ until the upper-bound score UB(x) is decreased
to τ . After adding Eτ to the element buffer E ′, the evaluation
procedure is started (Lines 6–10). It always considers the element
e ′ ∈ E ′ \S with the maximum ∆e ′ . If the marginal gain ∆(e ′ |S) of
adding e ′ to S is at least τ , e ′ will be included into S and deleted
from E ′. When S has contained k elements, MTTD is directly
terminated and S is returned as the result Std for qt (k, x). The
round of evaluation is finished when no elements in E ′ could
achieve a marginal gain of τ . Next, the termination threshold τ ′
is updated and the threshold τ is descended by (1 − ε) times for
the subsequent round of evaluation. Finally, when τ is lower than

187



Algorithm 3:Multi-Topic ThresholdDescend
Input: The ranked list RLi for each i ∈ [1, z] and a k-SIR

query qt (k, x)
Parameter: ε ∈ (0, 1)
Result: Std for qt (k, x)

1 S, E ′ ← �;
2 foreach i ∈ [1, z] : xi > 0 do e(i) ← RLi .first;
3 τ ←

∑z
i=1 xi · δi (e

(i)), τ ′ ← 0;
4 while τ ≥ τ ′ do
5 Eτ ← retrieve(τ), E ′ ← E ′ ∪ Eτ ;
6 while ∃e ∈ E ′ \ S : ∆e ≥ τ do
7 e ′ ← argmaxe ∈E′\S ∆e ,∆e ′ ← ∆(e ′ |S);
8 if ∆e ′ ≥ τ then
9 S ← S ∪ {e ′}, E ′ ← E ′ \ {e ′};

10 if |S | = k then return Std ← S ;
11 τ ′ ← f (S, x) · εk , τ ← (1 − ε)τ ;
12 return Std ← S ;

13 Procedure retrieve(τ)
14 Eτ ← �, UB(x) ←

∑z
i=1 xi · δi (e

(i));
15 while UB(x) ≥ τ do
16 i∗ ← argmaxi ∈[1,z] xi · δi (e(i));
17 ∆e (i∗) ←

∑z
i=1 xi · δi (e

(i∗)), Eτ ← Eτ ∪ {e
(i∗)};

18 e(i
∗) ← RLi∗ .next, UB(x) ←

∑z
i=1 xi · δi (e

(i));
19 return Eτ ;

e3 <0.65,8>

e6 <0.48,8>

e8 <0.17,8>

e2 <0.10,8>

e7 <0.06,5>

e1 <0.06,7>

e5 <0.05,5>

RL1

e1 <0.56,5>

e2 <0.48,8>

e5 <0.27,5>

e7 <0.18,7>

e8 <0.16,8>

e6 <0.13,8>

e3 <0.03,8>

RL2

e3 <0.65,8>

e6 <0.48,8>

e8 <0.17,8>

e2 <0.10,8>

e7 <0.06,5>

e1 <0.06,7>

e5 <0.05,5>

RL1

e1 <0.56,5>

e2 <0.48,8>

e5 <0.27,5>

e7 <0.18,7>

e8 <0.16,8>

e6 <0.13,8>

e3 <0.03,8>

RL2

(a) Round 1 ( = 0.60) (b) Round 3 ( = 0.30)

! = ", # !, $ = 0

(ID, %&)

(e3, 0.34)

Buffered Elements E�

(ID, %&)

(e3, 0.34)    (e1, 0.31)

(e6, 0.30)    (e2, 0.29)

Buffered Elements E�

! = {'(, ')}, # !, $ = 0.65

Figure 6: Example for k-SIR processing using MTTD.

τ ′, no more rounds of evaluations are required. In this case, S
is returned as the result Std for qt (k, x) even though it contains
fewer than k elements (Line 12).

Example 4.3. In Figure 6, we illustrate the procedure forMTTD
to process a k-SIR query q8(2, x) where x = (0.5, 0.5) following
the example in Table 1. We also set ε = 0.3 in this example.

First, MTTD initializes the threshold τ = 0.60 for the first
round and the termination threshold τ ′ = 0. The candidate S and
the element buffer E ′ are initialized to �. In Round 1 and 2 with
τ = 0.60 and 0.42, MTTD retrieves 3 elements e3, e1, e6 from RL1
and RL2 and adds them to E ′. However, they are not evaluated
in the first two rounds because ∆e3 = 0.34, ∆e1 = 0.31, and
∆e6 = 0.30, all of which are smaller than 0.42. In Round 3 with
τ = 0.30, e2 is added to E ′. Then, e3 is added to S as ∆e3 = 0.34 >
τ . Furthermore, e1 is also added to S as ∆e1 = 0.31 > τ . At this
time, S = {e1, e3} has contained two elements. Therefore, MTTD
is terminated and no more rounds are needed. Std = {e1, e3} is
returned as the result for q8(k, x).

Table 3: Statistics of datasets

Dataset AMiner Reddit Twitter
Number of Elements 1.66M 20.2M 14.8M

Vocabulary Size 580K / 71K 2.8M / 88K 3.0M / 68K
Average Length 74.5 / 49.2 24.6 / 8.6 12.6 / 5.1

Average References 3.68 0.85 0.62

The approximation ratio of MTTD is given in Theorem 4.4.

Theorem 4.4. The result Std returned by MTTD is (1 − 1
e − ε)-

approximate for any k-SIR query.

The proof is given in Appendix A.4.
Complexity Analysis. Let τ0 be the threshold τ of the first

round in MTTD. The number of rounds in MTTD is at most
⌈log1−ε ( τ

′

τ0 )⌉. Because τ
′ = f (S, x) · εk ≥ δmax ·

ε
k and τ0 ≤

d ·δmax , we have τ0
τ ′ ≤

kd
ε and the number of rounds isO( log(kd )ε2 ).

In each round, it evaluates O(n′′t ) elements where n′′t is the
number of elements in the buffer E ′ of MTTD and the eval-
uation of an element is also O(ld). Here, we use a max-heap
for E ′ and thus it costs O(logn′′t ) to dequeue the top element
from E ′. In addition, the time for retrieving an element from
ranked lists is still O(lognt ). The complexity for each round is
O
(
n′′t · (ld + lognt )

)
. Therefore, the time complexity of MTTD

is O
(
n′′t · log(kd) · ε−2 · (ld + lognt )

)
.

5 EXPERIMENTS
In this section, we conduct extensive experiments to verify the
effectiveness of k-SIR query as well as the efficiency of MTTS
and MTTD for k-SIR processing. We first introduce the experi-
mental setup in Section 5.1. Then, we show the results for the
effectiveness of k-SIR query in Section 5.2. Finally, the results for
the efficiency and scalability of MTTS and MTTD are reported
in Section 5.3.

5.1 Experimental Setup
Dataset. Three real-world datasets used in the experiments are
listed as follows.
• AMiner [32] is a collection of academic papers published
in the ACM Digital Library till 2015. We assign random
timestamps to the papers published in the same year.
• Reddit1 is a collection of submissions and comments on
Reddit from June 01, 2014 to June 14, 2014.
• Twitter2 consists of the tweets collected via the streaming
API from July 14, 2017 to July 26, 2017.

The statistics of the datasets are given in Table 3. In the prepro-
cessing, we remove stop words and noise words from the textual
contents of elements. Note that we report the vocabulary size
and the average length of elements both before and after the
preprocessing.

Topic Model. We use LDA [6] to train topic models on the
corpora of AMiner and Reddit. PLDA [21] is the implementation
of LDA for training. For topic training on the corpus of Twitter,
we use the biterm topic model [38] (BTM) because it is designed
for short texts like tweets. The corpus of each dataset consists
of e .doc of each element e . To study how the number of topics z
affects the performance of compared methods, we train 5 topic
models for each dataset with z ranging from 50 to 250. Two
Dirichlet priors α, β are set to 50

z , 0.01 for both LDA and BTM.
1https://www.reddit.com/r/datasets
2https://developer.twitter.com/en/docs

188



The pre-trained topic models are loaded into memory and used
as a black-box oracle for each compared method.

Compared Methods. We compare the following methods in
Section 5.2 to evaluate the effectiveness of k-SIR query.
• Top-k Keyword Query (TF-IDF) retrieves k most rele-
vant elements to the query keywords. We adopt the log-
normalized TF-IDF weight to vectorize the elements and
queries. Cosine similarity is used as the similarity measure
between an element and a query.
• Diversity-aware Top-k Keyword Query [9] (DIV) con-
siders both textual relevance and result diversity. Given
a query q and a set of elements S , we have score(q, S) =
λ
∑
e ∈S rel(q, e) + (1 − λ)div(S), where rel(q, e) is the rel-

evance of e to q and div(S) is the average dissimilarity
between each pair of elements in S . We set λ = 0.3 follow-
ing [9]. A set ofk elements S with themaximum score(q, S)
is returned as the result for q.
• Sumblr [27] is a method for social stream summarization.
In our experiments, we use Sumblr for query processing
as follows: given a set of keywords, we select the elements
that contain at least one keyword as candidates. Then, we
run Sumblr on the candidates to generate a summary of k
elements as the query result. The parameters for k-means
clustering and LexRank are the same as [27].
• Top-k Relevance Query [39] (REL) measures the rele-
vance between an element and a query by topic modeling.
It returns k elements whose topic vectors have the highest
cosine similarities to the query vector as the result.
• k-SIR Query retrieves a set of elements S maximizing

f (S, x) w.r.t. a query vector x. The results of MTTD are
used in the effectiveness tests.

We note that TF-IDF, DIV, and Sumblr are keyword queries while
REL and k-SIR use query vectors inferred from topic models. To
compare them fairly, the queries are generated as follows: (1) draw
the keywords from the vocabulary; (2) acquire a query vector by
treating the keywords as a pseudo-document and inferring its
topic vector from the topic model. To retrieve the query results,
TF-IDF, DIV, and Sumblr receive the keywords while REL and
k-SIR receive the query vectors.

The following methods are compared in Section 5.3 to evaluate
their efficiency and scalability for k-SIR processing.
• CELF [16] is an improved version of the basic greedy algo-
rithm [22]. It is the most common batch algorithm for sub-
modular maximization and acquires (1− 1

e )-approximation
results for k-SIR queries. Note that (1 − 1

e ) is the best ap-
proximation ratio for this problem unless P=NP [13].
• SieveStreaming [2] is the state-of-the-art streaming al-
gorithm for submodular maximization. It returns ( 12 − ε)-
approximation results for k-SIR queries.
• Top-k Representative retrievesk elementswith the high-
est representativeness scores δ (e, x) w.r.t. a query vec-
tor x from ranked lists as the result, which is only 1

k -
approximate for k-SIR queries. We compare with it to
show that traditional methods for top-k queries cannot
work well for k-SIR queries.
• MTTS andMTTD are our proposed algorithms for k-SIR
processing based on ranked lists.

Query and Workload Generation. We generate a k-SIR
query as follows: (1) draw 1–5 words randomly from the vo-
cabulary; (2) acquire the query vector by inferring the topic
distribution of selected words from the topic model.

Table 4: Parameters in the experiments

Parameter Setting Default

the parameter ε in MTTS/MTTD 0.1 to 0.5 0.1
the result size k 5 to 25 10

the number of topics z 50 to 250 50
the window length T 6 hours to 30 hours 24 hours

In an experiment, we feed all elements in a dataset to compared
methods in ascending order of timestamp. The active window and
ranked lists perform batch-updates for each bucket of elements.
Then, the query workload is generated as follows: we generate
10Kk-SIR queries for each dataset and assign a random timestamp
in range [1, tn ] (tn is the end time of the stream) to each query.
The query results are retrieved at the assigned timestamps.

Parameter Setting. The parameters we examine in the ex-
periments are listed in Table 4. In addition, the factors λ,η in
Equation 2 are set to 0.5, 20 for the AMiner and Reddit datasets,
and 0.5, 200 for the Twitter dataset. The bucket length L is fixed
to 15 minutes.

Experimental Environment.All experiments are conducted
on a server running Ubuntu 16.04.3 LTS. It has an Intel Xeon
E7-4820 1.9GHz processor and 128 GB memory. All compared
methods are implemented in Java 8.

5.2 Effectiveness
To evaluate the effectiveness of our k-SIR query, we first conduct
a study on users’ satisfaction for the results returned by each
query method. We follow the methodology and procedure of
user study in previous work on social search [9]. The detailed
procedure is as follows.

First, we generate 20 queries by selecting 20 trending topics
on three datasets (e.g., “social media analysis” on AMiner, “NBA”
on Reddit, and “pop music” on Twitter) and use the topical words
of each topic as keywords. Second, we process these queries with
each method in the default setting and return a set of five ele-
ments as the results. Third, we recruit 30 volunteers who are not
related to this work and familiar with the query topics to evaluate
the result quality of compared methods. For each query, we ask 3
different evaluators to rank the quality of result sets and record
the average score on each aspect. Specifically, each evaluator is
requested to rank his/her satisfaction for the result sets on two
aspects: (1) representativeness: the relevance to query topic and
the information coverage on the query topic of its entirety (rank-
ing from “the least representative” to “the most representative”,
mapped to values 1 to 5); (2) impact: the number of citations,
comments, and retweets of selected elements (ranking from “the
lowest impact” to “the highest impact”, mapped to values 1 to 5).

The results of the user study are shown in Table 5. Follow-
ing [9], we measure the agreement between different users by
computing the Cohen’s linearly weighted kappa [10] for each
query on each aspect. The kappa values for representativeness
are between 0.5 and 0.89 (0.72 on average). The kappa values
for impact are in the range of 0.56–1.0 (0.79 on average). We
observe that k-SIR achieves the highest scores among compared
methods on both representativeness and impact in all datasets.
We also collect feedback from users for the reason of dissatisfac-
tion. “Low coverage” is the primary problem for TF-IDF and REL,
while “containing irrelevant elements” is the main reason why
the results of DIV and Sumblr are unsatisfactory.

189



Table 5: Results for user study

Method TF-IDF DIV Sumblr REL k-SIR

AMiner Represent. 2.28 1.56 3.72 2.78 4.67
Impact 2.39 1.44 4.01 2.39 4.78

Reddit Represent. 2.05 3.00 3.67 1.95 4.33
Impact 1.80 2.24 3.80 2.33 4.80

Twitter Represent. 1.79 2.38 4.08 2.08 4.67
Impact 1.58 2.25 4.01 2.34 4.88

Table 6: Results for quantitative analysis

Method TF-IDF DIV Sumblr REL k-SIR

AMiner Coverage 0.1968 0.1766 0.2140 0.2400 0.2663
Influence 0.0765 0.0777 0.5470 0.1159 0.8430

Reddit Coverage 0.2387 0.2050 0.2419 0.2885 0.3162
Influence 0.0175 0.0107 0.4315 0.0143 0.5862

Twitter Coverage 0.2200 0.2118 0.2213 0.2722 0.3052
Influence 0.0295 0.0296 0.1611 0.1268 0.6516

MTTD MTTS

0.1 0.2 0.3 0.4 0.5

ε

0

20

40

60

80

Q
u
e
ry

 T
im

e
 (

m
s
)

(a) AMiner

0.1 0.2 0.3 0.4 0.5

ε

0

20

40

60

80

Q
u
e
ry

 T
im

e
 (

m
s
)

(b) Reddit

0.1 0.2 0.3 0.4 0.5

ε

0

20

40

60

80

Q
u
e
ry

 T
im

e
 (

m
s
)

(c) Twitter

Figure 7: Query time with varying ε

0.1 0.2 0.3 0.4 0.5

ε

7.3

7.4

7.5

7.6

7.7

S
c
o
re

(a) AMiner

0.1 0.2 0.3 0.4 0.5

ε

17.5

17.6

17.7

17.8

17.9

S
c
o
re

(b) Reddit

0.1 0.2 0.3 0.4 0.5

ε

1.08

1.09

1.10

1.11

S
c
o
re

(c) Twitter

Figure 8: Scores with varying ε

Then, we use two quantitative metrics to evaluate the effective-
ness of k-SIR query: (1) coverage: do the result sets achieve high
information coverage on query topics? Following the metric used
in previous studies [2, 20], the coverage score of a result set S
w.r.t. a query vector x is computed by

∑
e ∈At \S maxe ′∈S rel(e, x) ·

sim(e, e ′) where rel(e, x) is the relevance of e to x and sim(e, e ′)
is the similarity of e and e ′; (2) influence: are the result sets re-
ferred by a large number of elements (e.g., citations, comments,
retweets, and so on)? We use the total number of elements refer-
ring to at least one element in the result set as the influence score.
For ease of presentation, the influence scores are linearly scaled
to [0, 1] by dividing by the influence score of top-k influential
elements. To acquire the results shown in Table 6, we sample the
result sets of 1K queries returned by each method and compute
the average scores.

We present the quantitative results for the effectiveness of
compared methods in Table 6. First, k-SIR outperforms other
query methods on information coverage, which verifies that our
semantic model is able to preserve information on query topics.
Second, as only k-SIR and Sumblr account for the influences of
elements, they naturally achieve much higher influence scores
than other methods. k-SIR further outperforms Sumblr in terms
of influence because k-SIR directly adopt the number of refer-
ences for influence computation while Sumblr only considers the
PageRank scores of authors.

Overall, the above results have confirmed that k-SIR shows
better result quality than existing methods for social search and
summarization in terms of information coverage and influence.

5.3 Efficiency and Scalability
Effect of ε . The average CPU time of MTTS and MTTD to pro-
cess one k-SIR query (i.e., query time) with varying ε is illustrated
in Figure 7. MTTS and MTTD show different trends w.r.t. ε . On
the one hand, the query time of MTTS drops drastically when
ε increases as the number of candidates in MTTS is inversely
proportional to ε . On the other hand, MTTD is not sensitive to
ε and typically takes slightly more time for a larger ε . This is
because a greater ε often leads to a smaller threshold for termina-
tion. In this case, more elements are retrieved from ranked lists
and evaluated by MTTD, which degrades the query efficiency.

The average scores of the results returned byMTTS andMTTD
with varying ε are shown in Figure 8. The scores of both methods

decrease when ε increases, which is consistent with the theoreti-
cal results of Theorem 4.2 and 4.4. However, both methods show
good robustness against ε : compared with CELF, their quality
losses are at most 5% even when ε = 0.5.

Effect of result size k . The average query time of compared
methods with varying k is presented in Figure 9. In addition, the
average ratios between the number of elements evaluated by
MTTS/MTTD and the number of active elements are shown in
Figure 10. First of all, MTTS and MTTD run at least one order
of magnitude faster than CELF and SieveStreaming for k-SIR
processing in all datasets. MTTS and MTTD can achieve up
to 124x and 390x speedups over the two baselines respectively.
Compared with them, MTTS and MTTD can prune most of the
unnecessary evaluations (at least 98% as shown in Figure 10) by
utilizing the ranked lists. Then, the query time of MTTS and
MTTD significantly grows with increasing k . The result can be
explained by the ratios of evaluated elements. From Figure 10, we
can see the ratio increases near linearly with k . As more elements
are evaluated when k increases, the query time naturally rises.
Finally, we can see MTTD outperforms MTTS in most cases
but the ratio of elements evaluated by MTTD is always higher
than MTTS. This is because MTTD only keeps one candidate but
MTTS maintains multiple candidates independently. As a result,
MTTD reduces the number of evaluations though it retrieves
more elements from ranked lists than MTTS.

The average scores of the results returned byMTTS andMTTD
with varying k are shown in Figure 11. We can see the result
quality of MTTD is always nearly equal (>99%) to CELF for dif-
ferent k . Meanwhile, MTTS can also return results with over
95% representativeness scores compared with CELF. The results
of SieveStreaming are inferior to those of CELF, MTTS, and
MTTD. Although Top-k Representative shows the best perfor-
mance among compared methods, its results are of the lowest
quality among compared methods. In addition, its result quality
degrades dramatically when k increases because the word and
influence overlaps are ignored.

Scalability. We evaluate the scalability of MTTS and MTTD
with varying the number of topics z and the window length T .
The results for query time are illustrated in Figure 12 and 13.
The query time of MTTS and MTTD drops when z increases.
Because the average number of elements on each topic deceases
with increasing z, the number of evaluated elements naturally
decreases. However, when z = 250 in the AMiner dataset, the
query time of MTTS and MTTD grows because there are more

190



CELF MTTD MTTS Top-k Representative SieveStreaming

5 10 15 20 25

k

100

101

102

103

Q
u
e
ry

 T
im

e
 (

m
s
)

(a) AMiner

5 10 15 20 25

k

100

101

102

103

Q
u
e
ry

 T
im

e
 (

m
s
)

(b) Reddit

5 10 15 20 25

k

100

101

102

103

Q
u
e
ry

 T
im

e
 (

m
s
)

(c) Twitter

Figure 9: Query time with varying k

5 10 15 20 25

k

0.0%

1.0%

2.0%

3.0%

R
a
ti

o

(a) AMiner

MTTD MTTS

5 10 15 20 25

k

0.0%

0.1%

0.2%

0.3%

R
a
ti

o

(b) Reddit

MTTD MTTS

5 10 15 20 25

k

0.0%

0.2%

0.4%

0.6%

R
a
ti

o

(c) Twitter

MTTD MTTS

Figure 10: Ratios of evaluated elements with varying k

5 10 15 20 25

k

4

6

8

10

12

S
c
o
re

(a) AMiner

5 10 15 20 25

k

12

15

18

21

24

S
c
o
re

(b) Reddit

5 10 15 20 25

k

0.6

0.9

1.2

1.5

1.8

S
c
o
re

(c) Twitter

Figure 11: Scores with varying k

50 100 150 200 250

z

100

101

102

103

Q
u
e
ry

 T
im

e
 (

m
s
)

(a) AMiner

50 100 150 200 250

z

100

101

102

103

Q
u
e
ry

 T
im

e
 (

m
s
)

(b) Reddit

50 100 150 200 250

z

100

101

102

103

Q
u
e
ry

 T
im

e
 (

m
s
)

(c) Twitter

Figure 12: Query time with varying z

6 12 18 24 30

T (hours)

100

101

102

103

Q
u
e
ry

 T
im

e
 (

m
s
)

(a) AMiner

6 12 18 24 30

T (hours)

100

101

102

103

Q
u
e
ry

 T
im

e
 (

m
s
)

(b) Reddit

6 12 18 24 30

T (hours)

100

101

102

103

Q
u
e
ry

 T
im

e
 (

m
s
)

(c) Twitter

Figure 13: Query time with varying T

50 100 150 200 250

z

0.0

0.1

0.2

0.3

0.4

U
p
d
a
te

 T
im

e
 (

m
s
)

AMiner Reddit Twitter

6 12 18 24 30

T (hours)

0.0

0.1

0.2

0.3

0.4

U
p
d
a
te

 T
im

e
 (

m
s
)

AMiner Reddit Twitter

Figure 14: Update time with varying z and T

non-zero entries in the query vectors. The query time of all
methods increases with T since there are more active elements.
Nevertheless, MTTS and MTTD significantly outperform the
baselines in all cases.

The average CPU time elapsed to update the ranked lists per
arrival element is shown in Figure 14. We can see it takes more
update time when z orT increases. As the number of maintained
ranked lists is equal to z and the number of active elements grows
withT , the cost for ranked list maintenance inevitably rises with
increasing z or T . Nevertheless, the update time is always lower
than 0.3ms in all datasets.

Overall, the experimental results show that our proposedmeth-
ods demonstrate high efficiency and scalability for both ranked
list maintenance and k-SIR processing, which can meet the re-
quirements for real-world social streams.

6 CONCLUSION
In this paper, we defined a novel k-SIR query to retrieve a set of k
representative elements from a social stream w.r.t. a query vector.
We then proposed two algorithms, namely MTTS and MTTD,
that leveraged the ranked lists for k-SIR processing over slid-
ing windows. Theoretically, MTTS and MTTD provided ( 12 − ε)
and (1 − 1

e − ε) approximation results for k-SIR queries respec-
tively. Finally, we conducted extensive experiments on real-world
datasets to demonstrate that (1) the k-SIR query achieved better
performance in terms of information coverage and social influence
than existing query methods on social data; (2) MTTS and MTTD
had much higher efficiency and scalability than the baselines
for k-SIR processing with near-equivalent result quality. In fu-
ture work, we plan to extend our approach for supporting the
incremental updates of topic models over streams.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments
to improve this paper. Yuchen Li is supported by the Singapore
MOE Tier 1 grant MSS18C001.

A PROOFS OF LEMMAS AND THEOREMS
A.1 Proof of Lemma 3.6

Proof. First, for e ∈ E \ S and S ⊆ E, we have Ri (S ∪ {e}) −
Ri (S) ≥

∑
w ∈Ve \VS σi (w, e) ≥ 0 because −p · logp ≥ 0 for p ∈

[0, 1]. Thus, Ri (·) is monotone.
Given any e ∈ E \T and S ⊆ T ⊆ E, we use ∆(e |S) = Ri (S ∪

{e}) − Ri (S) and ∆(e |T ) = Ri (T ∪ {e}) − Ri (T ) to denote the
marginal score gains of adding e to S and T .

First, as S ⊆ T , VS ⊆ VT . We divide Ve into three disjoint sub-
setsV1 = Ve \VT ,V2 = Ve ∩(VT \VS ) andV3 = Ve ∩VS . Then, it is
obvious that ∆(e |·) = ∆(V1 |·)+∆(V2 |·)+∆(V3 |·) for S andT . ForV1,
we have ∆(V1 |S) = ∆(V1 |T ) =

∑
w ∈V1 σi (w, e) because V1 ∩VS =

� and V1 ∩ VT = �. For V2, we have ∆(V2 |S) =
∑
w ∈V2 σi (w, e)

and ∆(V2 |T ) =
∑
w ∈V2 max

(
0,σi (w, e) − maxe ′∈T σi (w, e

′)
)
as

V2 ∩VS = � and V2 ⊆ VT . Obviously, we can acquire ∆(V2 |S) ≥
∆(V2 |T ) aswell. ForV3, we have∆(V3 |S) =

∑
w ∈V3 max

(
0,σi (w, e)

−maxe ′∈S σi (w, e ′)
)
and ∆(V3 |T ) =

∑
w ∈V3 max

(
0,σi (w, e) −

maxe ′∈T σi (w, e
′)
)
because of V3 ⊆ VS ⊆ VT . Because maxe ′∈S

σi (w, e
′) ≤ maxe ′∈T σi (w, e

′) for S ⊆ T , ∆(V3 |S) ≥ ∆(V3 |T ). Ac-
cording to the above results, we prove ∆(e |S) ≥ ∆(e |T ) and thus
Ri (·) is submodular. �

A.2 Proof of Lemma 3.7
Proof. First, given any e ′ ∈ E\S and S ⊆ E, for each e ∈ It (S),

we have pi (S ∪ {e
′} { e) − pi (S { e) = 1 −

(
1 − pi (S {

e)
)
·
(
1−pi (e ′ { e)

)
−pi (S { e) = pi (e

′ { e)·
(
1−pi (S { e)

)
≥ 0

for pi (S { e) ∈ [0, 1].
Second, given any S ⊆ T ⊆ E, for each e ∈ It (T ), we have

pi (S { e) ≤ pi (T { e) for e .re f ∩ It (S) ⊆ e .re f ∩ It (T ).
Therefore, for any e ′ ∈ E \T , we have pi (S ∪ {e ′} { e) −pi (S {
e) = 1−

(
1−pi (S { e)

)
·
(
1−pi (e ′ { e)

)
−pi (S { e) = pi (e

′ {

e)·
(
1−pi (S { e)

)
≥ pi (e

′ { e)·
(
1−pi (T { e)

)
= pi (T∪{e

′} {
e) − pi (T { e). Finally, because Ii ,t (S) =

∑
e ∈It (S ) pi (S { e)

and pi (· { e) is monotone and submodular, Ii ,t (·) is monotone
and submodular as well. �

191



A.3 Proof of Theorem 4.2
Proof. The sequence of estimations Φ for OPT is in range

[δmax , 2 · k · δmax ]. Due to the monotonicity and submodularity
of f (·, x), we have OPT ∈ [δmax ,k · δmax ]. Therefore, there must
exist some ϕ ∈ Φ such that (1 − ε)OPT ≤ ϕ ≤ OPT.

Next, we discuss two cases for such ϕ and Sϕ .
Case 1 (|Sϕ | = k). For each e ∈ Sϕ , we have ∆(e |S ′) ≥

ϕ
2k where S ′ is the subset of Sϕ when e is added. Therefore,
f (Sϕ , x) ≥ k ·

ϕ
2k ≥ (

1
2 − ε)OPT.

Case 2 (|Sϕ | < k). For each e ∈ S∗ \Sϕ , if e has been evaluated
by MTTS, it is excluded from Sϕ because ∆(e |S ′) < ϕ

2k where S ′
is the subset of Sϕ when e is evaluated; if e has not been evaluated
byMTTS, it holds that ∆(e |S) ≤ δ (e, x) < UB(x) < TH ≤

ϕ
2k . Thus,

OPT− f (Sϕ , x) ≤ f (S∗ ∪Sϕ , x) − f (Sϕ , x) ≤
∑
e ∈S∗\Sϕ ∆(e |Sϕ ) ≤

k ·
ϕ
2k ≤

1
2 · OPT. Equivalently, f (Sϕ , x) ≥

1
2 · OPT.

In both cases, we have f (Sts , x) ≥ f (Sϕ , x) ≥ ( 12 − ε)OPT. �

A.4 Proof of Theorem 4.4
Proof. There are two cases when MTTD is terminated. Here,

we discuss them separately.
Case 1 (|Std | = k). Let Sj = {e1, . . . , ej } (j ∈ [1,k]) be the sub-

set of Std after the first j elements are added and S0 = �. Assume
that ej+1 is added to Sj in the round with threshold τ . It holds that
∆(ej+1 |Sj ) ≥ τ and ∆(e |Sj ) <

τ
1−ε ,∀e < Sj ∪ {ej+1}. Then, we

have ∆(ej+1 |Sj ) ≥ (1−ε)∆(e |Sj ),∀e ∈ S∗ \Sj . By summing up the
above inequality for e ∈ S∗ \ Sj , we have |S∗ \ Sj | · ∆(ej+1 |Sj ) ≥
(1 − ε)

∑
e ∈S∗\Sj ∆(e |Sj ). Thus, we get ∆(ej+1 |Sj ) ≥ 1−ε

|S∗\Sj |
·∑

e ∈S∗\Sj ∆(e |Sj ) ≥
1−ε
k ·

∑
e ∈S∗\Sj ∆(e |Sj ). Due to the submod-

ularity of f (·, x), we have
∑
e ∈S∗\Sj ∆(e |Sj ) ≥ OPT − f (Sj , x).

Thus,∆(ej+1 |Sj ) = f (Sj+1, x) − f (Sj , x) ≥ 1−ε
k (OPT − f (Sj , x)).

Equivalently, we acquire f (Sj+1, x) − OPT ≥ (1 − 1−ε
k )(f (Sj , x) −

OPT). Substituting Sj+1 by Sk , . . . , S1 for k times, we prove f (Std ,
x) = f (Sk , x) ≥

(
1 − (1 − 1−ε

k )
k ) · OPT ≥ (1 − e−(1−ε ))OPT ≥

(1 − 1
e − ε)OPT.

Case 2 (|Std | < k). We have ∆(e |Std ) < τ ′ = f (Std , x) ·
ε
k ,∀e ∈ S

∗\Std . Therefore, OPT− f (Std , x) ≤
∑
e ∈S∗\Std ∆(e |Std )

≤
∑
e ∈S∗\Std f (Std , x) · εk ≤ ε · f (Std , x). Therefore, we acquire

f (Std , x) ≥ OPT
1+ε ≥ (1 − ε)OPT.

In both cases, f (Std , x) ≥ (1 − 1
e − ε)OPT. �

REFERENCES
[1] Manoj K. Agarwal and Krithi Ramamritham. 2017. Real Time Contextual

Summarization of Highly Dynamic Data Streams. In EDBT. 168–179.
[2] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and

Andreas Krause. 2014. Streaming submodular maximization: massive data
summarization on the fly. In KDD. 671–680.

[3] Ashwinkumar Badanidiyuru and Jan Vondrak. 2014. Fast algorithms for
maximizing submodular functions. In SODA. 1497–1514.

[4] Jingwen Bian, Yang Yang, Hanwang Zhang, and Tat-Seng Chua. 2015. Mul-
timedia Summarization for Social Events in Microblog Stream. IEEE Trans.
Multimedia 17, 2 (2015), 216–228.

[5] David M. Blei. 2012. Probabilistic topic models. Commun. ACM 55, 4 (2012),
77–84.

[6] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. JMLR 3 (2003), 993–1022.

[7] Michael Busch, Krishna Gade, Brian Larson, Patrick Lok, Samuel Luckenbill,
and Jimmy J. Lin. 2012. Earlybird: Real-Time Search at Twitter. In ICDE.
1360–1369.

[8] Chun Chen, Feng Li, Beng Chin Ooi, and SaiWu. 2011. TI: an efficient indexing
mechanism for real-time search on tweets. In SIGMOD. 649–660.

[9] Lisi Chen and Gao Cong. 2015. Diversity-Aware Top-k Publish/Subscribe for
Text Stream. In SIGMOD. 347–362.

[10] Jacob Cohen. 1968. Weighted kappa: Nominal scale agreement provision for
scaled disagreement or partial credit. Psychol. Bull. 70, 4 (1968), 213–220.

[11] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 2002. Main-
taining Stream Statistics over Sliding Windows. SIAM J. Comput. 31, 6 (2002),
1794–1813.

[12] Alessandro Epasto, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadi-
moghaddam. 2017. Submodular Optimization Over Sliding Windows. In
WWW. 421–430.

[13] Uriel Feige. 1998. A Threshold of ln n for Approximating Set Cover. J. ACM
45, 4 (1998), 634–652.

[14] Wen Hua, Zhongyuan Wang, Haixun Wang, Kai Zheng, and Xiaofang Zhou.
2015. Short text understanding through lexical-semantic analysis. In ICDE.
495–506.

[15] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. 2013.
Fast greedy algorithms in mapreduce and streaming. In SPAA. 1–10.

[16] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne M.
van Briesen, and Natalie S. Glance. 2007. Cost-effective outbreak detection in
networks. In KDD. 420–429.

[17] Yuchen Li, Zhifeng Bao, Guoliang Li, and Kian-Lee Tan. 2015. Real time
personalized search on social networks. In ICDE. 639–650.

[18] Yuchen Li, Ju Fan, Dongxiang Zhang, and Kian-Lee Tan. 2017. Discover-
ing Your Selling Points: Personalized Social Influential Tags Exploration. In
SIGMOD. 619–634.

[19] Yuchen Li, Dongxiang Zhang, Ziquan Lan, and Kian-Lee Tan. 2016. Context-
aware advertisement recommendation for high-speed social news feeding. In
ICDE. 505–516.

[20] Hui Lin and Jeff A. Bilmes. 2010. Multi-document Summarization via Budgeted
Maximization of Submodular Functions. In NAACL. 912–920.

[21] Zhiyuan Liu, Yuzhou Zhang, Edward Y. Chang, and Maosong Sun. 2011.
PLDA+: Parallel latent dirichlet allocation with data placement and pipeline
processing. ACM Trans. Intell. Syst. Technol. 2, 3 (2011), 26:1–26:18.

[22] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. 1978. An
analysis of approximations for maximizing submodular set functions – I. Math.
Program. 14, 1 (1978), 265–294.

[23] Andrei Olariu. 2014. Efficient Online Summarization ofMicroblogging Streams.
In EACL. 236–240.

[24] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999.
The PageRank Citation Ranking: Bringing Order to the Web. Technical Report.
Stanford InfoLab.

[25] Zhaochun Ren, Oana Inel, Lora Aroyo, and Maarten de Rijke. 2016. Time-
aware Multi-Viewpoint Summarization of Multilingual Social Text Streams.
In CIKM. 387–396.

[26] Zhaochun Ren, Shangsong Liang, Edgar Meij, and Maarten de Rijke. 2013.
Personalized time-aware tweets summarization. In SIGIR. 513–522.

[27] Lidan Shou, Zhenhua Wang, Ke Chen, and Gang Chen. 2013. Sumblr: contin-
uous summarization of evolving tweet streams. In SIGIR. 533–542.

[28] Alexander Shraer, Maxim Gurevich, Marcus Fontoura, and Vanja Josifovski.
2013. Top-k Publish-Subscribe for Social Annotation of News. PVLDB 6, 6
(2013), 385–396.

[29] Liangjun Song, Ping Zhang, Zhifeng Bao, and Timos K. Sellis. 2017. Continuous
Summarization over Microblog Threads. In DASFAA. 511–526.

[30] Karthik Subbian, Charu C. Aggarwal, and Jaideep Srivastava. 2016. Querying
and Tracking Influencers in Social Streams. In WSDM. 493–502.

[31] Nguyen Thanh Tam, Matthias Weidlich, Duong Chi Thang, Hongzhi Yin,
and Nguyen Quoc Viet Hung. 2017. Retaining Data from Streams of Social
Platforms with Minimal Regret. In IJCAI. 2850–2856.

[32] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. 2009. Social influence analysis
in large-scale networks. In KDD. 807–816.

[33] Leong-Hou U, Junjie Zhang, Kyriakos Mouratidis, and Ye Li. 2017. Continuous
Top-k Monitoring on Document Streams. IEEE Trans. Knowl. Data Eng. 29, 5
(2017), 991–1003.

[34] Yanhao Wang, , Yuchen Li, and Kian-Lee Tan. 2018. Efficient Representative
Subset Selection over Sliding Windows. IEEE Trans. Knowl. Data Eng. (2018).
https://doi.org/10.1109/TKDE.2018.2854182

[35] YanhaoWang, Qi Fan, Yuchen Li, and Kian-Lee Tan. 2017. Real-Time Influence
Maximization on Dynamic Social Streams. PVLDB 10, 7 (2017), 805–816.

[36] Zhenhua Wang, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. 2015.
On Summarization and Timeline Generation for Evolutionary Tweet Streams.
IEEE Trans. Knowl. Data Eng. 27, 5 (2015), 1301–1315.

[37] LingkunWu,Wenqing Lin, Xiaokui Xiao, and Yabo Xu. 2013. LSII: An indexing
structure for exact real-time search on microblogs. In ICDE. 482–493.

[38] Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. 2013. A biterm topic
model for short texts. In WWW. 1445–1456.

[39] Dongxiang Zhang, Yuchen Li, Ju Fan, Lianli Gao, Fumin Shen, and Heng Tao
Shen. 2017. Processing Long Queries Against Short Text: Top-k Advertisement
Matching in News Stream Applications. ACM Trans. Inf. Syst. 35, 3 (2017),
28:1–28:27.

[40] Dongxiang Zhang, Liqiang Nie, Huanbo Luan, Kian-Lee Tan, Tat-Seng Chua,
and Heng Tao Shen. 2017. Compact Indexing and Judicious Searching for
Billion-ScaleMicroblog Retrieval. ACMTrans. Inf. Syst. 35, 3 (2017), 27:1–27:24.

[41] Wayne Xin Zhao, Jing Jiang, Jianshu Weng, Jing He, Ee-Peng Lim, Hongfei
Yan, and Xiaoming Li. 2011. Comparing Twitter and Traditional Media Using
Topic Models. In ECIR. 338–349.

[42] Hao Zhuang, Rameez Rahman, Xia Hu, Tian Guo, Pan Hui, and Karl Aberer.
2016. Data Summarization with Social Contexts. In CIKM. 397–406.

192


	Semantic and Influence aware k-Representative Queries over Social StreamsYanhao Wang, Yuchen Li, Kian-Lee Tan

