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ABSTRACT
Given query graph Q with pivot node v , Pivoted Subgraph Iso-

morphism (PSI ) finds all distinct nodes in an input graph G that

correspond to v in all matches of Q in G. PSI is a core opera-

tion in many applications such as frequent subgraph mining,

protein functionality prediction and in-network node similar-

ity. Existing applications implement PSI as an instance of the

general subgraph isomorphism algorithm, which is expensive

and under-optimized. As a result, these applications perform

poorly and do not scale to large graphs. In this paper, we propose

SmartPSI; a system to efficiently evaluate PSI queries. We develop

two algorithms, called optimistic and pessimistic, each tailored

for different instances of the problem. Based on machine learn-

ing, SmartPSI builds on-the-fly a classifier to decide which of the

two algorithms is appropriate for evaluating each graph node.

SmartPSI also implements a machine learning-based optimizer to

generate low-cost execution plans. Our experimental evaluation

with large-scale real graphs shows that SmartPSI outperforms

existing approaches by up to two orders of magnitude and is

able to process significantly larger graphs. Moreover, SmartPSI is

shown to achieve up to 6 times performance improvement when

it replaces standard subgraph isomorphism in the state-of-the-art

distributed frequent subgraph mining system.

1 INTRODUCTION
Graphs are widely used to model information in a variety of

real world applications such as social networks [31, 32], chemical

compounds [20] and protein-protein interactions [25]. Finding all

valid bindings of a particular query node is an important step in

various application domains such as frequent subgraphmining [4,

37], protein functionality prediction [12], neighborhood pattern

mining [15], query recommendation [16] and in-network node

similarity [39]. This step is called Pivoted Subgraph Isomorphism

(PSI ); for query Q with pivot node v , PSI finds the set of distinct
matches of v in an input graph G. For example, PSI query S
(v1,v2,v3) in Figure 1 has two matches of the pivot node v1 in
G: u1 and u6.

Existing applications [4, 13, 15, 16, 25] depend on subgraph

isomorphism [9, 17, 30] to evaluate PSI-like queries. They use

subgraph isomorphism to find all matches of the query and then

project distinct nodes that correspond to the pivot node. In the

example of Figure 1, subgraph isomorphism generates 5 inter-

mediate results: (u1,u2,u3), (u1,u2,u4), (u1,u5,u4), (u1,u5,u3)
and (u6,u5,u3)), in order to project u1 and u6 as results for the
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(a) PSI query S (b) Input graph G

Figure 1: (a) A PSI query with v1 as pivot, (b) input graph.
The bindings of v1 are u1 and u6

PSI query. We show in Table 1 the number of PSI results com-

pared to the number of intermediate isomorphic subgraphs for

various real graphs and query sizes (see Section 5 for details).

Observe that the number of isomorphic subgraphs grows expo-

nentially with the query size even for small and sparse datasets

like Yeast, whereas the actual PSI results are significantly fewer.

Consequently, the performance of applications that depend on

subgraph isomorphism degrades rapidly with complex queries

and larger graphs.

A possible approach to reduce the exponential number of

matches in subgraph ismorphism-based solutions is to stop the

search once a match of the pivot node is found for each candidate

graph node. We demonstrate the effect of this optimization by

proposing TurboIso
+
(Section 5.2) as a modified version of Tur-

boIso [17] which is a highly optimized subgraph isomorphism

solution. We show in Table 2 that TurboIso
+
is significantly faster

than TurboIso for all query sizes. However, it remains compu-

tationally expensive since it cannot avoid the overhead of the

sophisticated data structures used to compile all occurrences of

the given query. As such, using subgraph isomorphism to solve

PSI queries is unnecessarily expensive. Moreover, to the best

of our knowledge, there is no existing research that has been

devoted to efficiently answer PSI queries.

In this paper, we formalize the pivoted subgraph isomorphism

problem and introduce the optimistic and pessimistic approaches
for evaluating PSI queries efficiently. The optimistic approach is

highly optimized to confirm that a graph node matches the pivot

node in the query. It uses a greedy depth-first guided search to

minimize the number of graph explorations required to prove that

a particular node is indeed a matching node. If no match exists,

it would have unnecessarily wasted resources to discover non-

matching nodes. The pessimistic approach, on the other hand,

is highly optimized to verify that a graph node does not match

the given query. It is based on a random, non-guided, search that

prunes adjacent nodes early depending on their neighbourhood.

 

 

Series ISSN: 2367-2005 361 10.5441/002/edbt.2019.32

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.32


Table 1: Number of subgraph query matches using PSI vs. standard subgraph isomorphism

Dataset Query Query Size
4 5 6 7 8 9 10

Yeast PSI 7 × 104 6 × 104 5 × 104 5 × 104 4 × 104 3 × 104 3 × 104

Subgraph Iso. 1.3 × 107 1.2 × 108 1.1 × 109 7.4 × 109 5.8 × 1010 6.0 × 1011 2.8 × 1012

Cora PSI 2.1 × 105 1.9 × 105 1.4 × 105 1.2 × 105 1.1 × 105 0.9 × 105 0.8 × 105

Subgraph Iso. 1.6 × 108 1.2 × 1010 1.1 × 1012 8.4 × 1013 1.5 × 1015 8.9 × 1016 NA

Human PSI 1.4 × 105 1.3 × 105 1.2 × 105 1.1 × 105 1.1 × 105 1.0 × 105 1.1 × 105

Subgraph Iso. 2.6 × 1010 7.6 × 1012 NA NA NA NA NA

Early pruning helps the pessimistic algorithm to avoid unneces-

sary graph traversals. It detects non-matching nodes significantly

faster than the optimistic approach, however, it has a higher cost

when used for matching nodes.

To maximize the gain from these two methods, the optimistic

method has to be used to validate nodes that match the query

while the pessimistic method should be used to confirm other non-

matching nodes. Unfortunately, we do not know which graph

node matches the given PSI query prior to query evaluation,

while it is counter-intuitive to use the proposed methods ran-

domly on the input graph. To solve this problem, we propose

SmartPSI, a solution that relies on machine learning to predict

which method is best to evaluate each graph node. In SmartPSI,

a classification model is trained to predict the type of each graph

node (i.e., whether a node does or does not match the given

query). Based on the prediction result, the appropriate method is

picked accordingly; the optimistic method is used for matching

graph nodes (predicted valid nodes) and the pessimistic is used

for non-matching nodes (predicted invalid nodes). Notice that

SmartPSI is an exact solution since the correctness of the result

is guaranteed even when using the opposite evaluation, this is

due to the fact that both algorithms traverse the whole search

space in the worst-case scenario. SmartPSI is also coupled with

a novel query optimizer, that recommends an efficient search

order plan for evaluating each graph node. The last row of table 2

gives a hint on how the combined ideas implemented in SmartPSI,

which are solely designed for PSI queries, perform compared to

the more general solutions of subgraph isomorphism.

In summary, our contributions are:

• We introduce two methods for evaluating PSI queries,

each method is optimized for a particular type of the input

graph nodes.

• We propose a solution based on machine learning that,

for each graph node, predicts the node type, picks the

corresponding optimized evaluation method, and selects

an efficient plan for query evaluation.

• We also propose a preemptive query processor that em-

ploys a detection and recovery technique at run-time to

reduce the impact of incorrect predictions.

• We experimentally compare the performance of SmartPSI

against the state-of-the-art subgraph isomorphism tech-

niques. We show that SmartPSI is orders of magnitude

faster and it scales to much larger queries and input graphs.

Furthermore, we empirically show that our optimizations

significantly improve the performance of a cutting edge

frequent subgraph mining system.

The rest of the paper is organized as follows: Section 2 formal-

izes the problem and presents various PSI applications. Section 3

introduces two novel PSI evaluation methods. Section 4 presents

Table 2: Performance of PSI solutions on Human dataset
(details in Section 5). SmartPSI is our proposed approach.

Query size 4 5 6 7

TurboIso 5.4 hrs >24 hrs >24 hrs >24 hrs

TurboIso
+

14 min 30 min 45 min 2.4 hrs

SmartPSI 27 sec 47 sec 2 min 4.3 min

a two-threaded baseline solution and describes machine learning

based optimizations that overcome the limitations of the baseline.

Section 5 presents the experimental evaluation. Section 6 surveys

the related work while Section 7 concludes.

2 PIVOTED SUBGRAPH ISOMORPHISM
2.1 Definition
A labeled graph G = (VG ,EG ,LG ) consists of a set of nodes

VG , a set of edges EG and a labeling function LG that assigns

labels to nodes and edges. A graph S = (VS ,ES ,LS ) is a subgraph
of a graph G iff VS ⊆ VG , ES ⊆ EG and LS (v) = LG (v) for
all v ∈ VS ∪ ES . Subgraph isomorphism is the task of finding

all occurrences of S inside G. It is a computationally expensive

problem, known to be NP-Complete [14]; it needs to validate a

huge number of intermediate and final results. PSI, which is also

NP-Complete [15], relaxes subgraph isomorphism by focusing on

finding all node matches of a particular query node (vp ), which
is called a pivot node, inside the input graph G.

Definition 2.1. A pivoted graph is a tuple ð={G, vp }, where G
is a labeled graph and vp ∈ VG is called the pivot node of the

pivoted graph ð.

The pivot node (vp ) is the node of interest, and it is usually

set by the user who creates the query.

Definition 2.2. A pivoted subgraph isomorphism of ðS=(S , vp )
to ðG={G ,up } where S = (VS ,ES ,LS ),G = (VG ,EG ,LG ),vp ∈ VS
and up ∈ VG , is an injective functionM : VS → VG satisfying (i)
LS (v) = LG (M(v)) for all nodes v ∈ VS , (ii) (M(u),M(v)) ∈ EG
and LS (u,v) = LG (M(u),M(v)) for all edges (u,v) ∈ ES , and (iii)
M(vp ) = up .

Rather than finding all matches in subgraph isomorphism, PSI

finds at most one occurrence per graph node up , which signifi-

cantly reduces computation and memory overheads. The input

graph node up is called a valid node for query ðS if it matches

vp in at least one occurrence of S in G, otherwise it is called

an invalid node. PSI has an important role in several applica-

tions [4, 13, 15, 16, 25]. In the following discussion, we highlight

some of these applications.
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2.2 PSI Applications
Frequent SubgraphMining (FSM). FSM is an important opera-

tion for graph analytics and knowledge discovery [4, 5, 13]. Given

an input graph and a support threshold, FSM evaluates the fre-

quencies of a large number of candidate subgraphs to determine

which one is frequent. Typically, this evaluation relies on finding

the distinct input graph nodes that match their corresponding

candidate subgraph nodes [11]. Current solutions [4, 13] employ

subgraph isomorphism to conduct this step. Instead of using

the expensive subgraph isomorphism algorithms, PSI can be em-

ployed to efficiently evaluate the frequencies. Using PSI instead

of subgraph isomorphism results in a significant improvement

in the overall efficiency of FSM techniques (see Section 5.5).

Functionprediction inPPI networks. In the domain of protein-

protein-interaction (PPI) networks, it is common to discover new

proteins with unknown functions [12]. Knowledge about their

functionality is essential to analyze these networks and discover

valuable insights. In order to predict these functions, a set of sig-

nificant patterns are extracted from the PPI network. Each protein

with unknown function is thenmatched against the extracted pat-

terns. A label that is matched to the node with unknown function

represents a predicted function for this node. Each significant

pattern is represented by a different pivoted subgraph query, and

the matching task resembles a PSI query evaluation.

Discovering Pattern Queries by Sample Answers. Knowl-
edge bases are effective in answering questions. Nevertheless, it

is challenging for a user to issue a query that follows the schema

of the knowledge base. Han et al. [16] proposed a query discov-

ery approach to assist users by recommending candidate queries.

This approach is based on having a sample answer set (i.e., a set

of nodes which the user thinks they match his query). The first

step finds a set of queries that match the neighborhood around

the given nodes. These queries represent recommended candi-

date queries. This step is conducted by a series of PSI operations

which tries to filter out all queries that do not match any of the

given answer nodes. Queries that pass the first step are then

ranked and the top ones are recommended for the user.

Neighborhood Pattern Mining. Mining frequent neighbor-

hood patterns [15] finds the set of frequent patterns that each

originates from graph nodes with a particular label. Similar to

FSM, candidate patterns are generated and evaluated to deter-

mine whether they are frequent. Though, the evaluation step is

different. Given a specific label, each candidate pattern is eval-

uated by PSI to know the number of graph nodes that satisfy

this pattern. Based on this process, interesting knowledge can

be obtained regarding the common connectivity patterns found

around each node label.

In-network Node Similarity. In many applications, it is very

important to measure the similarity among graph nodes. These

applications include role discovery [28], objects similarity [21]

and node clustering [19]. Two nodes are similar if they have

similar neighborhoods. There are several techniques for calculat-

ing nodes similarity. A recent approach [39] proposed a unified

framework for measuring the similarity between two nodes. One

of the proposed metrics is the maximum common pivoted sub-

graph that exists around the two nodes. This metric is extended

into a more general similarity metric, which is used to compare

the common pivoted subgraphs occurring in the neighborhoods

of any two nodes. Such approach is a direct application of PSI.

3 THE OPTIMIST AND THE PESSIMIST
In this section, we propose an optimist and a pessimist evaluation

mechanisms to improve PSI evaluation. The optimistic method is

optimized to confirm that a candidate node is valid, i.e., matches

the query pivot node. On the other hand, the pessimistic method

is effective in proving that a candidate node is invalid. Since both

methods require access to a neighborhood signature, we will

first describe what a neighborhood signature is and how it is

calculated (Sections 3.1 and 3.2). Then, we introduce each PSI

method in Sections 3.3 and 3.4.

3.1 Neighborhood Signature
The neighborhood signature of a graph node represents how this

node interacts with its neighbors. A good neighborhood signature

should be concise and effective in pruning/matching of a graph

node. The literature introduces several signature definitions [7,

23, 42, 43]. We propose to use a label propagation technique

inspired by the work of proximity pattern mining [23]. This

technique assigns a list of weights to each graph node. Each

weight corresponds to a label and reflects the proximity of that

label to the graph node.

Definition 3.1. Let u be a node in the graph G. The neighbor-
hood signature of u within a distance D is the set of pairs:

NSuD = {(l1,wD
1
), (l2,w

D
2
)...(ln ,w

D
n )}

where each li is a node label and each weightwD
i ∈ R.

Label weights are propagated from nearby nodes such that for

each label li , its weightw
D
i is calculated as:

wD
i =

D∑
d=0

2
−d ×Cu (li ,d)

where D is the maximum propagation depth, and Cu (li ,d) is the
number of nodes with label li having a shortest distance d from

node u. Notice that the signature NSuD is small since its size

depends on the number of distinct labels that appear in the graph.

It is also effective as the used weights reflect how neighbors

are structured around the node. In this work, we use the same

maximum propagation depth for query graphs and the input

graph. Thus, we will omit the use of the superscript D where it

is not needed.

Example: Consider the data graph G in Figure 1, G contains

three different labels; {A,B,C}. Assuming that the maximum

propagation depth is set to 2, the signature of node u1 is calcu-
lated as follows: (i) first, the label of u1, which is ‘A’, is given a

weight = 1. Consequently, the list of weights from distance 0

is: {(A, 1), (B, 0), (C, 0)}. (ii) For the first level of neighbors, there
exist four nodes, two nodes are labeled ‘B’ and the other two are

labeled ‘C’. Therefore, the weight of ‘B’ in this case is 2 × 0.5 and

the weight of ‘C’ = 2 × 0.5. Consequently, the list of propagated

weights from this level is {(A, 0), (B, 1), (C, 1)}. (iii) There is only
one node that is two hops away from u1; i.e. u6, which has label

‘A’, and thus the weight of ‘A’ = 1 × 0.25 = 0.25. Consequently,

the propagated weights from this level = {(A, 0.25), (B, 0), (C, 0)}.
(iv) Finally, NS2u1 is the sum of weights from all levels, hence,

NS2u1 = {(A, 1.25), (B, 1), (C, 1)}.
Signature Computation. Traditional approaches [23] follow
an exploration-based strategy to compute node signatures. It

executes a breadth-first search algorithm iteratively till the max-

imum propagation depth is met. This approach is very simple
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to implement but has an exponential computational complexity

(O(|N |.|L|.dD )), where |N| is the number of nodes in the graph,

|L| is the number of distinct node labels, d is the average node

degree and D is the maximum traversal depth.

Optimization. To improve the performance of computing neigh-

bourhood signatures, we propose a significantly faster approach

based on matrix multiplication to compute all neighborhood

signatures of the input graph. In comparison to the exploration-

based technique [23], the computational complexity of our pro-

posal is O(|N |.|L|.d .D). The first step is to create a matrix NS0 :
|N | × |L|. Each row NS0(n) represents the neighborhood signa-

ture of a node n and is initialized as: NS0(n) = [b1,b2, ...bL]where
bl = 1 if l ∈ L(n) and 0 otherwise. Then for the subsequent D
iterations, the corresponding row for each node n is updated as

follows:

NSi (n) = NSi−1(n) +
1

2

Adj(n) × NSi−1

where Adj(n) is the adjacency matrix row that corresponds to

node n. Notice that the label weights obtained by the iterative

matrix multiplications may differ from the ones generated by the

exploration based approach. This is because the iterative matrix

approach considers neighbors labels multiple times through dif-

ferent paths, compared to one time through the shortest path in

the previous approach. However, these weights are still based

on the proximity of the labels that exist around the node under

consideration.

Example: Consider the PSI query in Figure 2. Assuming a max-

imum propagation depth of 2, we first initialize NS0 and Adj to
be:

NS0 =

©«

A B C D

v0 1 0 0 0

v1 0 1 0 0

v2 0 1 0 0

v3 0 0 1 0

v4 0 0 0 1

ª®®®®®¬

Adj =

©«

v0 v1 v2 v3 v4

v0 0 1 0 0 0

v1 1 0 1 1 0

v2 0 1 0 1 0

v3 0 1 1 0 1

v4 0 0 0 1 0

ª®®®®®¬
Then, we apply two iterations of the matrix multiplication to

compute the results for NS1 and NS2:

NS1 =

©«

A B C D

v0 1 1/2 0 0

v1 1/2 3/2 1/2 0

v2 0 3/2 1/2 0

v3 0 1 1 1/2

v4 0 0 1/2 1

ª®®®®®¬

NS2 =

©«

A B C D

v0 5/4 5/4 1/4 0

v1 1 3 5/4 1/4
v2 1/4 11/4 5/4 1/4

v3 1/4 13/4 2 1

v4 0 1/2 1 5/4

ª®®®®®¬

Notice that row v1 in NS2 is the neighborhood signature of

the query graph pivot node in Figure 2(a).

PSI query evaluation benefits from neighborhood signatures in

two ways. First, graph traversals are guided towards the relevant

graph nodes in order to efficiently reach amatch for a given query.

Second, significant pruning is achieved during the evaluation of

graph nodes that do not satisfy the query.

3.2 Neighborhood Signature Satisfaction
The neighborhood signatures of two nodes can be utilized to

quickly judge if they have the same neighbourhood and hence

could be a match. A signature NSi is said to satisfy another sig-

nature NSj if for every (lj ,w j ) ∈ NSj , there exists (li ,wi ) ∈ NSi
where li = lj and wi ≥ w j . In Figure 1(b), u1 has a neighbor-

hood signature NS2u1 = {(A, 1.25), (B, 1), (C, 1)}. For query S in

Figure 1(a), NSv1
= {(A, 1), (B, 0.5), (C, 0.5)}. NSu1 satisfies NSv1

since the weights of all labels in NSu1 are larger than their corre-

sponding ones in NSv1
.

Proposition 3.2. Given a graphG , a graph nodeu and a pivoted
query ð={S , vp }, where S is a subgraph and vp is the pivot node,
if NSu does not satisfy NSv , then u is an invalid node given the
pivoted query ð.

Proof:We will use a proof by contradiction approach. Let NSu
do not satisfy NSv . Let’s assume a graph node u be valid for the

pivot node v of subgraph S . Since NSu do not satisfy NSv . This
implies that there exists at least one pair (li ,wu ) ∈ NSu and a

pair (lj ,wv ) ∈ NSv , where li = lj andwu < wv . Forwu to be less

thanwv , the contribution to the weightwu from neighbor nodes

with label li should be less than of neighbors of node v with

the same label. The weight contribution relies on the number

of neighbors labeled li and their distances. Accordingly, either

the number of neighbor nodes of u with label li is less than that

for neighbors of node v with the same label, or their distances

are larger than their corresponding ones in the query. The last

statement contradicts with the assumption that v is a valid node

of u since this requires that each neighbor of v to have a distinct

corresponding match with a neighbor of u. □

3.3 The Optimist
The optimistic algorithm uses a greedy depth-first guided search

to quickly find a match for the given query. Its name is derived

from the fact that it assumes that input candidate nodes are valid

and optimizes the evaluation accordingly. The algorithm starts

by generating a satisfiability score for each neighbor of the can-

didate node and then it sorts them based on the calculated scores

descendingly. The satisfiability score measures the likelihood of

a graph node being a match for its corresponding query node, it

is calculated as:

SS(u,v) = avд(l,wl )∈NSv (NSu (l)/wl )

For example, the satisfiability score ofu1 inG andv1 in S from

Figure 1, where NSu1 = {(A, 1.25), (B, 1), (C, 1)} and NSv1
=

{(A, 1), (B, 0.5), (C, 0.5)}, is calculated as follows:

(1.25/1) + (1/0.5) + (1/0.5)

3

= 1.75

We show more examples of satisfiability scores in Figure 2.

Moreover, Figure 2 shows how to use the computed neighborhood

signatures ofv1,u1,u2 andu3 (based on Section 3.1) to determine

the satisfiability scores of node pairs (u1, v1), (u2, v1) and (u3,
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v0

v1

v3

v2
v4

A B C D
NS2v1 1 3 5/4 1/4

Neighborhood  Signature

(a) PSI query with v0 as pivot

D C B

B

ABB

CD

A

B B

C

D
u6

u5

u4

u1

u13

u7

u2

u0

u8

u3

u9

u10

u11

u12

A B C D

NS2u1 2 4 5/4 1/4

NS2u2 2 4 1 0

NS2u3 1 4 9/4 1/2

SS(u1,v1) = (2/1) + (4/3) + ((5/4)/(5/4)) + (1/4)/(1/4)
4

= 1.33

SS(u2,v1) = (2/1) + (4/3) + (1/(5/4)) + (0/(1/4))
4

= 1.05

SS(u3,v1) = (1/1) + (4/3) + ((9/4)/(5/4)) + ((1/2)/(1/4))
4

= 1.54

Neighborhood  Signatures

(b) Input graph G

Figure 2: (a) PSI query S , showing the neighbors signature
for v1 (b) Input graph G with satisfiability scores with re-
gard to query node v1

v1). Note that a higher neighbourhood signature of label l for
vi means that vi is connected with many nodes having label

l which increases the chance for finding a match for u. As a
result, the larger the satisfiability score of a graph node, the

higher the chances that it satisfies a corresponding node in the

PSI query. Once the satisfiability scores are calculated for all

neighbors, the optimistic algorithm sorts them according to their

scores and traverses those with higher scores first. The idea is to

prioritize nodes with high likelihood to reach a result over other

nodes with less chances, and thus the algorithm can finish faster.

This step is repeated recursively by calculating the satisfiability

scores of the new neighboring nodes and change paths until a

match is found or all possible graph traversals are exhausted. The

optimistic algorithm is useful only when used with valid nodes;

i.e. nodes that match the pivot node. Otherwise, it suffers from

performance degradation caused by the overhead of calculating

the satisfiability scores for candidate nodes and sorting them,

which is an unnecessary overhead for the case of invalid nodes.

Figure 3(a) shows an example of how the optimistic algorithm

employs the satisfiability scores obtained in Figure 2(b) to reach

a solution quickly. Consider evaluating the neighbors of u0 for
matching with query nodev1, the optimistic algorithm is going to

traverse the graph starting fromu3, as shown in Figure 3(a), since

it has the highest score (SS(u3) = 1.54). As a result, the optimistic

algorithm is able to find that u0 is valid using the least number

of traversals by avoiding the traversal of u1 and u2. A random

D C B

B

ABB

CD

A

B B

C

D

u4

u1

u13

u7

u2

u0

u8

u3

u9

u10

u11

u12

(a) Traversals with sorting

D C B

B

ABB

CD

A

B B

C

D

u4

u1

u13

u7

u3

u10

u11

u12

u0

u2u8

u9

(b) Traversals without sorting

Figure 3: The behaviour of the optimistic algorithm start-
ing from u0 with (a) sorting and (b) without sorting

Algorithm 1: PSI Evaluation
Input: G the input graph, S query subgraph,M Mapping, T

Method type; Optimistic or Pessimistic

Output: R true if a result is found, false otherwise

1 if M is full mapping then Return true

2 vnext ←GetNextQueryNode(S)

3 C ←GetNextCandidateNodes(G, S , vnext )

4 if Super Optimistic then C ←GetLimitedCandidates(C ,
Max)

5 if T is Optimistic then C ←SortBySatisfiabilityScore(C)

6 foreach c ∈ C do
7 if T is Pessimistic And ¬Satisfy(c , vnext ) then Continue

8 Mnew ← M + (vnext , c)

9 if ValidMapping(M) then
10 valid ←PSI(G, S ,Mnew , T )

11 if valid is true then Return true

12 Return false

traversal would have exhausted up to 3 different traversals from

u0, as shown in Figure 3(b), since u1 and u2 do not lead to an

occurrence.

Algorithm 1 shows the steps required for evaluating PSI

queries. To enable the optimistic algorithm, the input flagT is set

to optimistic. Note that this algorithm is recursive where it stops

whenever a result is found (Line 1). The crux of the optimistic

method is the sorting of graph nodes based on their satisfiability

scores (Line 5). The sorting function introduces extra overhead,

which might be unacceptable when evaluating nodes with high

degrees. To avoid such problem and benefit from situations where

a match can be quickly found, we propose a super optimistic step,
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where only a small portion of the neighbor nodes are checked.

The difference between the "super" optimistic and the original

optimistic method is in Line 4. For the super optimistic version,

the number of candidates is limited by a maximum value (we

use 10 in our experiments). Therefore, the overhead of sorting is

significantly minimized and less intermediate graph nodes are

visited. For each graph node, the optimistic approach proceeds

with the super optimistic version. If a result is found, it returns

that result without further processing. Otherwise, the normal

optimistic method is used.

3.4 The Pessimist
In this method, we exploit aggressive pruning to quickly reach a

decision. The pessimistic algorithm evaluates the label, degree

and the neighborhood signature of the candidate nodes against

the corresponding query node. Then, it prunes non-matching

candidate nodes without carrying out further graph traversals.

In comparison to a typical subgraph isomorphism evaluation,

this early pruning reduces the number of intermediate results

since it does not go deeper in the search plan for pruned nodes.

This pruning results in a significant improvement, especially for

graphs with high degree nodes. Although pruning has a notable

computation price due to its excessive calculations per evaluated

node, it is worth exploiting it for invalid nodes to reduce the cost

of unproductive traversals. On the contrary, using this pruning

for valid nodes introduces unnecessary overhead to reach the

conclusion that a node is valid.

The utilization of the neighborhood signature in pruning is im-

portant since it captures wider properties of the area surrounding

each graph node. Proposition 3.2 allows pruning of a node when

its neighborhood signature cannot satisfy the neighborhood sig-

nature of the query node. Based on this proposition, a significant

number of graph nodes are pruned but with a small number of

false positive nodes (i.e., nodes that satisfy the corresponding

neighborhood signature but are non-candidates because they do

not match the query graph). Algorithm 1 follows the pessimistic

approach by setting the flag T to Pessimistic. It is similar to the

optimistic method except Line 7 which applies pruning on nodes

using Proposition 3.2 and the neighborhood signature.

We show in Figure 4 the difference between the pessimistic and

optimistic algorithms when evaluating an invalid node, i.e., u13,
againstv0 in Figure 2(a). In this example, the candidate mappings

of query node v1 are u1 and u2. Notice that both nodes satisfy

label and direct neighbors requirements; both have label "B" and

are connected to nodes labeled "B" and "C". When looking at

the neighborhood signatures of both nodes, we discover that u1
satisfies the neighborhood signature of v1, i.e., its features have
weights higher than or equal to those of the features of v1. On
the other hand, the neighborhood signature ofu2 does not satisfy
that ofv1 because weights corresponding to labels "C" and "D" are
both less than those for v1. As a result, the pessimistic algorithm

prunes u2 early in the evaluation and traverse u1 for further

evaluation as shown in Figure 4(a). The optimistic algorithm,

if employed, would explore both paths, u1 and u2, as shown in

Figure 4(b).

4 THE REALIST: SMARTPSI
4.1 Two-threaded PSI Baseline
In order to benefit from the optimistic and pessimistic meth-

ods, we need to know the type of each graph node; i.e., valid
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Figure 4: The behaviour of (a) the pessimistic vs. (b) the
optimistic algorithm starting from u13

or invalid, and pick the appropriate method accordingly. How-

ever, such knowledge is not available beforehand. Therefore, we

propose a simple baseline, based on threading, that leverages

the two algorithms for PSI evaluation. Figure 5 shows how this

baseline works. For each graph node, two threads are executed

concurrently. One thread runs the optimistic method while the

other runs the pessimistic method. The thread that finishes its

evaluation first stops the other thread and returns the result. This

approach guarantees that each node is evaluated in almost the

least wall-clock time of both methods (optimistic and pessimistic).

However, it suffers from two issues: (i) under-utilization, as two
threads are doing the job of a single task, and (ii) initiating and
stopping millions of threads to evaluate the candidate graph

nodes leads to a huge unnecessary cumulative overhead.

4.2 SmartPSI
This section discusses SmartPSI; our proposed PSI solution that

employs machine learning techniques to avoid the limitations of

the above-mentioned two-threaded baseline. We show in Figure 6

the architecture of SmartPSI which integrates the utilization of

both PSI methods with two independent classification models.

The first model (Model α ) is a node type classifier that identifies
whether a graph node is valid or invalid. Compared to the two-

threaded approach, this model allows SmartPSI to benefit from

the optimized PSI methods, i.e., the optimistic and the pessimistic,

without sacrificing extra resources. The second classification

model (Model β) is trained to predict an efficient query execution

plan for each candidate node.

SmartPSI starts by loading the entire input graph in-memory,

then it computes the neighborhood signatures for each graph

node. When receiving a query, it extracts the candidate nodes

from the input graph. A small percentage of the candidate nodes

(around 10% up to a maximum value) is randomly selected to train
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both models (α and β) using the Random Forest classification

algorithm [10]. Our empirical evaluation shows that using this

simple classifier is effective since it provides both a lightweight

training time as well as a decent prediction accuracy (see Sec-

tion 5.4). However, utilizing other machine learning classifiers;

e.g. Neural Networks or Support Vector Machines, is orthogonal

to our work. The remaining candidate nodes are passed to the

trained models to predict their types and evaluation plans based

on their neighborhood signatures. SmartPSI uses these predic-

tions to evaluate each node against the query and the result of

this evaluation is cached for future use. In the rest of this section,

we describe in more details each one of these steps.

4.2.1 Predicting the Node Type (Model α ). Correctly predict-

ing the candidate node type (as valid or invalid) helps SmartPSI

to decide the node’s most efficient graph matching method (opti-

mistic or pessimistic). Valid nodes are best evaluated using the

optimistic algorithm while the pessimistic algorithm is much bet-

ter at evaluating invalid nodes. To select the best method for each

graph node, we utilize a binary classification model to predict

the node’s type (class) based on its neighborhood signature, and

accordingly decide which method to use for evaluation.

Training: The neighborhood signature of each graph node is

used to build the feature vectors for our classifier. Each label in

the neighborhood signature represents a feature and the value

associated with this label in the signature is considered as the

feature’s weight. Each training node is evaluated using the pes-

simistic method and is labeled based on its confirmed type. The

pessimistic method is used during model training since, on av-

erage, it is more stable and performs better than the optimistic

method.

Prediction: For the remaining graph nodes, the trained model

is used to predict the node type, either valid or invalid. Nodes

predicted as valid are passed to the optimistic method while

invalid nodes are given to the pessimistic method.

4.2.2 Predicting an Optimal Plan (Model β). Selecting the or-

der in which query nodes are evaluated is important for efficient

evaluation. A bad order results in an excessive number of inter-

mediate results and consequently poor performance. Existing

techniques [17, 18, 30] employ heuristic approaches to priori-

tize the evaluation of query nodes that have higher selectivity.

However, these approaches may not consistently provide good

performance since their proposed plans are not adapted to the

local features of each graph node.We describe next how SmartPSI

trains a classifier to predict an efficient locality-aware query plan

for each graph node based on its neighborhood signature.

Training: Model β is a multi-class classifier; its training phase
uses the same set of graph nodes used for model α . For each query,
a set of plans are generated and evaluated for each training node

ut . The plan that results in the least time is selected as the optimal

plan forut . This plan is considered the class ofut and is fed along
with ut feature vector to the multi-class classifier.

The training time can be very large especially for big queries

with a considerably large number of possible plans. For example,

a subgraph with 6 nodes can have up to 6! (or 720) plans. It is

not practical and very expensive to evaluate all these plans. To

mitigate this problem, we only train using a small sample of

these plans to minimize the training time. Furthermore, we avoid

evaluating very expensive plans by enforcing a configurable

time limit when evaluating each one of the sample plans. We

first set the time limit to a relatively small value. Evaluations of

subsequent plans are not allowed to exceed that time limit. If no

plan is able to finish within the allotted time, the time limit is

gradually increased. This process repeats until at least one plan

can finish within the time limit.

Prediction: For each remaining candidate node, SmartPSI uses

the created model β to predict a good query execution plan based

on its neighborhood signature. Then, this plan is fed to the cor-

responding PSI method for evaluation.

4.2.3 Prediction Caching. As shown in Figure 6, correct pre-

dictions of both models are cached to improve the run-time per-

formance of SmartPSI. The cache module stores the node signa-

ture of already evaluated nodes. Upon checking next candidate

nodes, SmartPSI checks if a similar node has been evaluated

before. If exists, the PSI evaluation model and execution plan

decisions are looked up from the cache without consulting the
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classifiers. Using caching improves the efficiency of SmartPSI

since the time needed to consult the prediction model and possi-

ble wrong predictions are avoided. This is because nodes having

the same neighborhood signature are deemed similar since they

have similar graph structures around them. Thus, they are ex-

pected to have the same optimal method and execution plan.

4.3 Preemptive Query Execution
As in any classifier, the trained model may result in incorrect

predictions. In our case, there are two types of prediction errors;

incorrect plan prediction and incorrect node type prediction.

SmartPSI, however, employs a detection and recovery technique to

minimize the impact of wrong predictions. As shown in Figure 6,

the preemptive query processor monitors the evaluation of a

node ui and an incorrect prediction is detected if the time of this

evaluation exceeds a maximum value. We calculate this value as

follows:

MaxTime(ui ) = 2 × AvgT(PSIMethod(ui ), Plan(ui ))

PSIMethod(ui ) returns the used PSI method for ui while

Plan(ui ) is the currently used plan. Note that AvgT(X ,Y ) returns
the average time needed for the selected PSI method X and plan

Y during the training phase. To be able to recover from bad pre-

dictions, the query processor goes through three states; (i) it
evaluates candidate nodes using predicted plan and PSI method

with a time limit. If the execution timed-out, (ii) the processor
uses the opposite PSI method and restarts the evaluation with

a time limit. This step overcomes wrong predictions in the first

model (Model α ). If the execution timed-out again, (iii) the pro-
cessor restarts the node evaluation, without time limits, by using

the original predicted PSI method with a standard execution plan

generated by selectivity-based heuristics. This step uses a best

guess for the execution plan because Model β was not able to

provide a credible suggestion. Since the accuracy of our classifica-

tion models is high (as we show later in Section 5.4), the majority

of candidate nodes should be able to finish before hitting the first

timeout.

5 EVALUATION
In this section, we experimentally evaluate the performance of

SmartPSI and compare it against existing competitors using sev-

eral real large-scale datasets. Specifically, we show the following:

(i) SmartPSI significantly outperforms the state-of-the-art sub-

graph isomorphism solutions for solving PSI queries (Section 5.2).

(ii) Our proposed optimizations provide significant improvements

including the optimized matrix-based signature generation and

the proposed machine-learning approach compared to optimistic-

only, pessimistic-only and the two-threaded baseline search tech-

niques (Section 5.3). (iii) Our machine-learning model achieves

both high accuracy and minimal run-time overhead (Section 5.4).

Finally, (iv) we show a significant improvement in the efficiency

of ScaleMine [4]; the state-of-the-art distributed frequent sub-

graph mining system; when subgraph isomorphism is replaced

by pivoted subgraph isomorphism (Section 5.5).

5.1 Experimental setup
Datasets: We use six real graphs to evaluate the performance of

SmartPSI and compare it to existing techniques. These graphs are

widely used in the subgraph isomorphism and frequent subgraph

mining literature [4, 9, 17]. Table 3 shows the details of each

dataset. Yeast [8] and Human [26] are protein-protein interaction

networks where nodes represent proteins and edges represent the

interactions among them. Cora [1] is a citation graph where each

node represents a publication with a label representing a machine

learning area. In the YouTube [3] graph, each node represents

a YouTube video and is labeled with its category, while edges

connect similar videos. Twitter [2] models the Twitter social

network where each node represents a user and edges represent

follower-followee relationships. The original Twitter graph is

unlabeled, we follow the same approach used in [4] to assign

node labels. Finally, Weibo [40] is a social network crawled from

Sina Weibo micro-blogging website. Each node represents a user

and is labeled with the city that user lives in, while each edge

represents a follower-followee relationship.

Table 3: Datasets and their characteristics

Dataset Nodes Edges #node labels

Yeast [8] 3,112 12,519 71

Cora [1] 2,708 5,429 7

Human [26] 4,674 86,282 44

Youtube [3] 5,101,938 42,546,295 25

Twitter [2] 11,316,811 85,331,846 25

Weibo [40] 1,655,678 369,438,063 55

Query Graphs: From each input graph, we extract a set of

random connected subgraphs as query graphs. Then, a random

node is assigned as a pivot node for each query. Similar to the

related work in [9, 17], a random walk with restart algorithm

is used to extract 1000 query graphs for each size. Query sizes

range from four to ten nodes. The resulted queries span a wide

range of query complexities including paths, trees, stars and other

complex shapes. Thus, they cover query loads for a wide variety

of PSI applications. Unless stated otherwise, in all experiment,

we use 1000 queries per query size.

Hardware Setup: SmartPSI and its competitors are deployed

on a single Linux machine with 148GB RAM and two 2.1GHz

AMD Opteron 6172 CPUs, each with 12 cores. We also use a

distributed hardware setting for deploying ScaleMine [4] and its

PSI version. In particular, we conduct ScaleMine experiments

(see Section 5.5) on a Cray XC40 supercomputer which has 6,174

dual sockets compute nodes based on 16 cores Intel processors

running at 2.3GHzwith 128GB of RAM.We used up to 32 compute

nodes with a total of 1024 cores. In all experiments, the maximum

allowed time is 24 hours, any task which exceeds this limit is

aborted.

5.2 Comparison with Existing Systems
SmartPSI is evaluated against three state-of-the-art subgraph iso-

morphism solutions: (i) CFL-Match [9]; the fastest reported sub-

graph isomorphism solution, (ii) TurboIso [17]; a recent subgraph
ismorphism system that utilizes the query structure to combine

the evaluation of similar parts of the query in a single task. and

(iii) TurboIso+; a modified version of TurboIso. Since TurboIso is

a subgraph isomorphism algorithm, it finds all matches of a given

query regardless of the pivot node. To optimize the performance

for PSI queries, we configured TurboIso
+
to start evaluating the

given queries using candidate matches of the pivot nodes and

stop the evaluation once a pivot node match is found. Since the

source code of CFL-Match is not publicly available, we could

not follow a similar approach to provide a modified version of

CFL-Match that is optimized for PSI queries. We also tried to
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Figure 7: Query Performance of SmartPSI vs. state-of-the-art Subgraph Isomorphism Systems

compare against TurboIso-Boost [30]; however, similar to what

mentioned in [9], we encountered several run-time problems and

we could not resolve them even after communicating with the

authors. Thus, we had to omit its results. Notice that SmartPSI

and all its competitors are single-machine in-memory systems.

Moreover, for each input graph, we use a maximum of 1000 nodes

to train the classification models in SmartPSI.

This experiment shows how available solutions (i.e., subgraph

isomorphism techniques) perform when solving pivoted sub-

graph isomorphism queries in comparison to SmartPSI. In order

to evaluate PSI queries, these algorithms use subgraph isomor-

phism to find all matches, then generates the list of distinct graph

nodes that correspond to the pivot query node. Figure 7 shows

the results on Yeast, Cora and Human datasets. The x-axis shows

the query size (in number of nodes) and the y-axis shows the

processing time. For Yeast (Figure 7(a)), subgraph isomorphism

is a comparably easy task since this dataset is relatively small.

As a result, existing techniques outperform SmartPSI on queries

of size four. As the query size increases, subgraph isomorphism

techniques become slower than SmartPSI. The optimizations pro-

posed by CFLMatch allows it to outperform other systems up to

queries of size 8, however, SmartPSI starts gaining momentum

and becomes the fastest for larger queries. Notice that TurboIso
+

is significantly faster than TurboIso due to its optimization step,

however, it is still slower than SmartPSI on larger queries.

For Cora dataset (Figure 7(b)), SmartPSI significantly out-

performs other systems with up to two orders of magnitude.

CFLMatch’s optimizations worked well for small queries; it is the

fastest for queries of size 4, 5 and 6. As the query size grows, sim-

ilar to the Yeast dataset, CFLMatch generates huge amounts of

intermediate query matches and becomes worse than SmartPSI.

For queries with size 10, TurboIso fails to finish query evaluation

within 24 hours. Finally for Human dataset (Figure 7(c)), both

TurboIso and CFLMatch fail to evaluate most of the queries as

this dataset is significantly larger and denser. TurboIso
+
could

only complete its evaluation for queries of size up to 8. Com-

pared to all systems, SmartPSI is able to evaluate all queries on

the Human dataset with performance improvements of up to

two orders of magnitude. This experiment highlights the unsuit-

ability of the state-of-the-art subgraph isomorphism solutions to

solve PSI queries even for small graphs. It also shows SmartPSI’s

significant improvements over the existing solutions.

5.3 SmartPSI Optimizations
Neighborhood Signature Overhead: Figure 8 compares be-

tween the matrix-based and exploration-based methods in terms
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Figure 8: Exploration vs. Matrix Based Approach for Pop-
ulating Neighborhood Signatures of various datasets.

of the total time for populating the neighborhood signatures (see

Section 3.1). As shown in Figure 8, the processing time of both

methods increases as the input graph gets larger. Exploration-

based method, however, suffers from being computationally ex-

pensive especially for large datasets. For Twitter, exploration-

based could not finish generating the nodes’ neighborhood sig-

natures within 24 hours. On the other hand, the matrix-based

method reduces the overhead of exploration-based method signif-

icantly. It requires around 400 seconds, which is more than two

orders of magnitude faster than the exploration-based method.

This significant improvement is a direct result of the difference

in complexities between the two methods.

SmartPSI vs. the two-threaded baseline: Figure 9 shows the
run-time overhead of evaluating 100 queries on SmartPSI com-

pared to the two-threaded solution using YouTube and Twitter

datasets. The X-axis shows the query size in terms of number of

nodes, while the Y-axis shows the total time to evaluate the cor-

responding queries. Only 100 queries are used since evaluating

1000 queries takes too much time for the two threaded approach.

Since the two-threaded baseline utilizes two parallel threads, for

a fair comparison, only in this experiment we run a modified

version of SmartPSI that uses two concurrent threads to evaluate

two different graph nodes in parallel. Using YouTube datatset,

Figure 9(a) shows that the two-threaded baseline outperforms

SmartPSI for small queries because it does not possess the over-

head of training and prediction. Nevertheless, the two-threaded

solution becomes slower than SmartPSI as queries grow in size

till it exceeds the time limit on queries larger than 7 nodes. This

is also true for Twitter dataset in Figure 9(b), where the two-

threaded baseline can only evaluate queries of size 4. SmartPSI
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Figure 9: SmartPSI (2 threads) vs. two-threaded Baseline

has an upper hand since the two-threaded baseline underutilizes

the available resources by using two threads to finish a task that

can be conducted by one thread. Moreover, the heuristic-based

query execution plans, which are used in the two-threaded solu-

tion, are far less competent than the optimized plans of SmartPSI.

SmartPSI vs. optimistic and pessimistic: Figure 10 compares

SmartPSI against Pessimistic-only and Optimistic-only using 10

queries for each query size on the Twitter dataset. In particular,

the Pessimistic solution uses the pessimistic PSI method regard-

less of the type of the graph node. Likewise, Optimistic solution

always use the optimistic PSI method. Moreover, the Pessimistic
and Optimistic solutions use a heuristic-based query evaluation

plan. SmartPSI significantly outperforms the optimistic and pes-

simistic methods. Furthermore, the two competitors fail to evalu-

ate queries of size eight. The node type prediction in SmartPSI

allows it to avoid exploring the full search space (compared to

Pessimistic) and to reduce the overhead of calculating scores and

sorting graph nodes accordingly (compared to Optimistic). More-

over, SmartPSI is able to predict the best evaluation plan for

the candidate nodes, which is not achievable for the other two

solutions.

5.4 Prediction Accuracy and Training
Overhead

Machine Learning Models: We tested several machine learn-

ing models to build SmartPSI’s classifier including Random Forest

(RF), Support Vector Machines (SVM) and Neural Networks (NN).

In our experiments, we found that the RF classifier provides the

best accuracy. For example, it always achieves more than 95% ac-

curacy on Human dataset compared to SVM (90%) and NN (92%).

At the same time, RF is two times faster in building the model

and getting predictions. We also observed similar performance
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results for the other datasets. Therefore, we use RF as it provides

consistently good performance in terms of accuracy and training

time.

Model accuracy:We conducted a set of experiments to measure

the prediction accuracy of the node type prediction model using

Yeast, Human, Cora, YouTube and Twitter datasets. Accuracy is

calculated by comparing the result of the model’s prediction to

the ground truth result obtained by node evaluation using sub-

graph isomorphism, i.e., the number of correctly predicted node

types divided by the total number of examined nodes. Figure 11

shows that the prediction accuracy of the proposed classification

model is always higher than 90% for the used datasets. Further-

more, it also shows that prediction accuracy is effective and stable

where the variation in predictions quality among the different

datasets is small regardless of the query size.

Training overhead: Table 4 shows the overhead of models train-

ing/prediction compared to the total query evaluation time. This

overhead includes model building, node type prediction and sug-

gesting a good execution plan. In this experiment, we ran 100

queries per query size for each dataset. For small datasets and

queries, the training overhead is relatively large compared to

the total time. For example in Human dataset, the prediction

overhead exceeds the PSI evaluation time for small queries. The

reason is that query evaluation on small graphs is usually compa-

rably fast. For larger query sizes in Human dataset, PSI evaluation

becomes more expensive which reduces the relative overhead of

the classification model. For larger datasets; e.g., YouTube and

Twitter, the training time is very insignificant compared to PSI

evaluation time. This shows that high accuracy of our classifica-

tion model comes at a low computation cost, especially on large

graphs.

370



Table 4: The overhead of model training and prediction to
the total time of SmartPSI

Dataset 4 5 6 7 8

Human 75.41% 57.94% 50.85% 34.88% 33.05%

YouTube 1.13% 1.19% 1.20% 1.79% 2.83%

Twitter 1.98% 5.33% 20.15% 2.35% 5.19%

5.5 PSI Application: Frequent Subgraph
Mining

This experiment highlights the advantage of using SmartPSI to

boost the efficiency of an example PSI-dependent application;

Frequent Subgraph Mining (FSM). For this experiment, we use

ScaleMine
1
[4]; the state-of-the-art distributed FSM system. Note

that ScaleMine uses subgraph isomorphism for finding occur-

rences for each candidate subgraph. We implemented ScaleM-

ine+SmartPSI, a variation of ScaleMine that employs SmartPSI’s

techniques instead of the traditional subgraph isomorphism

for computing the frequency of each candidate subgraph. Fig-

ures 12(a) and 12(b) show the performance of ScaleMine com-

pared to the optimized version, ScaleMine+SmartPSI, using Twit-

ter and Weibo datasets on frequency thresholds of 155K and

460K, respectively. The X-axis shows the total number of com-

pute nodes while the Y-axis shows the overall time required to

finish the mining task. For the Weibo dataset, the maximum size

of allowed frequent subgraphs is set to six edges. In this experi-

ment, ScaleMine+SmartPSI outperforms ScaleMine significantly

for both datasets. For Twitter, ScaleMine+SmartPSI is up to 5X

faster than ScaleMine. As for Weibo, ScaleMine+SmartPSI is up

to 6X faster. By replacing the traditional subgraph isomorphism,

ScaleMine+SmartPSI generates significantly less intermediate

results and quickly reaches the final answer.

6 RELATEDWORK
6.1 Subgraph Isomorphism
Subgraph isomorphism is the bottleneck of many graph opera-

tions since it is an NP-complete problem. Therefore, many re-

search efforts attempted to reduce its overhead in practice. The

first practical algorithm that addresses this problem follows a

backtracking approach [35]. Since then, several performance

enhancements were proposed, ranging from CSP-based tech-

niques [29], search order optimization [18], indexing [38] and

parallelization [33]. As reported in [26], GraphQL [18] is consid-

ered one of the best subgraph isomorphism techniques, though

its performance is not stable over the different datasets. Gra-

phQL prunes the search space by using local and global graph

information. Moreover, it utilizes a search order optimization

technique based on a global cost model.

TurboIso [17] is a recent approach that outperforms previous

techniques by grouping similar parts of the query and process

them at once. Moreover, TurboIso adapts its search order plan

according to each input graph node. BoostIso [30] is a plugin that

enhances the efficiency of other approaches. It is able to avoid

duplicate computations by exploiting the relationship among

the input graph nodes. CFLMatch [9] is the current state-of-

the-art technique for subgraph isomorphism. It decomposes the

query graph into a core and multiple trees. Such decomposition

allows better search order optimization. Moreover, CFLMatch

1
https://github.com/ehab-abdelhamid/ScaleMine
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Figure 12: ScaleMine vs. ScaleMine+SmartPSI

avoids redundant evaluations of tree leaf nodes by representing

the mappings of these nodes in a compressed way. Although

these techniques lead to relatively significant improvements in

the domain of subgraph isomorphism, the algorithm itself is

impractical especially for large graphs. The main reason behind

this limitation of subgraph isomorphism is the excessive number

of results it generates.

The closest approach to our work is Ψ-framework [22]. It

utilizes both isomorphic query re-writings and existing alter-

native algorithms in parallel to improve the performance of

subgraph isomorphism. Ψ-framework is similar to our two-

threaded prototype (Section 4.1) where it requires more process-

ing power to achieve a reasonable performance. Unlike SmartPSI,

Ψ-framework is unable to decide on which approach is better to

use during runtime.

6.2 Neighborhood Signature
A graph node can be represented by a signature that reflects the

neighborhood structures around it. This neighborhood signature

can be represented as a feature vector and used inmany important

applications such as abnormal nodes detection [6] and predicting

missing links [27].

Neighborhood signatures are also used for indexing and prun-

ing. GADDI [41] is a subgraph matching solution that builds an

index based on graph structures that exist between any pair of

vertices. Based on this index,a two way pruning technique is

used to efficiently prune candidate matches. GADDI suffers from

the excessive cost required for creating its index. NOVA [43]

and DSI [24] maintain the paths to and from surrounding nodes.

These paths are used to filter out unqualified graph nodes. Both

Nova and DSI rely on maintaining a huge number of paths. As

such, both technique comprise excessive overhead, especially
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when processing large-scale dense graphs. (NNT) [36] is a more

effective index that relies on finding the trees around each graph

node. NNT requires the use of tree matching algorithms which

makes pruning and matching more complex.

The above approaches are expensive, especially for large-scale

dense graphs. Other simpler indexes were proposed such as

SMS [42] which maintains the list of labels and node degrees

that appear in the neighborhood. Although this indexing tech-

nique is simple, it significantly outperforms NOVA and GADDI.

Tale [34] is a system that finds approximate matches of query sub-

graphs in an input graph. It relies on an index, called NH-Index,

which maintains information about the direct neighbors of each

graph node. NH-Index maintains information such as node label,

node degree, neighbor nodes and how they are connected. Both

SMS and Tale focus on the direct neighbors. Thus, their pruning

and descriptive power is limited. More recently, k-hop label [7]

extends its indexing by considering all neighbor nodes within

K-hops. Such representation extends beyond direct neighbors,

but it lacks effective representation of the surrounding structure.

Finally, label propagation [23] captures the neighborhood struc-

ture around each graph node using a list of labels along with their

corresponding weights. Weights represent how labels are placed

and connected around the node under consideration. Thus, more

informative structural information is captured.

7 CONCLUSION
In this paper, we propose SmartPSI; an efficient machine-learning

based system for evaluating Pivoted Subgraph Isomorphism (PSI)

queries. It is based on two effective PSI algorithms; each is op-

timized for a certain graph node type. SmartPSI is also coupled

with a machine-learning model to predict the graph node type

and call the appropriate PSI algorithm accordingly. It also uses

a machine-learning based query optimizer to select execution

plans that reduce the total query run-time by minimizing inter-

mediate query results. Our experiments show that SmartPSI is

efficient and able to scale PSI evaluation where it is up to two

orders of magnitude faster compared to existing subgraph iso-

morphism techniques. Furthermore, when applied to Frequent

Subgraph Mining (FSM), PSI improves the performance of the

state-of-the-art distributed FSM system by up to a factor of 6X.
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