
Privacy Preserving Similarity Evaluation of
Time Series Data

Haohan Zhu
Department of Computer

Science
Boston University
zhu@cs.bu.edu

Xianrui Meng
Department of Computer

Science
Boston University

xmeng@cs.bu.edu

George Kollios
Department of Computer

Science
Boston University

gkollios@cs.bu.edu

ABSTRACT

Privacy preserving issues of time series databases in finan-
cial, medical and transportation applications have become
more and more important recently. A key problem in time
series databases is to compute the similarity between two
different time series. Despite some recent work on time se-
ries security and privacy, there is very limited progress on
securely computing the similarity between two time series.
In this paper, we consider exactly this problem in a two-
party setting (client and server). In particular, we want to
compute the similarity between two time series, one from
the client and the other from the server, without revealing
the actual time series to the other party. Only the value
of the similarity should be revealed to both parties at the
end. At the same time, we want to do the computation as
efficiently as possible. Therefore, we propose practical pro-
tocols for computing the similarity (or distance) for time se-
ries using two popular and well known functions: Dynamic
Time Warping and Discrete Fréchet Distance. Since both
of these functions require dynamic programming to be com-
puted, our protocols not only encrypt the original time series
data, but also try to hide intermediate results, including the
matrix of the dynamic programming algorithm and the path
of the optimal solution. The protocols combine partial ho-
momorphic encryption and random offsets to protect inter-
mediate information and at the same time provide efficient
computation. Unlike previous approaches that are mostly
theoretical, our protocols are scalable and easy to imple-
ment. We also provide an experimental evaluation where
we assess the scalability and practicality of our schemes us-
ing both synthetic and real datasets.

Categories and Subject Descriptors

I.5.3 [Clustering]: Similarity measures

Keywords

Time Series Database, Similarity, Privacy Preserving

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

1. INTRODUCTION
Database security has received increased interest in recent

years due to the increasing demand for efficient data man-
agement and the development and deployment of outsourced
and cloud databases. Most of recent works in the database
security community concentrates on traditional databases
like relational, object relational, and XML storage systems.
However, despite the fact that many important applications
like financial, medical and transportation applications store
data in the form of time series data and these applications
store sensitive and valuable information, little work has been
done on the security problems associated with these appli-
cations. In some very timely recent works [30, 32] related
to time series data, the main problem is to answer aggre-
gation and other statistical queries on time series data us-
ing differential privacy to quantify the security guarantees.
However, there are a number of other important query types
in time series databases that have not been addressed effi-
ciently yet from a security or privacy point of view. Exam-
ples include time series similarity search and subsequence
matching queries. In this paper, we initiate one of the first
studies in developing practical algorithms and protocols to
compute the similarity between time series data in a way
that is efficient and at the same time protects the privacy of
the individuals associated with these time series data. In-
deed, there are a large number of applications that require
such protocols.

For example, consider a hospital database which stores
physiological data (e.g., ECG) in the form of time series
associated with certain diseases. Also, consider a new pa-
tient, Alice, that has her own physiological data and need
to search in the database to find whether there exists any
patient with similar characteristics. The problem can be re-
duced to a similarity search of time series data. However,
Alice does not want to reveal her own data, unless there
is a good match. At the same time, the hospital does not
want to provide the actual data of its database to Alice in
order to protect the privacy of the patients associated with
the data. Therefore, in that case, we need a protocol to
exchange physiological data information and compute the
similarity while preserving the privacy of both the hospital
database and the new patient. Another example is the fol-
lowing: consider a user, Bob, that would like to verify if his
signature, represented as time series, exists in a signature
database. Again, both Bob and the database owner may
not want to reveal the actual time series data. The only in-
formation that can be learned is the similarity between the
Bob’s signature and a database record. Similar problems

499 10.5441/002/edbt.2014.45

exist in many other time series applications including audio
and video databases, financial databases, medical databases,
and trajectory databases. Notice that in our examples we
have two parties where one party is a user and the other
party stores a database or large amounts of data. Follow-
ing this paradigm, our protocols are asymmetric in the sense
that we assume that one party can have more computational
power than the other party. We call the weak party “client”
and the other party “server” in the rest of the paper.

In our setting, we have exactly two parties that have their
own time series and would like to compute the similarity be-
tween them without revealing the actual time series to the
other party. Notice however, that the value of the similar-
ity between two time series is revealed to both parties and
therefore some additional information can be leaked because
of that. In this paper, similar to previous related work [13,
18, 2], we assume that both parties agree that they are will-
ing to accept this leakage. As it was pointed out in [13],
understanding the amount of private information that the
result itself leaks is an important and interesting problem
but it is outside of the scope of this paper. Therefore, we
consider only the information that is leaked during the ex-
ecution of the protocol. More about our security model is
discussed in Section 4.

Despite some recent works that investigate secure compu-
tation of some distance functions between strings or vectors,
such as Hamming distance [17, 26], Edit distance [13, 18, 2]
and Euclidean distance [14, 15, 8, 34, 16, 12], we are not
aware of any work that computes efficiently and securely
distance functions between time series data. In this paper
we consider some specific distance functions, namely, Dy-
namic Time Warping and Discrete Fréchet Distance. Both
Dynamic Time Warping and Discrete Fréchet Distances use
dynamic programming to be computed and are very robust
to small variations and noise. They have been shown to pro-
vide very good results in a number of different applications
[35]. Existing approaches that can be used to compute these
distance functions are either in-secure (computed on plain-
texts) or very impractical (for example the approach in [2]
will take many thousands of seconds to compute the distance
between two time series of length 100.) In Section 2, we an-
alyze why existing methods that we mention above cannot
be easily extended to distance functions for time series data
like Dynamic Time Warping and Discrete Fréchet Distance.
On the other hand, our new proposed protocols decrease
the computation of time series distance functions by at least
three orders of magnitude compared to previous approaches
and still provide considerable security. Furthermore, we pro-
vide the first real implementation of such protocols, as far
as we know, for computing time series distance functions
and provide a detailed experimental evaluation. We believe
that in this work we show that computing on time series
data with reasonable security and privacy guarantees can
become both possible and practical. Finally, our techniques
can be easily extended to other distance functions computed
by dynamic programming algorithms as well.

Overall, this paper makes the following contributions:

• We propose novel privacy preserving protocols to com-
pute Dynamic Time Warping and Discrete Fréchet Dis-
tances between two time series that belong to two dif-
ferent parties.

• Our protocols are scalable and practical. The perfor-

mance is linear to the dimensionality of each element in
the time series and quadratic to the length of the time
series due to dynamic programming algorithm with no
additional computation-overhead.

• The proposed protocols protect the original data and
preserve at least half of the information entropy for the
intermediate results generated during the execution of
the protocols.

• Finally, we provide the implementation of our schemes
and an experimental evaluation that validates the effi-
ciency and practicality of the proposed protocols.

The paper is organized as follows: Section 2 introduces re-
lated work and Section 3 provides formal definitions of dis-
tance functions and existing protocols of secure Euclidean
distance computation. Section 4 describes the threat model
and potential risks in dynamic programming algorithms.
Section 5 and Section 6 introduce privacy preserving pro-
tocols for computing Dynamic Time Warping and Discrete
Fréchet Distance separately. Finally, Section 7 provides an
experimental evaluation and Section 8 concludes the paper.

2. RELATEDWORK

2.1 Preserving Privacy in Databases
Recently, issues related to database security and privacy

have attracted more and more attention. Along with per-
vasive uses of differential privacy, many database applica-
tions can preserve privacy of both server and client. Dif-
ferential privacy has already been applied in data publica-
tion [5, 33, 37], counting queries [23, 36], histogram queries
[9], log queries [11], and spatial data queries [6]. Further-
more, there are some recent works on applying differential
privacy to time series databases [32, 30]. However, the ob-
jective of both these two papers focus on answering aggre-
gated information from time series databases. For exact
match and nearest neighbor queries, differential privacy is
not easy to apply since it is defined for statistical queries
on databases. For those queries, recent work utilized ap-
plied cryptographic techniques such as private information
retrieval [28] and oblivious transfer [29]. Multi-party compu-
tation and homomorphic encryption are also strong applied
cryptographic techniques. Some works use multi-party com-
putation protocol for table joins [19, 16, 1]. Murugesan et al
[25] adopts multi-party computation to detect the similarity
between documents. Yang et al [38] utilizes secure multi-
party computation for secure summations in data mining.
Moreover, many papers use homomorphic encryption to cal-
culate Euclidean distances [15, 16, 12, 34].

2.2 Homomorphic Encryption
As described above, there are plenty of papers that in-

troduce protocols to compute the square of Euclidean dis-
tance securely by using homomorphic encryption [14, 15,
8, 34, 16, 12]. In this paper, we adopt the same protocol
to compute square of Euclidean distance securely which is
part of our intermediate results. In Section 3.2, we discuss
for completeness the protocol of computing the square of
Euclidean distance. This is the same as the protocols in
the literature above but differ a little bit at the informa-
tion exchange settings. In the experiments, we use the Pail-
lier cryptosystem [27] as a partial homomorphic encryption

500

system. This encryption satisfies homomorphic addition of
ciphertexts and homomorphic multiplication to plaintexts.
This fact makes Paillier cryptosystem very well suited for
computing the square of Euclidean distance efficiently.

2.3 Two-Party Computation
Since Yao proposed the millionaire problem [39], a number

of protocols for secure multi-party computation have been
developed. Many custom protocols have been devised for
different problems. Furthermore, several systems such as
Fairplay [24] and TASTY [10] based on garbled circuits have
been developed recently and have been used for building
secure protocols for securely computing functions in two-
party settings.

To allow time shifting, dynamic programming algorithms
are usually used for evaluating similarity between strings, se-
quences and time series. There are some recent papers that
deal with the Edit Distance using dynamic programming al-
gorithms. Huang et al [13] and Jha et al [18] use garbled
circuits to compute the Edit Distance and Smith-Waterman
distance for sequences of DNA and string databases. Al-
though Edit Distance and Smith-Waterman are computed
using dynamic programming, the distance between a pair of
characters is quite different from the distance between two
elements of time series sequences. Garbled circuits can be
used to check the identity of two characters using very effi-
cient and inexpensive XOR gates [22]. On the other hand, in
time series, we have to compute a distance between real or
integer values and sometimes, when the elements are vectors,
we need to compute an Lp norm. For this case, it is known
that garbled circuits approaches can be extremely expensive
since we have to implement full adders and multipliers into
the circuit that will increase its size and complexity [21].
Therefore, although in theory it is possible to use garbled
circuits to compute the distance between time series data,
it is expected to be very expensive in terms of space and
communication overhead and computation time according
to existing circuits. Hence, although Edit Distance, Dy-
namic Time Warping and Discrete Fréchet Distance all use
dynamic programming algorithms to compute, the methods
using garbled circuits to compute Edit Distance are not suit-
able for computing distance functions for time series data.

Atallah et al [2] proposes a protocol to compute edit dis-
tance rather than using garbled circuits. In their protocol,
the matrix for dynamic programming is shared by two par-
ties. To protect intermediate results, they develop a mini-
mum finding protocol which runs many times Yao’s protocol
[39] which is expensive. In particular, if we have two time
series X and Y with size m and n respectively, and each
element of the time series is a d-dimensional vector, we need
to run about 3 ∗ m ∗ n ∗ d2 times the Yao’s protocol. To
compute the Yao’s protocol a single time in one of the most
efficient implementations right now it will take at least 1.25
seconds [24]. Notice that here we do not include other oper-
ations that can be also costly. Therefore, this protocol will
be very inefficient in practice. We would like to point out
that in our protocols we use a completely different approach
to store the matrix and this allows our methods to be much
more efficient as we discuss next.

Thus, to our best knowledge, there is no practical existing
protocol which computes distance functions for time series
data like Dynamic Time Warping and Discrete Fréchet Dis-
tance efficiently.

3. PRELIMINARIES

3.1 Distance Functions for Time Series Data
Let X and Y be two time series sequences with lengths |X|

and |Y | respectively, where X = 〈 x1, x2, x3, ..., x|X| 〉 and
Y = 〈 y1, y2, y3, ..., y|Y | 〉. Let the dimensionality of each

element in each sequence be d, namely, xi, yj ∈ R
d. Then,

the two time series are comparable, only if the elements xi

and yj have the same dimensionality. Notice that we allow
|X| to be different from |Y |.

There are a number of distance functions which can mea-
sure the dissimilarity (distance) between two time series se-
quences including Euclidean Distance, Dynamic Time Warp-
ing [20], Discrete Frechét Distance [7], ERP Distance [4], and
etc. We denote by δ(X, Y) the distance between two time
series sequences X and Y . In this paper, we concentrate
on the Dynamic Time Warping δDTW and Discrete Frechét
Distance δDFD. We use these distances because they are
more robust to time shifting and small noise and have been
shown to be practical and efficient for many time series data
mining tasks [35].

Both Dynamic Time Warping δDTW and Discrete Frechét
Distance δDFD are computed by using dynamic program-
ming. Next, we discuss the definitions of these distances.
First, we define a coupling C which is a sequence of pairs of
elements from sequence X and sequence Y :

• C = 〈C1, · · · , Ck〉 where ∀r, Cr = (xi, yj).
• C1 = (x1, y1) and Ck = (x|X|, y|Y |)

• Cr = (xi , yj) ⇒ Cr+1 ∈ { (xi+1 , yj) , (xi , yj+1) ,

(xi+1 , yj+1) } ; ∀ r = 1 , . . . , k − 1

Let X, Y be two time series sequences with elements in
R

d, and let | · | denote an underlying norm in R
d. Then

Dynamic Time Warping δDTW (X, Y) is defined as:

δDTW (X, Y) = min
couplingC

Σ(xi,yj)∈C |xi − yj | (1)

while Discrete Fréchet Distance δDFD(X, Y) as:

δDFD(X, Y) = min
couplingC

max
(xi,yj)∈C

|xi − yj | (2)

Let δ(Xi, Yj) be a cumulative distance, where Xi denotes
a time series subsequence extracted from sequence X start-
ing from the first element x1 to the i-th element xi. Let
Yj denote the same from y1 to yj . Then, Dynamic Time
Warping can be represented as:

δDTW (Xi, Yj) = |xi − yj | + min{δDTW (Xi−1, Yj),

δDTW (Xi, Yj−1), δDTW (Xi−1, Yj−1)}

while Discrete Fréchet Distance can be represented as:

δDFD(Xi, Yj) = max{|xi − yj |, min{δDFD(Xi−1, Yj),

δDFD(Xi, Yj−1), δDFD(Xi−1, Yj−1)}}

Therefore, to compute the distance between X and Y , we
have to fill an |X| × |Y | matrix M|X||Y | with each entry mi,j

= δ(Xi, Yj). The entry m|X|,|Y | = δ(X, Y) is the distance
between the two sequences. Thus, the time complexity of
computing both distance functions is O(|X||Y |).

Now, we are ready to define the problem that we address
in this paper:

Problem: Let P1 and P2 be two parties that own time
series X and Y respectively. We call P1 client and P2 server.

501

The goal is to design a protocol to compute the distance
δ(X, Y) without either party learning the actual time series
of the other party. Furthermore, we would like to execute the
computation as fast as possible and minimize any leakage of
information during the execution of the protocol. The final
result will be shared by both parties.

3.2 Protocol for Computing the Square of the
Euclidean Distance Securely

In the process of computing either Dynamic Time Warp-
ing or Discrete Fréchet Distance X and Y , the norm of ev-
ery pair elements xi and yj should be computed. The most
common norm is the L2 norm which corresponds to the Eu-
clidean distance. In our schemes we use the square of the
Euclidean distance because it is easier to compute securely
and the results are similar as in the case of the exact Eu-
clidean distance. We denote this distance as δ2

Eu.
There are many approaches using partial homomorphic

encryption systems to compute the square of Euclidean dis-
tance between two vectors securely [14, 15, 8, 34, 16, 12].
For completeness, we briefly introduce the protocol of com-
puting square of Euclidean distance in this Section. The
only slight difference compared to the previous protocols is
the setting for information exchange. In our protocol, we
require one party to send all the encrypted information to
the other party only once and the other party calculates the
encrypted square of the Euclidean distance that is used dur-
ing the calculations of the dynamic programming algorithm.
In other words, in our protocol only one way communication
is enough and we do not require any party to decrypt or re-
trieve the real value of square of Euclidean distance. The
encrypted values are the intermediate results in our proto-
col.

Let the client hold a d-dimensional vector bp = 〈p1, ...pd〉
and let the server hold another d-dimensional vector bq =
〈q1, ...qd〉. The client would like to evaluate the encryption
of square of Euclidean distance Enc(δ2

Eu(bp, bq)). Namely, the
client should compute the following function:

Enc(δ2
Eu(bp, bq)) = Enc(

d
X

i=1

p2
i +

d
X

i=1

q2
i − 2

d
X

i=1

piqi) (3)

To protect the square of Euclidean distance to be revealed,
the public key is known by both the client and the server,
however only the server has the secret key, since the client
is the evaluator in this protocol. Therefore, if the client
receives only encrypted values generated from bq, it cannot
learn anything about bq. Also, since the server does not re-
ceive anything from the client, the server cannot learn any-
thing about bp either. If the encryption system satisfies ho-
momorphic addition, the client can evaluate Enc(δ2

Eu) by
using the ciphertexts from bq and the plaintexts from bp.

For the Paillier cryptosystem, we have that Enc(m1 +m2

mod n) is equal to Enc(m1) · Enc(m2) mod n2. Also, we
have that Enc(m1 ∗k mod n) is equal to Enc(m1)

k mod n2.
Then the Paillier cryptosystem satisfies all the requirements
to compute the encrypted square of the Euclidean distance.
Thus, Equation (3) can be decomposed to:

Y
7 11 7 4 5 4 3
5 7 4 2 3 3 4
6 5 3 2 4 2 3
4 2 1 2 2 4 7
2 1 3 6 8 12 17

3 4 5 4 6 7 X

Figure 1: Matrix Computed during the Execution
of Dynamic Programming

Enc(

d
X

i=1

p2
i)

| {z }

(I)

·Enc(

d
X

i=1

q2
i)

| {z }

(II)

·

d
Y

i=1

Enc(qi)
−2pi

| {z }

(III)

(4)

Now, the three parts can be calculated separately. Indeed,
the server (the owner of bq) can compute “part (II)” locally
and send ciphertexts to the client (the evaluator and the
owner of bp). Also the client can calculate “part (I)” locally.
Then the server sends all encrypted qi to the client. The
client can compute “part (III)” by using Enc(qi) and pi.
Finally, the client can evaluate Enc(δ2

Eu) without knowing
any information about bq.

The one-way protocol for computing the encrypted square
of Euclidean distance is:

1. The Server

(a) Encrypt
Pd

i=1 q2
i and each qi

(b) Send Enc(
Pd

i=1 q2
i) and Enc(qi) to the client

2. The Client

(a) Encrypt
Pd

i=1 p2
i ⇒ Enc(

Pd
i=1 p2

i)

(b) Calculate Enc(qi)
−2pi by using Enc(qi).

(c) Calculate Enc(δ2
Eu) using Equation (4)

The above protocol is used to compute the pairwise dis-
tances between every pair of elements of X and Y . In Sec-
tions 5 and 6, we present the overall protocols which will use
the above protocol as a part and show how to use encrypted
squares of Euclidean distances in order to fill the matrix of
the dynamic programming algorithm. Before we go there,
we discuss first our security model and settings.

4. SECURITY MODEL AND SETTINGS
In this paper, we adopt the semi-honest threat model

which is also called honest-but-curious (HBC) threat model.
In this threat model, we assume that both parties (client and
server) follow the protocols exactly. The semi-honest threat
model is a commonly used model in two-party computation.

Even though both the client and the server follow exactly
each protocol, they may try to learn additional information
about the time series of the other party during the execu-
tion of the protocol. The basic objective in our scheme is
to limit the information revealed to each other during the
computation. As we discussed in the introduction, the final
result of the computation may reveal some information that
depends on the distance function and the data. We assume
that both parties are willing to take that risk. On the other
hand, the information that is leaked during the execution of
the protocol should be quantified and minimized as much as

502

Y
Enc(7) Enc(11) Enc(7) Enc(4) Enc(5) ...
Enc(5) Enc(7) Enc(4) Enc(2) Enc(3) ...
Enc(6) Enc(5) Enc(3) Enc(2) Enc(4) ...
Enc(4) Enc(2) Enc(1) Enc(2) Enc(2) ...
Enc(2) Enc(1) Enc(3) Enc(6) Enc(8) ...

3 4 5 4 X

Figure 2: Cipher Matrix Owned by Evaluator X

possible. In addition, we consider the leakage for a single
query. The information that is leaked if a client runs many
queries one after the other against the same time series is
beyond the scope of the current paper.

There are two kinds of intermediate results during the
computation of the distance functions. One is the under-
lying norm distance between a pair of single elements in
the sequences. Our method is secure by using protocol in
Section 3.2. The other are the entries of the m × n ma-
trix generated during dynamic programming. For example,
assume X = (3, 4, 5, 4, 6, 7) and Y = (2, 4, 6, 5, 7) are two
time series sequences. When computing the Dynamic Time
Warping distance δDTW (X, Y), we need to maintain a 6 ×
5 matrix M . Figure 1 shows the matrix M for computing
Dynamic Time Warping distance δDTW (X, Y).

Clearly, if the matrix is maintained by one party in plain-
text, this party can infer the other party’s data step by step.
For example, assume the matrix owner is also the owner of
X. Since this party knows x1 = 3 and m11 = 1 = δEu(x1, y1),
then it can infer that y1 is either 2 or 4. Since this party
knows x2 = 4 and m21 = 3 = m11 + δEu(x2, y1). Then it
knows δEu(x2, y1) = 2 and it can infer that y1 is either 2 or
6. Thus, this party knows y1 = 2. Similarly, this party can
infer the whole sequence of Y . Therefore, the matrix of the
dynamic programming algorithm should not be revealed.

Secret sharing is an important method to protect the ma-
trix. However, as discussed in Section 2, splitting the matrix
data [18, 2] is not efficient, because retrieving the original
values needs extra two-party computation protocols. In our
protocols, we adopt the schema which splits the encrypted
data and the key between the parties. The encrypted values
of the matrix are stored in one party (the client) and the
secret key of the encryptions is kept in the other party (the
server). Since the encryption is partially homomorphic, the
client can still perform the necessary computations to create
and update the matrix without learning any real value in the
matrix. An example of the ciphertexts matrix is shown in
Figure 2. We assume that the owner of sequence X main-
tains the ciphertext matrix. Then, it can access the plain-
texts of X and the ciphertexts of Y in order to compute the
ciphertexts of the entries mi,j in the matrix.

There is another important information included in the
matrix: the path of the optimal couplings. If the matrix
owner knows m2,2 is equal to m1,1, then the matrix owner
learns that the coupling path is from {X1, Y1} to {X2, Y2}.
We claim that the ciphertext matrix will not expose such
information, if the ciphertexts of the same plaintext are dif-
ferent. For example, in Figure 2, we require that m1,1 and
m2,2 are different and independent ciphertexts although the
decryptions are both 1. By using Paillier cryptosystem, we
can achieve this since Paillier cryptosystem is probabilistic
encryption system. The detail of analysis is in Section 5.5.

yj Enc(a)
Enc(δ2

Eu(xi, yj)) ·
Enc(min{a, b, c})

yj−1 Enc(b) Enc(c)

xi−1 xi

Figure 3: Filling One Cell for DTW

5. PRIVACY PRESERVING PROTOCOL

FOR DTW

5.1 Privacy Preserving Protocol
Here, we present our privacy preserving protocol for com-

puting the matrix for the dynamic programming computa-
tion of DTW. We assume that to compute the distance be-
tween two elements of the time series we use the square of
the Euclidean distance.

Algorithm 1: Dynamic Time Warping

Input: Sequence X[m], Sequence Y[n]
Data: Matrix M[m][n]
Output: Value M[m][n]
M[i][1] = δ2

Eu(X[1], Y[1]);

for i = 2 : m do M[i][1] = δ2
Eu(X[i], Y[1]) + M[i-1][1];

for j = 2 : n do M[1][j] = δ2
Eu(X[1], Y[j]) + M[1][j-1];

for i = 2 : m do
for j = 2 : n do

cost = δ2
Eu(X[i], Y[j]);

M[i][j] = cost +
min(M[i-1][j-1], M[i-1][j], M[i][j-1]);

The main component of the dynamic programming algo-
rithm is filling the matrix. This algorithm is the same as in
the non-secure case with the main difference that the val-
ues in the matrix are actually encrypted using the Paillier
encryption scheme. There are two parts in this component:
1) computing the square of the Euclidean distance and 2)
comparing three entries that have already been filled in the
matrix to find the minimum among them and then calculate
the next entry. The process of filling one entry of the matrix
is shown in Figure 3.

Since the two parts are independent, they can be executed
in two different phases. First, we compute the distance be-
tween the ith element of X and the j element of Y for every
i and j and store the results. Then, we perform the sec-
ond phase where for each cell M(i, j) in the matrix, we try
to find the minimal value of the three previous ciphertexts
M(i−1, j), M(i−1, j−1), M(i, j−1) without revealing the
real values to either party.

In the first phase, we reuse the protocol discussed in Sec-
tion 3.2 to compute the square of the Euclidean distances
for all pairs of elements from X and Y . As we discussed al-
ready this phase is fully secure and at the end of this phase
the client will have all the values in encrypted form. The
server holds the secret key of this encryption. In the sec-
ond phase we need to compute the minimum among three
ciphertexts and get a new ciphertext of the minimum. If we
have both the square of the Euclidean distance and the min-

503

imum in encrypted form, then the encryption of new entry
can be calculated since the encryption scheme is additively
homomorphic.

In this section, we mainly discuss how to compute the en-
cryption of the minimum value. Notice that, computing the
encrypted minimum is another two-party computation prob-
lem. First we introduce the settings in our model. Here we
have one party, the client, who has three encrypted values
e1 = Enc(a), e2 = Enc(b), and e3 = Enc(c) and needs to ac-
quire the encryption of the minimum e′ = Enc(min{a, b, c})
with the help of the server. In order to hide the path, the
new encryption e′ should be different from all previous three
encryptions e1, e2 and e3. Neither of the client and the server
should learn the plaintext values a, b, and c.

Before we present our solution, we discuss why existing
approaches cannot be used to solve this problem efficiently.
Kolesnikov et al. [21] proposed a simple theoretical solu-
tion to solve this problem securely using Yao’s garbled cir-
cuits. However, since the circuits take homomorphically en-
crypted inputs and return homomorphically encrypted out-
puts, the cost of their solution will be very expensive in
practice and therefore not practical, as they mention in their
paper. Huang et al.[14] proposed a garbled circuit to return
the index of the minimum value. However, due to the na-
ture of our computation, if the client knows the index of
the minimum value, he will learn the path of the optimal
couplings which can be serious leakage. Finally, Atallah et
al [2] proposed a minimum finding protocol rather than gar-
bled circuits which retrieves the minimum from two split
matrices. The protocol runs the Yao’s protocols a few times
to compute the minimum which is not practical either as we
discussed before.

To solve the problem efficiently, we propose another so-
lution. Our protocol guarantees that the client will learn
nothing about the original values or the optimal path. On
the other hand, some limited information may be leaked to
the server. Details of the security analysis and information
preservation are discussed in 5.3 and 5.4.

Since only the server has the secret key of the encryption
scheme, the client can ask the server to decrypt the three
values and find the minimum. However, this will leak the
actual values to the server. In order to address this prob-
lem, we add a set of random values to the original values in
a way that the server will still be able to compute the repre-
sentative of the minimum value without knowing the actual
values. Also, the server will send back an encrypted value,
Enc(min{a, b, c}), to the client who can fill in the encrypted
matrix.

Assume the client has three ciphertexts Enc(a), Enc(b)
and Enc(c). The client can add randomness to the cipher-
texts by using homomorphic addition:

Enc(a + r) = Enc(a) · Enc(r) (5)

Let the client generate a set of random values R uniformly
from some certain range, i.e. R = { r1 , · · · , rk | ri > r1

, ∀ i 6= 1 }. W.l.o.g. we also denote r1 as rmin. The
client can generate a set of encrypted values that will be
sent to the server. The set of new encrypted values is C = {
Enc(a+ rmin), Enc(b+ rmin), Enc(c+ rmin), Enc(x2 + r2),
Enc(x3+r3) . . . Enc(xk +rk) }, where xi is chosen from a, b
and c randomly. The size of the random set k is a parameter
of our protocols and we will analyze its effect on the security

of the protocol in Section 5.3 and effect on performance in
Section 7.

Next, the server will decrypt all the ciphertexts and will
return the encryption of the minimal one Enc(m) to the
client. The minimal value m from the server must be one of
the a + rmin, b + rmin and c + rmin, since all of ri where i
6= 1, are larger than rmin. Then the client can retrieve the
encryption of the real minimal value as Enc(m−rmin) using
homomorphic addition.

The full protocol is as follow:

1. The Client

(a) Has three ciphertexts: Enc(a), Enc(b)
and Enc(c).

(b) Generate a set of random values R =
{ r1 , r2 , r3 · · · , rk | ri > r1 , ∀ i > 1 }.

(c) Generate 3 minimal candidates Enc(a + rmin),
Enc(b + rmin) and Enc(c + rmin).

(d) Generate other k − 1 candidates:
For i ∈ [2, k], generate Enc(xi + ri), where each
Enc(xi) is chosen randomly from Enc(a), Enc(b), and
Enc(c).

(e) Send all k + 2 candidates to the server.

2. The Server

(a) Decrypt all inputs.

(b) Get the minimal plaintext as m.

(c) Encrypt m as Enc(m).

(d) Send Enc(m) to the client.

3. The Client

(a) Calculate Enc(m − rmin).

(b) The encryption of minimum of a, b, c is Enc(m −
rmin).

We have to be careful when we add the random values in
order to avoid wrap-around. The idea is to control the range
of the random values and the range of the plaintexts in the
matrix and ensure that there are enough bits to accommo-
date both in the additions.

5.2 Performance Analysis
In this section, we discuss first the communication cost

and then the computational cost of our protocol. To com-
pute an entry in the matrix, one and half rounds commu-
nication between the server and the client are needed. In
phase 1 of the protocol one way communication from the
server to the client is used. Since every element of the time
series is in R

d, d + 1 values need to be transferred for each
entry in that phase. Phase 2 of the protocol uses one full
round of communication from the client to the sever. The
number of values transferred from the client to the sever de-
pends on the size of the random set. If the size of this set
is k, then k + 2 ciphertexts need to be transferred. On the
other hand, the server returns only one value to the client.
So, in phase 2, total of k + 3 values need to be transferred.
Therefore, d + k + 4 total values will be transferred for each
entry of the matrix. Assuming that |X| = m and |Y | = n,
the total number of transferred values is: mn(d + k + 4).

Next, we consider the computational cost. The most ex-
pensive parts are the encryptions and decryptions of plain-
texts and ciphertexts respectively when the dimension of
time series is not very high. Since only the server has the
secret key, it is the only party that performs decryptions.

504

In phase 1, the server needs to do d + 1 encryptions. The
client needs to do only one encryption. In phase 2, the sever
performs k + 2 decryptions and one encryption. The client
needs to do k encryptions. Thus, d + 2 encryptions and
k + 2 decryptions are required to be done by the server and
k+1 encryptions for the client, for each entry of the matrix.
Since the decryption takes more time than the encryption
in the Paillier cryptosystem, the server will perform more of
the computational work in the protocol. The experimental
evaluation in Section 7 validates the analysis that we have
here.

5.3 Security Analysis
Assume an m×n matrix M is used for computing the dis-

tance in dynamic programming. When computing one entry
of the matrix, the client sends a set of values in encryption:
a + rmin, b + rmin, c + rmin, x2 + r2, . . . , xk + rk, where xi

is randomly chosen from a, b, or c, and let k = 2α. Then
the client generates 2α + 2 ciphertexts as new candidates.

During the execution of our protocol, the client receives
all the values encrypted and the secret key is kept at the
server side. Furthermore, no information about the optimal
path is leaked to the client. Therefore, the client can learn
nothing about the time series Y of the server.

On the other hand, the server needs to decrypt some val-
ues and this will leak some information about the matrix
and therefore the time series X. Next, we discuss some sim-
ple attacks. For filling each entry in the matrix, the server
receives 2α + 2 values. Thus, after completing the whole
matrix, the server has received (2α + 2) ∗ mn values. The
server knows that each value it received is a summation of
one entry from the matrix and one random value. There are
total mn entries in the matrix and 2α ∗ mn random values
introduced by the client. In order for the server to recon-
struct the plaintexts of M , it can create a system of linear
equations. The server can create (2α + 2) ∗ mn linear equa-
tions with (2α + 1) ∗mn total variables. However, since the
values are sent to the server permuted, to find the solution
set for this linear equations, the server needs to find out the
correspondence between the received values and the equa-
tions. More specifically, the server needs to find out some
permutation on (2α + 2) ∗ mn values and a solution set for
the linear equations system. It has been shown that a gen-
eral problem, solving permuted linear equation systems is
NP -hard [3].

Even if it is hard for the server to learn exactly all the val-
ues generated from the client, the server can still learn some-
thing. Consider how much information the server learns dur-
ing each round. If the gaps between random values are too
large or the range of random values are too small, the origi-
nal values may not be hidden properly. If the gaps between
random values are too large, the 3 smallest values maybe
the a + rmin, b + rmin, c + rmin. Even if the server cannot
guess the random value, the difference among a, b and c can
help server reconstruct part of the matrix. That’s also why
we have to choose a set of random numbers rather than only
one random number. If the range of random values are too
small, there will be big gaps between a + rmin, b + rmin,
c + rmin. Then it is easy to infer which values are a + rmin,
b + rmin, c + rmin too.

To prevent these problems we do the following. Suppose
a, b, c ∈ (2β , 2β+1] and the randomness ri ∈ (2γ , 2γ+1], where
β + γ < |P | and |P | is the number of bits for plaintexts to

avoid overflow. Assume that the random values are gener-
ated uniformly from the specified range. There are 2α ran-
dom values from the random set. The average length of gaps
between random values is 2γ/2α. If 2γ/2α < 2β , the gaps
between random values are smaller than the original values.
Also, if 2γ > 2β , the range of random values are larger than
the original values. Hence, we require 0 < γ − β < α to al-
low the decrypted ciphertexts to be hidden in an appropriate
range. Even if k = 64, the performance is still acceptable.
But in this case, α = 6, which means that the random val-
ues can have 6 more bits than the original values and the
original values can still be hidden.

Furthermore, the server can retrieve useful information if
it can get the minimal random value or get the relation-
ship between original values. When the random values hide
original values successfully, the probability for the server to
guess the minimal random value correctly is 1/2γ which can
be negligible. In addition, the probability that the server
can pick up a + rmin, b + rmin and c + rmin from k + 2 val-
ues correctly is 2

k(k+1)
which is also negligible. Hence, the

probability for the server to retrieve information successfully
during a single round is negligible.

In our discussion so far, we present some specific attacks
and how to address them. Although with careful implemen-
tation of the protocol and tuning of the parameters we may
achieve provable limited leakage, the protocol is not com-
pletely secure since it may leak information to the server.
Then, in the next section we provide a quantifying method to
characterize the amount of information leaked to the server
using the notion of information entropy.

5.4 Information Entropy Preservation
In this section, we use entropy to evaluate how much in-

formation is exposed to the server.
Let the density function for xi ∈ {a, b, c} be fX(p) and let

the density function for the random value ri be fR(p). The
value that is computed and sent to the server from the client
is the summation si = xi + ri. Then, the density function
for si is fS(q):

fS(q) =

Z ∞

−∞

fX(q − p)fR(p)dp (6)

According to equation (6), the distribution of summation
si depends on the distributions of original value xi and ran-
dom value ri. Assume that the random values ri and {a, b, c}
are in the same range [Γ, 2Γ− 1]. Then the sum si = xi + ri

is in the range [2Γ, 4Γ−2]. Also assume that ri and {a, b, c}
are discrete and uniformly distributed in the range. Then,
the density function of summation si is:

when q ∈ [2Γ, 3Γ − 1],

fS(q) = (q − 2Γ + 1)/Γ2 (7)

when q ∈ [3Γ, 4Γ − 2],

fS(q) = (4Γ − 1 − q)/Γ2 (8)

For the protocol to be completely secure and leak no infor-
mation to the server, the si should be uniformly distributed
in [2Γ, 4Γ−2]. In that case, the entropy is log(2Γ−1). While
in our protocol, si is distributed as in formulas (7) and (8),
and the Shannon entropy of the summation is:

H(S) = −
X

p(q) log p(q) > log(2Γ − 1)/2 (9)

505

Yj Enc(a)
Enc(max{ δ2

Eu(Xi, Yj) ,
min{a, b, c} })

Yj−1 Enc(b) Enc(c)

Xi−1 Xi

Figure 4: Filling One Cell for DFD

Hence our protocol can preserve more than half (1/2) of
the information entropy. For example, if there exists a secure
protocol that has 256 bits of entropy, our protocol keeps at
least 128 bits of them. By using min-entropy [31] to evaluate
information entropy, exact 1/2 information entropy is being
preserved in that case. Notice also that the formulas can be
used for any data distribution fX(p), if this is known.

5.5 Hiding the Optimal Path
In this section we analyze how our protocol hides the path

of optimal couplings of the matrix.
Recall that in phase 2 we need to do a privacy preserving

comparison of three ciphertexts. The client sends a set of
encryption of values to the server and the server returns the
encryption of the minimal value. Let the minimal plaintext
from the set of encryption of values be m and ciphertexts
of m encrypted by the client is denoted as Enc(m)C . Let
the encryption of m from the server side be Enc(m)S . If
Enc(m)S = Enc(m)C , then the client can learn which value
is the minimal one (index of the set of values). However this
is not acceptable, because if the client knows the index of
the minimal value, the client learns the optimal path of cou-
plings which is also an important part of private information
and can be used to retrieve the other party’s original data.

To hide the optimal path, the server should re-encrypt
the minimal value rather than reusing the values from the
client side. Namely, after the server receives and decrypts
all ciphertexts generated by the client, the server can get the
minimal plaintext m, and the server should re-encrypt this
minimal plaintext and send the new encryption back to the
client. In this case, the probability of Enc(m)S = Enc(m)C

is negligible due to the probabilistic encryption. Then, al-
though the minimal value m from the server must be one of
a + rmin, b + rmin and c + rmin in phase 2 of our protocol,
Enc(m − rmin) is different from any of Enc(a), Enc(b) or
Enc(c). Therefore the client acquire an encryption of the
minimal value from the server which is different from any of
ciphertexts that the client generates. Thus the computation
can continue while the optimal path is hidden.

6. PRIVACY PRESERVING PROTOCOL

FOR DFD
Here we present a privacy preserving protocol for com-

puting Discrete Fréchet Distance. The difference between
the Discrete Fréchet Distance and Dynamic Time Warping
is that we need to calculate the maximum rather than the
summation. However this increases the cost of our proto-
col as we will see soon. The process of filling one entry for
Discrete Fréchet Distance is shown as Figure 4.

Since the entry cannot be computed with an addition to
other ciphertexts, the client cannot use homomorphic addi-
tion to calculate the ciphertext for this entry. In the pro-

Algorithm 2: Discrete Fréchet Distance

Input: Sequence X[m], Sequence Y[n]
Data: Matrix M[m][n]
Output: Value M[m][n]
M[i][1] = δ2

Eu(X[1], Y[1]);
for i = 2 : m do

M[i][1] = max (δ2
Eu(X[i], Y[1]), M[i-1][1]);

for j = 2 : n do
M[1][j] = max (δ2

Eu(X[1], Y[j]), M[1][j-1]);

for i = 2 : m do
for j = 2 : n do

cost = δ2
Eu(X[i], Y[j]);

M[i][j] = max (cost,
min(M[i-1][j-1], M[i-1][j], M[i][j-1]));

tocol for Dynamic Time Warping, if the client has the en-
cryption of the square of Euclidean distance Enc(δ2

Eu) and
the encryption of the minimum Enc(min), then the client
can calculate Enc(δ2

Eu +min) using homomorphic addition.
However, for the Discrete Fréchet Distance, the client needs
to communicate with the server again to get the larger value
between δ2

Eu and min which will definitely increase the com-
munication and computation costs. Thus, computing the
Discrete Fréchet Distance needs 3 phases instead of 2.

The phase 3 of the protocol for the Discrete Fréchet Dis-
tance is also an one round communication protocol which is
similar to the phase 2 of the protocol for getting the mini-
mal values. To prevent the server from learning the square of
the Euclidean distance and the minimal value, the client still
needs to add random values to generate new candidates for
this phase. However, in this case, the server should return
the maximal one. Then, the client should generate a max-
imal random value as rmax and many other random values
which are all smaller than rmax. Assume the client gener-
ates a family of random values R′ = { r1 , r2 , r3 · · · , rk | ri

< r1 , ∀ i > 1 }. The client can generate a set of new inputs
including Enc(δ2

Eu + rmax), Enc(min + rmax),Enc(x2 + r2)
. . . Enc(xk +rk), where xi is either δ2

Eu or min. The setting
is similar to the protocol of comparison in Section 5.

The complementary phase 3 protocol for Discrete Fréchet
Distance is described next:

1. The Client

(a) Has two ciphertexts: Enc(δ2
Eu) and

Enc(min)

(b) Generate a set of random values R′ =
{ r1 , r2 , r3 · · · , rk | ri < r1 , ∀ i > 1 }

(c) Generate minimal candidates Enc(δ2
Eu + rmax) and

Enc(min + rmax)

(d) Generate other k − 1 candidates:
For i ∈ [2, k], generate Enc(xi + ri), where Enc(xi)
is randomly chosen from Enc(δ2

Eu) and Enc(min).

(e) Send all k + 1 candidates to the server

2. The Server

(a) Decrypt all inputs

(b) Get the maximal plaintext as M

(c) Send Enc(M) to the client

3. The Client

506

Figure 5: Performance vs Sequence Size

(a) Calculate Enc(M − rmax) as the encryption of maxi-
mal one.

The cost of phase 3 in the protocol for the Discrete Fréchet
Distance is comparable to phase 2, the protocol of com-
parison in Section 5. So the protocol to compute Discrete
Fréchet Distance is less efficient than the protocol to com-
pute Dynamic Time Warping. As shown in the experiments,
phase 2 costs much more time than phase 1. Since phase 3
is comparable to phase 2, the protocol for Discrete Fréchet
Distance takes almost twice the time than the protocol for
Dynamic Time Warping. Similarly, the protocol for Discrete
Fréchet Distance transfers almost two times more data than
the protocol for Dynamic Time Warping.

The security attacks and analysis of the protocol for Dis-
crete Fréchet Distance are similar to the security analysis of
the protocol for Dynamic Time Warping.

7. EXPERIMENTS
In this section we present an experimental evaluation of

our protocols. The goal of this evaluation is to show that
our approach can be efficient and practical. We have imple-
mented our protocols in Java and run our experiments on a
machine with 2.53GHz CPU and 3GB of RAM.

The server and the client communicate using a socket, and
there is no shared information nor third party in our experi-
ments. The security parameter for the Paillier cryptosystem
is set to 64 bits which is enough for encrypting the values
that we have in our experiments. In the experiments, we
use both real world data and synthetic data. The real world
time series are derived from the UCR ECG data 1. In the
following experiments we normalized ECG data to positive
integer values.

We are not aware of any other implementations of pro-
tocols that compute securely time series distance functions.
As we mentioned before, methods that are based on garbled
circuits can be used to compute the Edit Distance [13, 18],
but will be very inefficient to be used for computing time
series distances, like DTW. On the other hand, Atallah et
al’s paper [2] could be used to compute the DTW distance.
However, as discussed in Section 2, the protocol proposed
by Atallah et al needs to call many times Yao’s protocols.
According to Fairplay [24], which is one of the best two-
party computation practical systems, it takes 1.25 seconds

1http://www.cs.ucr.edu/~eamonn/discords/

Figure 6: Performance vs Sequence Size for the Dif-
ferent Parties (Client and Server)

to run Yao’s protocol using fast communication, and 4 sec-
onds when communication is slow. Therefore, when the size
of sequences is 100 and the dimensionality of each element
is 1, Atallah et al’s protocol needs at least 37000 seconds
for executing Yao’s protocols alone. This is just an estimate
based on the number of times the protocol calls Yao’s proto-
col. We are not aware of any implementation of Atallah et
al’s protocol, but the estimated time that we report here is
extremely optimistic since we do not account for other costs
of the protocol (for example, computation of Euclidean dis-
tances.) On the other hand, our protocols take tens of sec-
onds as we will show next. Therefore, we only evaluate the
implementation of our protocols next.

Our protocols include only two parameters: the dimension
d of single element in each sequence and the size of random
set k. We perform a number of experiments to validate the
efficiency and potential practicality of our protocols.

7.1 Performance vs Sequence Size
To investigate the relationship between performance and

sequence size, we segment the ECG sequences with different
lengths that range from 10 to 100. The distance computa-
tion is between two time series with the same length. The
dimensionality of a single element d is 1 and the size of ran-
dom set k is set to 10 in these experiments.

As shown in Figure 5, since the time complexity of dy-
namic programming is O(n2), the total time and data trans-
ferred are both quadratic to the sequence sizes. The phase 2
of the protocol for Dynamic Time Warping costs much more
running time than the phase 1 when the dimension is low.

The phase 2 of the protocols include encryptions by the
client and decryptions by the server which are the most ex-
pensive parts in the protocol. The client encrypts at least
k + 2 random values in phase 2 and the server decrypts at
least k+2 ciphertexts. Figure 6 shows the computation time
for the client and server respectively. Since decryption costs
more time than encryption, the server has higher computa-
tional cost.

The protocol for Discrete Fréchet Distance (DFD) has
similar relationships between running time and sequence
sizes. Since the protocol for Discrete Fréchet Distance needs
3 phases rather than 2 for Dynamic Time Warping, the time
of computing Discrete Fréchet Distance is higher than Dy-
namic Time Warping as shown in Figure 7. From Figure 8,

507

Figure 7: Performance between DTW and DFD

Figure 8: Performance by Phases for DFD

we can see that the phase 3 costs almost the same as the
phase 2. And both phase 3 and phase 2 are much more
expensive than phase 1. So the time for computing the Dis-
crete Fréchet Distance is nearly twice of the time for Dy-
namic Time Warping.

7.2 Performance vs Element Dimensionality
To investigate the relationship between the performance

and the dimensionality d of the elements in each sequence,
we generated synthetic sequences with dimensionalities from
10 to 100 because when the dimensionality d is low, the time
of phase 1 is negligible. The values of each vector are random
values between 1 and 100. However, as the dimensionality
increases, the cost of phase 1 also increases as expected. The
size of sequences is set as 100 and the size of random sets k is
10. Since phase 2 uses entries from the matrix only and the
square of Euclidean distances are computed in phase 1, the
dimensionality of single element in sequences affects phase
1 only.

In Figure 9 we show the results of the experiments where
we compare the running time of phase 1 and phase 2 for
computing DTW. It is clear that even if the dimensionality
is 10, phase 2 still dominates the whole computing time.
When the dimensionality is increased to 60, the time for
phase 1 is comparable to phase 2. The time for phase 1 is
linear to the dimensionality as analyzed in Section 5. Also,
even if the dimension is up to 100, phase 1 costs only 2 times

Figure 9: Performance vs Dimensionality

Figure 10: Performance vs Dimensionality between
different parties

more of phase 2.
Figure 10 shows the time consumed by server and client.

The computation time for the client increases faster than
the computation time for the server as expected. Since the
communication cost of phase 2 dominates the whole com-
munication cost and is independent of the dimensionality of
the time series elements, we can see the communication cost
does not change much when dimensionality increases.

Therefore, we could claim that the performance of our
protocol is nearly linear to the dimensionalities of time se-
ries. Only if the dimensionalities of time series are very high,
the client may have more computation workloads than the
server.

7.3 Performance vs Size of Random Set
To investigate the relationship between performance and

the size of the random set, we use time series from the ECG
datasets of size 100, where the dimensionality d is 1. We
change the size of the random sets k from 10 to 50. Since
phase 1 does not use any random set, the sizes of random
sets affect only phase 2 and 3. Here we report the results
for phase 2.

As shown in Figure 11, since phase 2 dominates running
time of the protocol, increasing the size of the random set
makes the cost of phase 2 to increase. Notice that the time
for phase 1 is negligible in this experiment. Both the running

508

Figure 11: Performance vs Random Set

time performance as well as the communication cost grow
linearly with k as expected.

Thus, the experiments show that the performance is dom-
inated by phase 2 and phase 3 of the protocols since encryp-
tion and decryption are time consuming parts. The perfor-
mance is linear to the parameters of the protocols, i.e. the
dimensionality of each element in sequences d and the size of
random set k. Also, the protocols are not very sensitive to
dimensionality, which means that our protocols are suitable
for high dimensional vector sequences. Finally, notice that
our protocols are at least three orders of magnitude faster
than the protocols proposed in [2].

8. CONCLUSIONS
This paper proposes privacy preserving protocols to com-

pute two distance functions: Dynamic Time Warping and
Discrete Fréchet Distances for time series data. To our best
knowledge, this is the first practical work that addresses this
problem explicitly. The major objective of the protocols is
to protect the privacy of input data from the client and
the server. The two parties can calculate Dynamic Time
Warping and Discrete Fréchet Distances together without
revealing their own data to each other.

The protocols can be used for many time series database
applications such as similarity sequences retrieval and near-
est sequences query. The protocols combine partial homo-
morphic encryption and random offsets which make the pro-
tocols practical and preserve enough information entropy.
Our protocols can be easily extended to any privacy pre-
serving distance computation using dynamic programming
when data are kept by two different parties. A detailed anal-
ysis of the protocols is provided and an experimental evalua-
tion validates that the protocols are scalable and potentially
practical.

9. ACKNOWLEDGMENTS
This work has been partially supported by NSF grants

CNS-1012910 and III-1320542.

10. REFERENCES

[1] R. Agrawal, A. V. Evfimievski, and R. Srikant.
Information sharing across private databases. In
SIGMOD Conference, pages 86–97, 2003.

[2] M. J. Atallah, F. Kerschbaum, and W. Du. Secure and
private sequence comparisons. In WPES, pages 39–44,
2003.

[3] P. Butkovič. Permuted linear system problem and
permuted eigenvector problem are np-complete.
Technical Report preprint 2008/28, University of
Birmingham, 2008.

[4] L. Chen and R. T. Ng. On the marriage of lp-norms
and edit distance. In VLDB, pages 792–803, 2004.

[5] R. Chen, N. Mohammed, B. C. M. Fung, B. C. Desai,
and L. Xiong. Publishing set-valued data via
differential privacy. PVLDB, 4(11), 2011.

[6] G. Cormode, C. M. Procopiuc, D. Srivastava, E. Shen,
and T. Yu. Differentially private spatial
decompositions. In ICDE, pages 20–31, 2012.

[7] T. Eiter and H. Mannila. Computing discrete fréchet
distance. Technical Report CD-TR 94/64, Technische

UniversitÃd’Wien, 1994.

[8] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser,
I. Lagendijk, and T. Toft. Privacy-preserving face
recognition. In Privacy Enhancing Technologies, pages
235–253, 2009.

[9] M. Hay, V. Rastogi, G. Miklau, and D. Suciu.
Boosting the accuracy of differentially private
histograms through consistency. PVLDB,
3(1):1021–1032, 2010.

[10] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider,
and I. Wehrenberg. Tasty: tool for automating secure
two-party computations. In CCS, pages 451–462, 2010.

[11] Y. Hong, J. Vaidya, H. Lu, and M. Wu. Differentially
private search log sanitization with optimal output
utility. In EDBT, pages 50–61, 2012.

[12] H. Hu, J. Xu, C. Ren, and B. Choi. Processing private
queries over untrusted data cloud through privacy
homomorphism. In ICDE, pages 601–612, 2011.

[13] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
secure two-party computation using garbled circuits.
In USENIX Security Symposium, 2011.

[14] Y. Huang, L. Malka, D. Evans, and J. Katz. Efficient
privacy-preserving biometric identification. In NDSS,
2011.

[15] A. Inan, M. Kantarcioglu, E. Bertino, and
M. Scannapieco. A hybrid approach to private record
linkage. In ICDE, pages 496–505, 2008.

[16] A. Inan, M. Kantarcioglu, G. Ghinita, and E. Bertino.
Private record matching using differential privacy. In
EDBT, pages 123–134, 2010.

[17] A. Jarrous and B. Pinkas. Secure hamming distance
based computation and its applications. In ACNS,
pages 107–124, 2009.

[18] S. Jha, L. Kruger, and V. Shmatikov. Towards
practical privacy for genomic computation. In IEEE
Symposium on Security and Privacy, pages 216–230,
2008.

[19] M. Kantarcioglu, A. Inan, W. Jiang, and B. Malin.
Formal anonymity models for efficient
privacy-preserving joins. Data Knowl. Eng.,
68(11):1206–1223, 2009.

[20] E. J. Keogh. Exact indexing of dynamic time warping.
In VLDB, pages 406–417, 2002.

[21] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider.

509

Improved garbled circuit building blocks and
applications to auctions and computing minima. In
CANS, pages 1–20, 2009.

[22] V. Kolesnikov and T. Schneider. Improved garbled
circuit: Free xor gates and applications. In ICALP
(2), pages 486–498, 2008.

[23] C. Li and G. Miklau. An adaptive mechanism for
accurate query answering under differential privacy.
PVLDB, 5(6):514–525, 2012.

[24] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay
- secure two-party computation system. In USENIX
Security Symposium, 2004.

[25] M. Murugesan, W. Jiang, C. Clifton, L. Si, and
J. Vaidya. Efficient privacy-preserving similar
document detection. VLDB J., 19(4):457–475, 2010.

[26] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich.
Scifi - a system for secure face identification. In IEEE
Symposium on Security and Privacy, pages 239–254,
2010.

[27] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In
EUROCRYPT, pages 223–238, 1999.

[28] S. Papadopoulos, S. Bakiras, and D. Papadias.
Nearest neighbor search with strong location privacy.
PVLDB, 3(1):619–629, 2010.

[29] R. Paulet, M. G. Kaosar, X. Yi, and E. Bertino.
Privacy-preserving and content-protecting location
based queries. In ICDE, pages 44–53, 2012.

[30] V. Rastogi and S. Nath. Differentially private

aggregation of distributed time-series with
transformation and encryption. In SIGMOD
Conference, pages 735–746, 2010.

[31] L. Reyzin. Some notions of entropy for cryptography -
(invited talk). In ICITS, pages 138–142, 2011.

[32] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and
D. Song. Privacy-preserving aggregation of time-series
data. In NDSS, 2011.

[33] M. Terrovitis, J. Liagouris, N. Mamoulis, and
S. Skiadopoulos. Privacy preservation by
disassociation. PVLDB, 5(10):944–955, 2012.

[34] J. Vaidya and C. Clifton. Privacy-preserving outlier
detection. In ICDM, pages 233–240, 2004.

[35] X. Wang, A. Mueen, H. Ding, G. Trajcevski,
P. Scheuermann, and E. J. Keogh. Experimental
comparison of representation methods and distance
measures for time series data. Data Min. Knowl.
Discov., 26(2):275–309, 2013.

[36] X. Xiao, G. Wang, and J. Gehrke. Differential privacy
via wavelet transforms. In ICDE, pages 225–236, 2010.

[37] J. Xu, Z. Zhang, X. Xiao, Y. Yang, and G. Yu.
Differentially private histogram publication. In ICDE,
pages 32–43, 2012.

[38] B. Yang, H. Nakagawa, I. Sato, and J. Sakuma.
Collusion-resistant privacy-preserving data mining. In
KDD, pages 483–492, 2010.

[39] A. C.-C. Yao. Protocols for secure computations. In
FOCS, pages 160–164, 1982.

510

