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ABSTRACT
Web sources often provide different and even conflicting in-
formation. Simple voting-based strategies have already shown
limitations at identifying the correct answer to a user query
with the presence of unreliable sources. In order to identify
the correct answer, corroboration techniques have been pro-
posed and proved to be effective for such tasks. In this paper,
we investigate the corroboration problem in which most or
all facts have only affirmative statements from sources. A
fact is either true or false, and an affirmative statement from
a source indicates its support for a fact being true. Unfor-
tunately, state-of-the-art corroboration techniques rely on
conflicting information to differentiate the trustworthiness
of the sources and we demonstrate their limitations in our
scenario. Different from existing techniques that consider a
single trust score for each source, we propose a novel algo-
rithm that utilizes a multi-value trust score toward different
subsets of facts. By considering the information entropy of
the unknown facts, our algorithm incrementally evaluates
facts and updates the estimates on the trust scores for the
sources. We conduct experiments using both synthetic and
real-world datasets and demonstrate that our algorithm sig-
nificantly outperforms existing approaches in precision and
accuracy.

1. INTRODUCTION
Web sources often provide different and even conflicting

information. Users trying to find answers to their informa-
tion needs are faced with the task of identifying the cor-
rect answer among the available data. A simple method for
identifying the correct information is to take the majority
vote as the correct answer. Unfortunately, with the per-
vasive presence of low quality sources, the correct answer
is often out-voted by incorrect ones. As an example, con-
sider a query that asks for ‘the total government revenue
of Japan in 2011’. Several sources (including CIA Factbook

and quandl.com) reported $1.8 trillion. The correct answer

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

$1.1 trillion1, which was only found in Wikipedia, is outvoted
by incorrect ones. In fact, Wikipedia itself provides 2 con-
flicting numbers ($1.1 and $1.97 trillion) in separate pages
which further complicates the task of identifying the cor-
rect answer. As such, in the presence of multiple conflicting
answers, a strategy that takes into account the quality of
sources needs to be developed to identify the correct one.
However, in a scenario in which multiple sources agree on
the same answer, it is still not certain that the answer is
correct, as illustrated in the following example.

Example 1: Consider we want to identify a list of restau-
rants that are up and running in a certain region. There ex-
ist several web sources that provide valuable information for
this task. For instance, local search engines such as Yellow-
pages and Citysearch provide business listings including
restaurants. Social web sites such as Yelp and Foursquare

allow users to check-in at dining venues. Most of the restau-
rant listings on these web sources are hints that the restau-
rants exist (except for those listed as ‘CLOSED’). However,
the fact that a restaurant is listed at one or several of these
web sources is not definite evidence that it is still open. As
an example, consider a restaurant named ‘Danny’s Grand
Sea Palace’ located at ‘346 West 46th St, New York’, which
is backed by both Yellowpages and Citysearch. A follow-up
check2 revealed that the restaurant is no longer in business
and that the listings were inaccurate.

In this paper, we investigate the problem of identifying
the veracity of facts in the presence of mostly affirmative
statements. A fact is either true or false, and an affirma-
tive statement indicates support from a source that the fact
is true. Intuitively, for a fact with only affirmative state-
ments, there should be no ambiguity that it is true, since
there is no suggestion from any source that the fact may be
false. However, as we see in Example 1, this is not necessar-
ily the case. Although there are two affirmative statements
for the fact ‘Danny’s Grand Sea Palace is open’ , it is still
factually false. In addition to the above example, we also
observe similar cases in other domains. For instance, tech-
nology blogs usually provide claims regarding major product
releases, each of which could be viewed as facts with only
supportive statements.

In such a problem, the main difficulty is to correctly iden-
tify false facts, since facts with only affirmative statements
appear to be true. In principle, a false fact could be revealed

1We obtained this number from the web page of Japan’s
finance ministry.
2The restaurant is one of a set of restaurants that we checked
in person.
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if its affirmative statements are from sources with low trust-
worthiness. Unfortunately, in a scenario where most facts
have affirmative statements only, it is hard to compute the
correct trustworthiness of the sources. We listed below the
challenges of the problem we focus in this paper.

• Quality of sources Information on the Internet is fast
changing and goes out-dated fast. For a certain task,
there might not exist a source that is fresh and yet
with good coverage. A serious website such as Yelp

which allow users to post authentic reviews contains
erroneous restaurant listings. This is different from ap-
plications for which existing corroboration techniques
have been successful. For instance [21], imdb is a near-
perfect source for the movie dataset. Assessing the
quality of the source is critical to derive the correct-
ness of the facts it reports.

• Apparent consensus The principle of corroboration
is to differentiate the sources’ quality, hence treating
the information from each source differently. Existing
corroboration techniques work well in tasks with con-
flicting statements because they can dampen the trust
scores for the sources that have incorrect statements.
Unfortunately, this is not the case in our scenario since
sources provide mostly same statements (i.e., affirma-
tive statements). As a result, it is extremely difficult
to identify any errors from the sources.

To tackle these challenges, we propose a novel corrobo-
ration algorithm that uses a multi-value trust score for the
sources. Each fact is evaluated using one of the trust val-
ues from each source. Unlike with a single trust score for
the sources where all facts would have the same corrobora-
tion result in a scenario where most or all facts have only
affirmative statements, we can correctly identify false facts
by considering a lower trust score for the sources reporting
them. Intuitively, a source may have different trustworthi-
ness on different sets of facts, and our algorithm leverages
such observation to improve corroboration quality. We sum-
marize our contributions as follows.

• We investigate the problem of corroborating facts in
the presence of mostly affirmative statements and demon-
strate the limitations of state-of-the-art methods.

• We propose a novel corroboration method that adopts
a multi-value trust score for each source; each fact is
evaluated using one set of source trust values.

• Our corroboration algorithm incrementally selects facts
by considering the information entropy in the unpro-
cessed facts and updates the trust scores for the sources.

• We conduct experiments over synthetic and real world
datasets and show that our algorithm significantly out-
performs existing approach on precision and accuracy.

To the best of our knowledge, our corroboration algorithm
is the first to consider different trust scores from the same
source for different sets of facts. In the following discussion,
we show that a multi-value trust score is not only effective,
but necessary in the corroboration problem considered in
this paper. The rest of the paper is organized as follows.
A detailed motivating example is shown in Section 2. We

formally define the corroboration problem in Section 3 and
introduce the multi-value trust score strategy in Section 4.
We present our incremental algorithm in Section 5. Exper-
iment results are shown in Section 6. We discuss related
work in Section 7. Finally, we conclude the paper in Section
8.

2. A MOTIVATING EXAMPLE
We use an instance of Example 1 as the motivating exam-

ple to illustrate the limitation of existing methods. Consider
a scenario with 5 sources {s1, s2, s3, s4, s5} and 12 restau-
rant listings {r1, ..., r12}. For the ease of discussion, we use
T and F votes to refer to affirmative and disagreeing state-
ments. The votes from the sources are shown in Table 1,
where in the last column we list if each restaurant is actu-
ally open (ground truth). A source can vote either for (T)
(e.g., by listing the restaurant) or against (F) a restaurant
(e.g., by listing the restaurant as CLOSED). A ‘-’ indicates
that a source does not list the restaurant. As shown, all
the sources cast votes only for a subset of restaurants. In
addition, most restaurants (except for r6 and r12) receive T

votes only. If we know the correct result for each restaurant
(as shown in the last column) a priori, it could be computed
that the global trust scores for all the sources are {1, 0.8, 1,
0.5, 0.625}, respectively. In the following, we examine the
performance of 2 state-of-the-art corroboration techniques.

s1 s2 s3 s4 s5 correct value

r1 - T - T - true

r2 T T - T T true

r3 T - T - T true

r4 - - - T T false

r5 T - - T - false

r6 - - F T - false

r7 - T - T T true

r8 - T - T T true

r9 - - T - T true

r10 - - - T T false

r11 - - T T T true

r12 - F F T - false

Table 1: A scenario with 5 sources and 12 restau-
rants

2.1 The TwoEstimate Algorithm
Galland et al. [8] introduced a set of iterative algorithms

that are very related to our corroboration task. Among
those, the TwoEstimate algorithm is directly applicable to
our scenario3. The TwoEstimate works by iteratively esti-
mating the probability that each restaurant is open and the
trustworthiness of the sources until convergence is reached.
A direct application of the TwoEstimate algorithm on the
motivating example yields a result of true for all the restau-
rants except for r12, and a trust score of {1, 1, 0.8, 0.9, 1}
for the 5 sources, respectively.

Although the TwoEstimate algorithm has a recall of 1, the
precision and accuracy are only 0.64 and 0.67 respectively.

3Note that although the ThreeEstimate algorithm has
shown better performance, it calculates a measure using the
number of T and F votes for each fact. Since for most restau-
rants there are T votes only, the ThreeEstimate algorithm
essentially simplifies to the TwoEstimate algorithm in this
scenario.
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The reason for the result can be explained as follows. First,
since the majority of the restaurants only have T votes, the
only possible corroboration outcome for restaurants other
than r6 and r12 is true. In addition, consider r6 with a T

vote from s4 and an F vote from s3. Although there is one
F vote, the T vote is from s4 which has more correct votes
for other restaurants than s3. In a sense, the F vote is ‘out-
voted’ by the T vote since s4 has a higher trust score than s3.
Second, in order to guarantee convergence, the TwoEstimate
normalizes the probability of a restaurant or the trustwor-
thiness of a source to 1 if it is greater than or equal to 0.5.
This normalization process essentially translates a restau-
rant with uncertainty into an absolute T or F and then uses
it as feedback for the calculation of its sources. The effect of
this reinforcement mechanism is greatly amplified in our sce-
nario since, there is little conflict for the vast majority of the
restaurants and consequently, sources receive a near-perfect
trust score.

2.2 The BayesEstimate Algorithm
Zhao et al. [21] proposed a Bayesian probabilistic graph-

ical model (termed as BayesEstimate) that infer true facts
and source quality. Instead of using a single value for the
trustworthiness, the BayesEstimate algorithm leverages two-
sided errors (number of false positive and false negative) of
each source. In essence, the BayesEstimate algorithm is
tailored for real world corroboration tasks in which the al-
gorithm has some prior knowledge about the source quality
(e.g., high precision but low recall). In our scenario, al-
though we do have some sources that match such profile,
we have other sources with relatively poor precision (e.g.,
s4). In addition, the BayesEstimate algorithm also suffers
from the fact that there is little conflict for most of the
restaurants, and hence has similar corroboration result as
the TwoEstimate algorithm. Using the BayesEstimate algo-
rithm we obtain a result of true for all restaurants, which
translates to a precision of 0.58 and recall of 1. The reason
that BayesEstimate did not identify r12 as false is because
it considers a high-precision-low-recall prior, and therefore
giving F vote less weight.

2.3 Our strategy
Consider a simplified version of our strategy, which does

not apply to all the restaurants at once. Instead, it divides
the corroboration task into 3 sub-tasks that are carried out
in 3 rounds, as shown in Figure 1. We start our algorithm
with a default trust value (e.g., 0.9) for each source and pick
restaurants r9 and r12 to process. By using the default trust
scores, our method computes a corroborated result of true
and false for the restaurants, respectively. In addition, the
trust scores for the sources are then computed as {-, 1, 1,
0, 1}. During the second round, we choose {r5, r6} (the
shaded objects in Figure 1 refer to the restaurants which
have been evaluated), which results in false for the two
restaurants. Note that although we have T votes from s4
for both restaurants, since it has a trust score of 0 from the
first round, the corroboration assigns a low score for both
restaurants. The trust scores for the sources are updated
to {0, 1, 1, 0, 1}. During the last round, the corroboration
is applied to the rest of the restaurants and results in true
for all the remaining restaurants due to the fact that each
restaurant is backed by at least one of the “good” sources
(s2, s3, s5). Overall, the sources have a trust score of {0.67,

r

{-, 1, 1, 0, 1}
round 1:

round 2:

round 3:

{0.67, 1, 1, 0.7, 1}

r9r 12

rr5 6r9r 12

9 r1r 2 ......5r 6

{0, 1, 1, 0, 1}

r r12r

Figure 1: Illustration of our strategy

1, 1, 0.7, 1} respectively and the corroboration results in a
precision of 0.78 and a recall of 1.

The rationale behind considering a multi-round corrob-
oration strategy can be explained as follows. In order to
identify as many corrupt listings (restaurants that are no
longer open or are not at the address) as possible, we need
to have sources with low trust scores. However, in a scenario
where all sources are generally good (i.e., with a trust score
above 0.5), it is impossible to find bad listings. By apply-
ing corroboration in a step-by-step fashion, we are able to
obtain a low trust score for some sources over a subset of
restaurants. For instance, the above strategy calculates a
trust score of 0 for s4 over r12. During the second round, it
aggressively selects all listings that are projected to be cor-
rupt based on the current trust scores of the sources ({r5,
r6}). In the third round, since all remaining restaurants are
projected to be valid, it processes all of them and finish cor-
roboration. Note that this strategy is a simplified version of
our algorithm (Section 5), which adopts an entropy-driven
method in selecting facts at each round.

Precision Recall Accuracy
TwoEstimate 0.64 1 0.67
BayesEstimate 0.58 1 0.58
Our strategy 0.78 1 0.83

Table 2: Results of the strategies

Table 2 lists the results of the three methods described
above on Example 1, where it shows that our strategy is ad-
vantageous compared with two state-of-the-art algorithms.
The key difference between our strategy and existing meth-
ods is that existing approaches use the same trust measure
(derived at the final iteration) to determine the correct value
for all the restaurants, while our strategy groups restaurants
that share similar features (source votes) and incrementally
evaluates each restaurant group, one at a time, using the
knowledge available at the current iteration to make cor-
rectness decisions.

3. PROBLEM FORMULATION
We consider a problem that consists a set of sources S =
{s1, s2, · · · } and a set of facts F = {f1, f2, · · · }. A fact could
be either true (meaning it is correct) or false (erroneous).
For instance, a fact could be “A restaurant called ‘M Bar’
located at 12 W 44th St is a legitimate restaurant”.
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3.1 Sources
We consider a source s ∈ S as a real-world object that

expresses opinions about facts. A source may agree or dis-
agree with a fact in the form of casting a true (T) vote or
false (F) vote. For instance, a source may disagree with the
legitimacy of a restaurant by listing it as CLOSED. We use
s(f) to denote the vote of source s over a fact f , illustrated
below.

s(f) =











T, if s agrees with f

F, if s disagrees with f

−, if s has no knowledge about f

(1)

Note that in certain scenarios, an unknown vote (i.e., the ‘-’
vote) from a source may slightly indicate that it disagrees
with the fact (e.g., a source may delete a restaurant listing
after it went out of business), we cannot differentiate such
cases from cases where the source has no knowledge about
the object.
We associate with each source s a trustworthiness score

σ(s) which represents its precision. The trust score is a
real number between 0 and 1, with 1 indicating a perfect
source and 0 indicating a completely wrong source. We de-
fine sources with a trust score σ(s) between 0.5 and 1 as pos-
itive sources. In principle, positive sources are the sources
that have more correct votes than incorrect ones. Similarly,
a negative source is defined as a source with a trust score
between 0 and 0.5.

3.2 Facts
A fact f ∈ F is an expression over a real-world object

that is of interest to the users. A fact is either true or false.
In order to estimate the correct value (i.e., true or false) of
a fact f , we propose techniques to compute a probability
σ(f) which represents the likelihood that f is true. A fact
with a probability of 1 (or 0) is a true (or false) fact. A
corroboration algorithm determines the value of a fact f if
σ(f) is greater than a certain threshold. In this paper, we
use 0.5 as the threshold value, shown below.

f =

{

true, if σ(f) ≥ 0.5

false, if σ(f) < 0.5
(2)

Entropy of unknown facts: In information theory [3],
the entropy is a measure of uncertainty of a random variable.
Since we consider σ(f) the probability of a fact f being true,
we can calculate the entropy H(f) of the unknown fact f as
follows.

H(f) = −σ(f) · log σ(f)− (1− σ(f)) · log(1− σ(f) (3)

It is easy to see that a fact f has an entropy of 0 if its
probability is 1 or 0 (i.e., no uncertainty) and has the highest
entropy of 1 if its probability of 0.5. Intuitively, we expect
a fact to have an entropy between 0 and 1 given the votes
from the sources. We discuss how to iteratively select facts
by leveraging the fact entropy in the following section.

3.3 The corroboration problem
Given a set of sources S and a set of facts F , the cor-

roboration problem is to identify the correct value of each
fact and estimate the trustworthiness of each source. In this
paper, we focus on a corroboration problem in a specific
scenario in which most facts in F only receive affirmative

statements. More formally, let F∗ be a subset of F such
that for each fact f ∈ F∗ there are only T votes only. We
focus on a corroboration problem in which most facts in F
are in F∗ (i.e., |F∗| ≫ |F − F∗|).

4. TRUST SCORES OF SOURCES
Our corroboration algorithm is built upon the concept of a

multi-value trust score for each source. In the following dis-
cussions, we first formally define the single-value trust score
and multi-value trust score (Section 4.1). We then demon-
strate the limitation of an algorithm using a single-value
trust score (Section 4.2). We finally present our method of
implementing multi-value trust scores (Section 4.3).

4.1 Definition
Traditional corroboration techniques [18, 15, 8, 10, 21, 19]

usually calculate a trust score for each source that is used to
evaluate facts. In such a setting, the same trust score of each
source is used to evaluate every fact. There are exceptions in
which a technique may consider more than one trust score
for each source. For instance, the BayesEstimate method
considers a two-sided errors for each source which capture
both the false positive and false negative rates. However,
the same measures for a source are used to evaluate every
fact for which the source casts a vote.

Formally, we define a single-value trust score that is used
in existing techniques as one measure σ(s) that is computed
for each source s. The measure σ(s) is used to evaluate
each fact {f |s(f) ∈ {T, F}} that s casts vote. Note that
such measure σ(s) could contain more than one value (e.g.,
BayesEstimate). In this following, we focus our discussion
on the case where σ(s) is a single value.

In contrast, we propose to use a multi-value trust score
in our corroboration algorithm. A multi-value trust score
is defined as a group of values assigned to each source, as
shown below.

σ(s) =< σ1(s), σ2(s), · · · , > (4)

where we call σi(s) one of the trust values of source s. In
such a setting, each fact f is evaluated using one of the trust
values of σ(s) of sources that have voted for f . Consider 2
facts f1, f2 for which a source s has a T vote. A single-value
based algorithm evaluates both facts use the same measure
σ(s), while a multi-value based algorithm may use different
trust values of σ(s).

As an example, assume we adopt the scoring used in the
TwoEstimate [8] to compute the probability for facts. For-
mally, let fi ∈ F

∗ be a fact with only T votes and S+
i be the

set of sources that have a T vote for fi. We use p(σ(s)) to
denote the function that picks a trust value from σ(s). A
multi-value trust score based algorithm computes the prob-
ability of f as follows.

σ(fi) =

∑

s∈S+

i

p(σ(s))

|S+
i |

(5)

4.2 Single-value trust score
A single-value trust score based algorithm works by iter-

atively estimate the probability of facts and the trust score
for the sources. As shown in Equation 6 and 7, the probabil-
ity of facts is calculated using the trust score for the sources
from the previous iteration (the Corrob method). In return,
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the trust score for the sources is updated using the prob-
ability of the facts (the Update method). The algorithm
terminates once convergence is reached.

σ
(k)(fi) = Corrob(σ(S(k−1)

i )) (6)

σ
(k)(si) = Update(σ(k)(Fi)) (7)

In a regular corroboration task in which there exist conflict-
ing votes (i.e., both Ts and Fs), a single-value trust score
often works because incorrect votes can be identified based
on the corroborated result of each fact. For instance, con-
sider a fact f with a T vote from s1, s2 and an F vote from s3.
Assume that the right result (true) for f has been derived
by the corroboration algorithm. Since s3 has the incorrect
vote, its trust score is discounted and is reflected in the cor-
roboration of other facts. However, in a scenario where most
facts have T votes only, it is difficult to identify any incorrect
votes.
Let A be an iterative corroboration algorithm using a

single-value trust score. Let us simulate the procedure of
A and explain that after applying A, all the facts f ∈ F∗

have the same corroboration result and all the sources have
near perfect (or completely wrong) trust scores. Suppose
the algorithm starts with an initial trust score λ (e.g., 0.9)
for each source. A computes the probability for each fact
using the Corrob() operation. Since for each f ∈ F∗ there
are T votes only and sources have a high initial trust score,
facts in F∗ receive a high probability. This is based on the
assumption that if a fact is vouched by a number of accurate
sources, it is likely to be true. In return, A then updates the
trust score for each source based on the calculated proba-
bilities of the facts. Recall that most of the facts are in F∗,
i.e., |F∗| ≫ |F − F∗|. Therefore the computation of σ(s)
is dominated by the probabilities of facts in F∗. Since A

considers that each source has the correct vote for each fact
f ∈ F∗, it assigns a high trust score to each source. This
is based on the assumption that the more correct votes a
source has, the more trustworthy it is. In addition, in order
to avoid converging to a local optima (i.e., all sources have
a trust score of 0.5), a common fix is to use a normalization
process that converts the probability to 1 (or 0) if it is above
or equal to (or less than) 0.5. Once A converges, it results
in true for each fact f ∈ F∗ and a trust score close to 1 for
each source.
From the information entropy perspective, such result in-

dicates that the entropy of all unknown facts is 0 since for
each fact f the probability is 1, and therefore we have H(f)
= 0. In other words, a single-value based method dismisses
the uncertainty of facts and considers them true with a prob-
ability of 1. This result is counter-intuitive as we expect that
in real life scenarios, each source has a trust score between
0 and 1, and each fact has a level of uncertainty quantified
by its entropy H(f).

4.3 Multi-value trust score
Since a method that uses a single measure to evaluate all

facts does not work well for our scenario, we now resort to a
strategy that processes unknown facts separately. However,
we have to address two fundamental challenges: 1) how do
we calculate the trust values for each source; and 2) for each
fact, how do we select the trust values from each source (i.e.,
the p(σ(s)) function) to compute its correct value.
Both challenges above can be addressed by incrementally

evaluating facts and updating the trust score for the sources.
We repeatedly select a subset of the facts to process and up-
date the trust value that represents the trust score over the
facts that have been evaluated. During each round, we use
the latest trust value for the sources and leverage heuris-
tics in selecting unevaluated facts. We formally define the
incrementally calculated trust score as follows.

Definition 1 (Incrementally calculated trust score).
Consider {t0, t1, · · · , tm} be a set of finite time points. We
define an incrementally calculated trust score for source s as
σ(s) = {σ0(s), σ1(s), · · · , } where σi(s) is the trust score of
s at time ti. At each time point ti, a subset of facts Fi is
selected for evaluation. The facts in Fi are evaluated using
the trust scores σi(S)={σi(s1), σi(s2), . . . , }. In return, we
update the trust score of the sources to σi+1(S) by incorpo-
rating the corroboration result of the facts in Fi. Let t(f)
denote the time point at which f is selected. In essence, the
trust score σi(S) at time ti represents the trustworthiness of
the sources over the facts {f |t(f) < ti} that have been eval-
uated up to ti. When the algorithm terminates at tm, the
probability σ(f) is used to determine the corroborated result
of each fact.

The advantage of using an incrementally calculated trust
score is two-fold. First, it enables us to incrementally calcu-
late the trust values for each source. Second, the function to
choose a trust value from the sources for facts p(σ(s)) can
be set to σi(S) at time ti, By incrementally calculating the
trust score for each source, the challenge is now how to se-
lect facts at each time point so that the correct result could
be computed for as many facts as possible. We detail this
process in the following section.

5. CORROBORATION
In this section, we investigate strategies of selecting facts

at each time point and present our corroboration algorithm
(denoted as IncEstimate). In the following discussion, we
assume the scoring of the TwoEstimate algorithm (Equa-
tion 5) is used. We first introduce our fact selecting strat-
egy (namely IncEstHeu) in Section 5.1. We then present
the IncEstimate algorithm int Section 5.2. We analyze the
complexity of IncEstHeu in Section 5.3.

5.1 Selecting facts
Recall that in Section 4 we showed the main limitation of

existing algorithms is that they use a universal trust score
for each source and incorrectly dismisses the uncertainty of
facts. In order to uncover the correct value of unknown facts,
the key challenge is to evaluate each fact f at a point ti such
that σ(S) is a more accurate measure for the facts.

Let F̄i ⊆ F be the set of facts that have not been evalu-
ated at ti and σi(S) be the trust values for the sources. It is
yet difficult to decide a set of facts Fi ∈ F̄i such that σi(S)
is accurate for Fi. Now let us again look at the problem
from the information entropy perspective. Since we know
that the entropy for an unknown fact is 0 if its probability is
1 (or 0), we model the fact selection problem as a problem
to maximize the collective entropy H(F̄i) of unknown facts
(the sum of entropy of each fact in F̄).

One possible greedy strategy is to select facts with the
highest entropy at each ti. However, such a strategy does
not necessarily maximize H(F̄i) since the selected Fi would
impact the trust values σ(S) for the sources. In turn, the
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updated trust values would affect the entropy of the remain-
ing facts F̄i − Fi. For instance, suppose we select r1 (which
has the highest entropy of 1) at round 2 in the motivating
example. Such a selection results in σ(S) = {−, 1, 1, 0.5,−}
which would decrease the entropy of remaining facts. As a
consequence, we would be unable to identify the false facts
r4 and r10.
Given a set of unknown facts F̄i, it is easy to see that

there exist 2|F̄i| ways of selecting facts at ti. However, it
is computationally expensive to explore all possibility so as
to maximize H(F̄i). We approach the problem by selecting
a set of facts such that the updated trust values σi+1(S) is
unlikely to decrease the entropy of the remaining facts. Con-
sider below 2 cases of trust values σi+1(S) after evaluating
Fi.

• σi+1(sj) > σi(sj) for each j or

• σi+1(sj) < σi(sj) for each j

For simplicity, let us assume that all the remaining facts F̄i

have T votes only (F̄i ⊆ F
∗). Consider the case in which by

selecting Fi the trust value increases for each source (i.e.,
case 1). Since the probability of facts is calculated as the
average trust scores of its sources (Equation 5) and a higher
trust value for the sources would increase the probability of
the facts, the entropy decreases for facts with a probability
above 0.5 (recall a fact has the highest entropy if it has a
probability of 0.5). On the other hand, the updated trust
value increases the entropy for the facts with a probability
smaller than 0.5 and σi+1(S) brings its probability closer
to 0.5 than σi(S). Similarly, a smaller trust value for the
sources would bring down the entropy for facts with a prob-
ability smaller than 0.5 and could raise the entropy for facts
with a probability greater than 0.5.
Now let us examine the relationship between facts and

the trust value changes. We observe that if the evaluation
results of Fi are true (or false), the trust value for the sources
increase (or decrease). This is based on the intuition that the
more correct votes a source has, the more trustworthy it is.
Let σi+1(s) be the trust value for source s after evaluating Fi

and for each f ∈ Fi the corroboration result is true, σi+1(s)
can be calculated as follows.

σi+1(s) =

∑

fj∈F̂i
σ(fj)

|F̂i|

=

∑

fj∈F̂i−1
σ(fj) +

∑

fj∈Fi
σ(fj)

|F̂i−1|+ |Fi|

>

∑

fj∈F̂i−1
σ(fj)

|F̂i−1|
= σi(s) (8)

where F̂i+1 refers to the facts that have been evaluated up to
ti. Note that the above calculations consider the probability
to be 1 for true facts.
Based on the discussions above, we now have a viable

strategy. We first group unevaluated facts based on the
sources of the votes. Facts in the same group receive votes
from the same set of sources. The intuition behind is that
facts with the same votes should have the same corrobora-
tion result. As an instance in the motivating example, r5
and r8 are grouped together since they have the same votes.
We then calculate a score ∆H(F̄) for each fact group FG

that represents the entropy change for the remaining facts if

FG is selected. We rank fact groups in decreasing order of
their ∆H(F̄) scores and pick the one with the highest score.

∆H(F̄)FG =
∑

FG′∈F̄−FG

(Hi+1(F̄)FG′ −Hi(F̄)FG′) (9)

There is one special case in which given σ(S), all remain-
ing facts have a probability above (or below) 0.5. In this
case, the facts would be evaluated to be true (or false) which
is equivalently as having a entropy of 0 (recall true facts
have a normalized probability of 1). Such a scenario could
be caused if IncEstHeu repeatedly selects facts that evalu-
ated to be true facts. To avoid this effect, we slightly modify
our strategy as follows. During each time point ti, we divide
fact groups into positive part (fact groups with probability
above 0.5) and negative part (fact group with probability
below 0.5). We then pick one fact group from each part
with the highest ∆H(F̄) score. In addition, we require that
the same number of facts are selected from each group. Let
FG+

i and FG−
i denote the positive and negative fact group,

and we use size(FG) to denote the number of facts of group
FG. IncEstHeu selects n facts from each group where n =
min{size(FG+

i ), size(FG−
i )}. The rationale behind is that

as FG+
i and FG−

i become extremely disparate in sizes, the
updated trust scores are dominated by the larger fact group.

5.2 The Algorithm

Algorithm 1 Incremental Estimate (IncEstimate)

Input: F : a collection of facts; S: a set of sources
Output: σ(S): estimations for the sources, σ(F): estima-
tions for the facts

1: Initialize σ0(S), σ(F)
2: while |F̄ | > 0 do
3: Fi ← Select Facts(F̄ , σi(S))
4: F̄ ← F̄ − Fi

5: for all f ∈ Fi do
6: σ(f)← Corrob(f, σi(S))
7: W ←W ∪ f

8: end for
9: σi+1(S)← Update Trust(W)
10: end while
11: return σ(S), σ(F)

Algorithm 1 demonstrate the overall flow of our IncEs-

timate algorithm. Our IncEstimate takes a set of facts
and a set of sources as input, and output the estimations
of the trust scores of the sources as well as the probabili-
ties of the facts. At first, we initialize σ0(S) and σ(F) with
a default value (e.g., 0.9). Our algorithm then repeatedly
selects a new subset of facts in each round. During each
round (line 2-10), the new set of facts are selected using
the Select Facts(F̄ , σi(S)) function (line 3, defined in Al-
gorithm 2). The corroboration calculates the probability
for each selected fact (line 6) and inserts it into a set W
that contains facts which have been evaluated (line 7). The
trust scores of the sources are then updated incorporating
the results of facts that have been selected. Our algorithm
terminates when all facts have been evaluated and returns
σ(S) and σ(F).

We briefly discuss the IncEstHeu strategy defined in Al-
gorithm 2. At first, the IncEstHeu strategy initializes a set
W which is the set of facts that are to be selected, and P
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Algorithm 2 Select Facts(F̄ , σ(S))

1: IncEstHeu:

2: W ← ∅,N ← ∅,P ← ∅
3: P ← all fact groups FG in F̄ s.t. σ(FG) > 0.5
4: N ← F̄ − P
5: sort P,N in decreasing order of ∆H(F̄)
6: FG+ ← peek(P) FG− ← peek(N )
7: n← min{size(FG+), size(FG−)}
8: for i = 1→ n do
9: W ←W ∪ peek(FG+) ∪ peek(FG−)
10: end for
11: return W

and N which represents the set of positive and negative fact
groups respectively (line 5). The set P and N are then filled
with positive and negative facts that have not been evalu-
ated (line 6 and 7). Note that the peek(P) function pops
the first elements from P. We then sort the set P and N
based on their ∆H(F̄) in decreasing order (line 8). From P
and N , we pick the fact group that has the highest ∆H(F̄)
score, denote as FG+ and FG− respectively (line 9). We
select n facts from each group where n is the number of facts
of the smaller group between FG+ and FG− (line 10-13).

5.3 Complexity analysis
In this section, we analyze the complexity of our IncEs-

timate algorithm. As a comparison, a voting based method
simply counts the number of votes for each fact and there-
fore incurs a cost of Θ(|F|). Methods that iteratively com-
putes the scores for the facts and sources have a cost of
Θ(m(|F|+ |S|)), where m is the number of iterations needed
for convergence.
Our IncEstimate algorithm incurs additional cost when

calculating projected scores for unevaluated facts and updat-
ing trust scores for the sources at each time point. Let tm
be the number of time points IncEstimate needs to evaluate
all facts. As we see before, IncEstHeu evaluates at least one
fact group at each time point, therefore we can bound tm
by the number of fact groups in F . Recall that a vote takes
a value from {T, F,−}, therefore the maximum number of

fact groups is 3|S| − 2|S| − 1 (we excluded fact groups with
only one vote or no vote). Further, since we focus on scenar-
ios where most facts receive T votes only, the bound for the
number of fact groups can be reduced to O(2|S−S∗| · 3|S

∗|)
where S∗ is the set of sources that cast F votes (S∗ < S).
At each time point, IncEstHeu calculates projected scores

for unevaluated facts and update trust scores for the sources.
In the worse case scenario, each of the fact groups evaluated
at t1 through tm−1 contains one fact, and the fact groups
evaluated at tm contains |F| − 2(tm − 1) facts. The total
cost on calculating projected score is therefore tm · (tm −
1) + (|F| − 2tm + 2) · tm. In the best case scenario, the
majority facts |F|−2(tm−1) are evaluated at t1 and 2 facts
are evaluated from t2 through tm, which brings the cost to
(|F|−2tm+2)+tm ·(tm+1). On the average case where the
number of facts in fact groups is uniformly distributed, the

cost is |F|(tm+1)
2

. By adding the cost for calculating trust
scores for the sources, the total cost for IncEstimate can be
bounded by O(|F| · 2S−S∗

· 3S
∗

).
While the cost of IncEstimate is exponential in the num-

ber of sources, in typical cases this number is small. In

addition, whether adding more sources results in better cor-
roboration quality is still an open question [14]. Moreover,
tm is also bounded by the number of facts |F| since at least
one fact is evaluated at each time point, and therefore the
cost for IncEstimate can be bounded by a polynomial term
O(|F|2). Our experimental results in Section 6.2.5 show the
overhead of a more sophisticated algorithm is acceptable in
exchange for better corroboration results.

6. EXPERIMENTS
In this section, we present our experimental results. Sec-

tion 6.1 describes the experiments setup. We first present
our results on the real-world dataset, the restaurant appli-
cation mentioned before in Section 6.2. We then show the
experimental results on synthetic datasets in Section 6.3.

6.1 Setup
In this section, we present our experiment setup and eval-

uation metrics, as well as the algorithms we implemented
for comparison.

6.1.1 Algorithms
[Baseline methods]: We provided two baseline approaches

named Counting and Voting. The Countingmethod assigns
a true result to each fact if more than half the sources report
it true. In contrast, the Voting method considers a fact as
true if there exist more sources reporting it true than false.

[Corroboration methods]: We implemented the strat-
egy IncEstHeu of our incremental algorithm introduced in
Section 5. We used a default trust score σ(S) of 0.9 for each
source to start our algorithm. We tested other default val-
ues and we observed all default value above 0.5 generate the
same corroboration result. This is because despite different
σ0(S) used, the same facts are selected at t0, and therefore
they result in the same trust value at t1. We are also inter-
ested in how a different fact selection strategy would impact
the performance of IncEstimate. To that end, we imple-
mented IncEstPS, a simple strategy that selects the fact
group with the highest probability at each time point. The
rationale behind is that facts with higher probability are
more likely to receive correct corroboration results. Com-
pared with a balanced strategy IncEstHeu that considers
both positive and negative facts, we want to see how a naive
greedy strategy performs in the competition. We also im-
plemented the TwoEstimate algorithm [8] and the BayesEs-
timate algorithm [21] for comparison. For the BayesEsti-

mate algorithm, we used the same assumption as in [21] that
sources have low false positive rate but high false negative
rate. In particular, we set α0 = (100, 10000), α1 = (50, 50),
and β = (10, 10).

[ML-based methods]: Since our problem can be natu-
rally seen as a classification problem, we also tested machine
learning based algorithms using the votes as features. In par-
ticular, we tested 2 classifiers using Weka: a SVM classifier
(using SMO implementation) and a logistic classifier with
default parameter. We report the results using 10-fold cross
validation.

6.1.2 Environment and Metrics
We implemented all the algorithms using Java SDK 6. All

the experiments were conducted on a Mac OS 10.8.2 with a
quad-core CPU of 3.3 GHz and 8GB Ram. We use the fol-
lowing metrics to evaluate the results of various algorithms.
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Precision, Recall, Accuracy: We first report standard
information retrieval metrics to evaluate the results of all
algorithms.
Mean square error of trust score (MSE): We use t(si)
to denote the trustworthiness of source si over a sampled
golden set, and let σ(si) denote the computed trust score of
si by a corroboration algorithm. The mean square error of
trust score is computed as follows.

MSE =
1

n

n
∑

i=1

(t(si)− σ(si))
2 (10)

6.2 Real-World Dataset
We report our experiment results over real world datasets

in this section.

6.2.1 Dataset

We used the restaurant example discussed in Section 2 in
our experimental evaluation. We used the same example in
[15] and reported results of existing techniques on a small
sample of restaurant listings. In this study, we expanded our
investigation and conducted experiments in a much larger
scale. We crawled data from six major sources for restau-
rant listings4, namely Yellowpages, Foursquare, Menupages,

Opentable, Citysearch, and Yelp. Some of the web sources
allow accesses to the list of restaurant listings at a given a
location (e.g., Manhattan), while for others we have to do
random accesses to probe as many listings as possible. In
this particular experiment, we consider restaurant listings in
the greater New York City area. Our initial crawling yielded
42969 restaurant listings but contains numerous duplicates
due to various presentation of the same listing. In order to
clean the data and remove duplicates, we employ the follow-
ing strategy. We first wrote a rule-based script to normalize
the addresses of all listings. Listings that share the same
address are then grouped together. We calculate a similar-
ity score between each pair of listings within a group and we
consider two listings are the same entities if their similarity
score is above a certain threshold. For the purpose of this
project, we adopted the cosine similarity score at the term
level as well as 3-gram level and used a threshold of 0.8.
After the deduplication process, we recorded 36916 restau-
rant listings from these 6 sources5. Among those, only 654
listings (<2%) have F votes from sources. More specifically,
F votes come from 3 sources, Foursquare (10), Menupages

(256), and Yelp (425).
Table 3 reports source coverage (the fraction of the total

restaurant listings contained in each source), as well as the
source overlap (a measure of how much two sources have in
common). As shown, all sources contain only a fraction of
the entire listings. Among all sources, 2 sources (i.e., Yellow-
pages, Citysearch) have significantly more coverage (>50%)
compared with others.
Golden set: In order to evaluate the performance of var-
ious algorithms, we must create a golden set of listings for
which we know for certain their correct value (true or false).
Unfortunately, there does not exist an authoritative source
that can provide such information. To that end, we selected
restaurant listings from 3 zip codes and investigated their

4We comducted the crawling in Feb 2012.
5http://www.cs.rutgers.edu/∼amelie/RelaxedQ/datasets/
Restaurants/

legitimacy in person6. Overall, our golden set contains 601
listings, out of which 340 are true and 261 are false. We
also calculated the accuracies of all sources in the golden
set, listed in Table 3. Unsurprisingly, sources that have di-
rect connection with restaurants (e.g., OpenTable and Menu-

pages) have high accuracies (>0.9). Interestingly, the two
sources with significantly higher coverage (Yellowpages, City-
search) are also the sources with low accuracy (∼0.6).

Identifying legitimate restaurants is not a trivial task. Be-
fore we embarked on designing a corroboration algorithm for
this task, we tried to leverage the reviews information from
some of the sources to predict whether a restaurant listing
is legitimate. In particular, we used a variety of meta data
(number of reviews, average interval of review time stamp,
length since last review, etc) as well as the review content
as features and tested using a SVM classifier. However,
the classifier resulted in a less-than-satisfactory accuracy (<
0.7).

6.2.2 Corroboration quality

Precision Recall Accuracy F-1

Voting 0.65 1.00 0.66 0.79
Counting 0.94 0.65 0.76 0.77

BayesEstimate 0.63 1.00 0.67 0.77
TwoEstimate 0.65 1.00 0.66 0.79
ML-SVM (SMO) 0.98 0.74 0.77 0.84
ML-Logistic 0.86 0.85 0.82 0.82
IncEstPS 0.66 1.00 0.68 0.79
IncEstHeu 0.86 0.86 0.83 0.86

Table 4: Result of real-world dataset

Table 4 lists the performance of various algorithms as well
as the Counting and Voting methods. Since for most of the
listings there exist only T votes, the Voting method assigns
them a true result, thus results in a perfect recall value (1.0)
but a low precision (0.65). In contrast, the Countingmethod
uses a high threshold to filter out listings with insufficient
T votes, hence has a high precision (0.94). However, the
threshold is high enough to reject a lot of legitimate listings,
therefore resulting in a low recall value (0.65). The two non-
corroboration based approaches have an accuracy of 0.66
and 0.76, respectively.

Existing corroboration-based approaches do not perform
much better than the two baseline approaches. As they
cannot leverage conflicting information from the data, the
TwoEstimate algorithm has almost the same result as the
Voting method by assigning a true result to every listing
except for a small set for which there are more F votes than
T votes. The BayesEstimate algorithm also has very similar
results as TwoEstimate. In addition to suffering from the
lack of conflicting votes among facts, the BayesEstimate

algorithm relies heavily on the prior knowledge regarding
the sources. The high-precision low-recall prior that is used
by BayesEstimate is clearly different from the actual trust-
worthiness of the sources, as we see in Table 3 that both
Yellowpages and Citysearch have poor precisions.

The two machine learning based algorithms perform no-
ticeably better than both baseline and existing corrobora-
tion methods. In particular, the support vector classifier

6The in-person check-up was conducted during Apr 2012.
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Source coverage YellowPages Foursquare MenuPages OpenTable CitySearch Yelp

0.59 0.24 0.20 0.07 0.50 0.35

Source overlap YellowPages Foursquare MenuPages OpenTable CitySearch Yelp

YellowPages 1 0.22 0.18 0.04 0.43 0.26
Foursquare 0.22 1 0.30 0.08 0.22 0.29
MenuPages 0.18 0.30 1 0.09 0.17 0.29
OpenTable 0.04 0.08 0.09 1 0.05 0.07
CitySearch 0.43 0.22 0.17 0.05 1 0.27

Yelp 0.26 0.29 0.29 0.07 0.27 1

Source accuracy YellowPages Foursquare MenuPages OpenTable CitySearch Yelp

0.59 0.78 0.93 0.96 0.62 0.84

Table 3: Source coverage and overlap

improves on both accuracy (0.77) and recall (0.84). In com-
parison, the logistic classifier proves to be a better model
in this case, with a precision of 0.86 and an accuracy of
0.82. Unsurprisingly, the most discriminating features are
the F votes from the 3 sources. The performance gain of ma-
chine learning algorithms is largely due to the consideration
of missing votes among sources. As we discussed earlier, a
missing vote could be seen as either a F vote or that a source
has no knowledge about the fact. By taking advantage of
the missing votes, machine learning based algorithms can
leverage extra knowledge and therefore improve accuracy of
predictions.
Our IncEstHeu strategy significantly outperforms the base-

line and existing corroboration methods, and slightly im-
prove on accuracy and recall compared with machine learn-
ing based algorithms. The improvement is statistical signifi-
cant for both baseline and existing corroboration techniques
(with p-value < 0.001). The IncEstPS strategy has a simi-
lar result as existing approaches and improves on accuracy
only marginally. This is due to the way IncEstPS selects
facts at each time point. We observe IncEstPS repeatedly
selects facts with high probability which are evaluated to
be true. As a consequence, the trust values remain high
and most of the facts are evaluated to be true except for
a few with more F votes than T votes. The IncEstHeu has
a good balance between precision and recall, results in the
best value for accuracy and F-1. In particular, IncEstHeu
results in more true negatives (141 in the golden set). The
best machine learning method (ML-Logistic) has 137 true
negatives.
Although the improvement of our IncEstHeu over the ma-

chine learning based approaches is not statistically signifi-
cant, we argue that our method is advantageous in such task.
For one thing, our approach does not require any training
data, which could be difficult to obtain in certain applica-
tions. In addition, the machine learning methods are trained
using a small dataset and it is unclear whether it would scale
to a larger unseen dataset due to the fact the model could
be overfitting over the small golden set.

6.2.3 Mean square error
Table 5 lists the corroborated trust scores of the sources

of various algorithms as well as their MSEs. For IncEs-

tHeu we report the trust scores for the sources at the end
of last time point, which reflects their trustworthiness over
the entire dataset. Compared with the actual source ac-
curacy over the golden set, the IncEstHeu is clearly the

best performer (almost identical trust score for Menupages,
Opentable), thus results in the smallest MSE (0.005) among
all corroboration techniques. This is due to the fact that
it adapts its trust value for each fact group. The TwoEs-

timate algorithm, which is unable to identify most illegit-
imate listings, concludes all the sources as perfect or near
perfect sources. Similar as precision and recall, the BayesEs-
imate algorithm assign a trust score to each source similar to
TwoEstimate. The machine learning method ML-Logistic

has the best MSE value overall, slightly outperform our best
strategy. This is because the machine learning methods are
specifically trained using the golden set. In addition, our
method reports the trust score at the end of the last round,
which represents the trust score over the entire dataset, and
therefore it is not surprising that it deviates from the trust-
worthiness of the sources on the golden set.

6.2.4 Multi-value trust score
In this section, we illustrate how the trust score for each

source changes when using different strategies of the IncEs-
timate algorithm. Figure 2 plots, for each strategy, differ-
ent trust scores that are used for corroboration at each time
point.

Since we use an initial trust score σ(S)0 for each source,
all sources share the same trust score at t0. As the IncEs-

timate algorithm continues, each strategy develops different
trust score trajectory for the sources. In particular, the In-
cEstPS strategy (Figure 2(a)) chooses the set of facts with
the highest probability which are evaluated to be true. In
return, the true facts boost the trust score for the sources
that cast votes. Since IncEstPS favors facts with high prob-
ability, the trust scores for the sources remain at 1 until all
facts with only T votes have been evaluated. It is not sur-
prising that from then on, trust values for sources with F

votes start to decrease since facts with F votes are evaluated
to be true. Eventually, IncEstPS is only able to identify
2 true negatives, which is similar as existing corroboration
techniques.

In contrast, the IncEstHeu strategy overcomes the limi-
tation of IncEstPS by selecting both positive and negative
listings during each round. This results in significantly dif-
ferent trust score change from the IncEstPS strategy (Fig-
ure 2(b)) While after evaluating F0 all sources are positive
sources, the trust scores for both Citysearch and Yellowpages

begin to dip as more false facts with F votes are identified,
which effectively makes them negative sources (after t12).
With the presence of negative sources, IncEstHeu is able to
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YellowPages Foursquare MenuPages OpenTable CitySearch Yelp MSE

Source accuracy 0.59 0.78 0.93 0.96 0.62 0.84 -
TwoEstimate 1.00 1.00 0.98 1.00 1.00 0.98 0.063
BayesEsitmate 1.00 1.00 1.00 1.00 1.00 1.00 0.066
ML-Logistic 0.62 0.85 0.98 0.92 0.65 0.95 0.004
IncEstHeu 0.51 0.70 0.90 0.93 0.51 0.89 0.005

Table 5: The mean square error of trust score
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Figure 2: Multi-value trust score at each time point

Time cost (secs)

Voting 0.60
Counting 0.61

BayesEstimate 7.38
TwoEstimate 0.69

ML-SMO 0.99
ML-Logistic 0.91
IncEstPS 1.13
IncEstHeu 1.15

Table 6: Time cost of various algorithms

uncover false facts from F∗ which explains a significantly
higher number of true negatives. IncEstHeu then continues
to evaluate facts and the trust scores eventually converges
to the actual accuracy for the sources.

6.2.5 Time cost
Inevitably, a more sophisticated corroboration algorithm

incurs additional time cost in computation. Our IncEsti-

mate algorithm suffers from the overhead of the multiple
round corroboration. Table 6 lists the time cost of various
algorithms over the real world dataset. We used the ‘time’
command to test the time cost of each algorithm and re-
port the real part. The two baseline approaches, Voting

and Counting, which only considers the number of T and F

votes, are the fastest ones, with a time cost of 0.6 and 0.61
seconds, respectively. The TwoEstimate algorithm, which
applies corroboration on all the listings at once, is also fairly
efficient, with a time cost of 0.69 seconds. The BayesEsti-

mate algorithm requires a burning period before stabilizing
and results in the longest time (7.38 secs). The two machine

Number of errors

Voting 292
Counting 327

TwoEstimate 269
ThreeEstimate 270
IncEstHeu 262

Table 7: Results of various algorithms over the Hub-
dub dataset

learning based approaches take less than 1 second largely
due to the fact that they only run over the golden set. The
best strategy of our IncEstimate algorithm results in a lit-
tle more than 1 second, with the best performing strategy
having an acceptable time cost of 1.15 secs.

6.2.6 The Hubdub Dataset
Our paper focuses on the scenario where most or all facts

have only T votes. Nevertheless, we do not believe that our
incremental algorithm is limited to such cases. To demon-
strate the effectiveness of IncEstimate in dataset with ample
conflicting votes, we use the Hubdub dataset from [8]. The
Hubdub dataset was constructed using a snapshot of settled
questions from hubdub.com, which contains 830 facts from
471 users on 357 questions.

Table 7 report the results of various algorithms on the
Hubdub dataset. We did not include the machine learning
based methods since this task involves more than two can-
didate answers. For comparison, we report the same metric
used in [8], the number of errors (the sum of false positive
and false negative). The best performance in [8] was from
TwoEstimate, which recorded 269 errors. Our IncEstHeu

outperforms all existing methods by reducing it to 262 er-
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rors. This proves that IncEstHeu is not only suitable for
the corroboration problem discussed in this paper, but also
effective in scenarios with conflicting statements.

6.3 Synthetic Dataset
We present our experiment results on synthetic datasets

in this section. We first provide details on how we gener-
ate synthetic datasets (Section 6.3.1) and then present the
corroborated results (Section 6.3.2).

6.3.1 Dataset
We use the following model to generate synthetic datasets.

We consider all the sources are positive sources, i.e., with a
trust score of greater than 0.5. For each source s, let σ(s)
and c(s) denote its trust score and coverage. For each fact,
we randomly assign a correct value of either true or false.
We also consider a factor η that determines the percentage
of facts that have F votes. The parameters σ(s) and c(s)
controls whether and how a source s casts votes on facts.
Motivated by the observation in the real world dataset, we
divide the sources into accurate sources (e.g., Menupages)
and inaccurate sources (e.g., Yellowpages). In particular, we
create sources as follows.

• Accurate sources are created with a trust score uni-
formly distributed in [0.7, 1.0]. In addition, each ac-
curate source s is associated with a probability m(s)
that it casts a F vote for a false fact. We set m(s) to
be uniformly distributed in [0, 0.5].

• Inaccurate sources are created with a trust score
uniformly distributed in [0.5, 0.7]. Inaccurate sources
do not cast F votes for any fact.

We generate coverage for each source by following the in-
tuition that inaccurate sources have a higher coverage com-
pared with accurate sources. In particular, the coverage is
calculated using Equation 11,

c(s) = 1− σ(s) + random() ∗ 0.2 (11)

where random() is a function that generates a random real
number in [0, 1]. For each synthetic dataset we generate
20000 facts which are randomly assigned a true or false
value.

6.3.2 Results
Figure 3 plots the performance comparison of various algo-

rithms in the synthetic datasets. In particular, Figure 3(a)
illustrates the accuracy of algorithms with a varying total
number of sources. In this experiment, we fix the number
of inaccurate sources at 2. As shown, our IncEstHeu algo-
rithm consistently outperforms all other methods by a large
margin. As the number of accurate sources increases, the
accuracy of the IncEstHeu improves. In contrast, except
for the Counting method, all methods remain almost flat
as the number of sources change. The performance of ex-
isting algorithms is not unexpected. Although the majority
sources are accurate, their low coverage, coupled with the
fact there exist very few conflict votes, renders the state-of-
the-art methods incapable of identifying false facts.
Figure 3(b) demonstrates the results under a varying num-

ber inaccurate sources, with the total number of sources
fixed at 10. We are seeing similar results as shown in Figure

3(a). Unsurprisingly, as the number of inaccurate sources in-
creases, the accuracy of the IncEstHeu decreases and even-
tually drops to the same level when 9 out 10 sources are
inaccurate. Our IncEstHeu outperforms all other methods
by as much as 37%.

Figure 3(c) shows the results with a different percentage
η of facts that have F votes (from 0.01 to 0.05). We fix
the number of total and inaccurate sources at 10 and 2 re-
spectively. Again, the IncEstHeu algorithm generates signif-
icantly more accurate corroboration results than any other
methods.

7. RELATED WORK
Corroboration was first used in the task of question an-

swering in its early stage [1, 7, 18]. Different from traditional
methods which only consider the frequency of extracted an-
swers [6, 13], techniques that leverage corroboration consider
the quality of the sources from which answers are extracted.
For example, based on the link structure of the World Wide
Web, one may use the PageRank score [2] or the author-
itative score [11] as a measure for the source. However,
such measures may not be available if only a small set of
sources are accessible. The AskMSR system [1, 7] ranks an-
swers based on the number of extraction rules or high quality
query rewrites. In [18], Wu et al. presented a comprehensive
corroboration approach that considers not only the original-
ity of the sources but also the prominence of answers within
each source.

More recently, corroboration techniques [20, 5, 8, 15, 16,
14] have also been used in finding the correct value among
a set of conflicting values for an object (termed as the truth
finding problem). Yin et al. [20] proposed a novel algorithm
called TruthFinder that uses Bayesian analysis and finds
true facts among conflicting information. Dong et al. [5]
investigate dependence among sources and assign a higher
weight to independent sources. Galland et al. [8] proposed
the (ThreeEstimate) algorithm that considers not only the
trustworthiness of the sources, but also how difficult each
statement is in terms of the level of disagreement. Paster-
nack et al. [16] approach the truth finding problem by
incorporating prior knowledge and propose a set of algo-
rithms (AvgLog, Invest and PooledInvest). However, all
the techniques target corroboration tasks with explicit un-
certainty and therefore is ineffective in our problems with
implicit uncertainty.

Corroboration has also been applied to applications in
database area [12, 17]. In [12], the authors proposed a frame-
work called Multiple Join Path for obtaining high quality
information by linking fields across multiple databases with
uncertainty. In [17], the authors extended the problem by
considering a join graph over databases with low quality
data and proposed a novel algorithm to efficiently compute
the top-k answers.

Dong et al. [14] investigated a set of state-of-the-art cor-
roboration techniques and concluded that there are possible
improvements to information corroboration. In particular,
the authors observed that fractions of data from the same
source can have different quality and suggested that differen-
tiating source quality for different categories of data could
improve corroboration quality. To the best of our knowl-
edge, we are the first to use a multi-value trust score for
sources in a corroboration technique. By considering multi-
ple trust scores of each source, we are able to uncover the
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Figure 3: Corroboration results of synthetic datasets

errors of sources in a scenario in which there exists little
conflicting votes among sources. The BayesEstimate [21]
algorithm considers a two-value trust score (i.e., sensitivity
and specificity). However, it still applies the same score of
each source to all the statements which makes it ineffective
as we showed in Section 6.
Another related area is fact checking that has been studied

in the Semantic Web domain. Fact checking is the process
of identifying the provenance of Web data represented us-
ing Resource Description Framework (RDF). Dividino et al.
in [4] developed a generic framework that aims to retrieve
multiple dimensions of meta knowledge (e.g., source, time
of validity, certainty) with respect to RDFs. In [9], Hartig
and Zhao presented a framework that tracks the provenance
for Web data. In comparison, data corroboration usually as-
sumes the knowledge of provenance for the data and focuses
on the computation of the trustworthiness for the sources
and the probability for the data.

8. CONCLUSION
We studied the corroboration problem in a scenario in

which there exists little conflicting information. We tackle
the problem by proposing an algorithm based on a multi-
value trust score for each source. For each source, we use a
different trust score when evaluating different sets of state-
ments. We leverage the entropy of unknown facts and de-
rive strategies of choosing facts during each round in our
algorithm. We conduct experiments on both synthetic and
real-world datasets and demonstrate that our algorithm sig-
nificantly outperforms state-of-the-art corroboration meth-
ods and improves accuracy over machine learning based ap-
proaches.
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