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ABSTRACT
The large collection of educational data provides the opportunity to
study how students learn and can be a source of valuable knowledge
both for students when planning their studies and for educators
and administrators for improving their curricula and services. In
our work, we mine course relationships and student consumption
patterns found in the data. We present a visual analysis system,
Learn2Learn, that mines, visualizes, and allows interaction with
such relationships for user-guided study planning and analysis.

1. INTRODUCTION
Educational content consumption data are vastly generated, col-

lected, and stored electronically. At schools, students’ course en-
rollment history is recorded in the database. On the web, fine-
grained learning activities are tracked. For example, a learning
management system like Moodle1 or Desire2Learn 2 captures a
significant amount of data, including time spent on a resource, fre-
quency of posting, number of logins, etc. These data can reveal
patterns regarding how students learn that can be valuable for stu-
dents as well as school administrators and educators.

For students, developing a study plan is a complex decision mak-
ing process. The degree requirements, course prerequisites and the
contents of each course are well-documented but the relationships
between courses are hidden inside academic curricula hindering the
development of effective study plans. As a result, students largely
depend on word-of-mouth, and miss learning opportunities that
could be mined from the collective knowledge of their colleagues.

Knowing and understanding course relationships and student con-
sumption patterns is not useful only to students. School adminis-
trators and educators can gain insights into course dependencies,
unpopular courses, overlapping courses, and so forth, and can im-
prove the curriculum and services to increase student grades and
retention. However, educators and administrators often have little
knowledge as many questions about the learners and the courses
can be answered only based on the information hidden in the data.

In capturing course relationships as well as learners’s discourse
from the available educational data, we want to be able to answer
questions such as the following ones:

• What courses are popular ?
1www.moodle.org
2desire2learn.com
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• What are the most frequent learner behavior patterns?

• Given the courses a learner has already taken, what are the pos-
sible learning paths to follow next?

• What are the concepts covered along a popular learning path?

An interactive data exploration environment provides an effec-
tive way of finding answers to these questions. In our work, we de-
signed a visual analytics system to support such an answer-seeking
process. Our visual analytics system enables users to inspect dif-
ferent course relationships and student consumption patterns.

However, educational data makes the visual analysis task chal-
lenging. Our data is connected in several ways, both semantic and
sequential. It is not straightforward how to visually display all
of these relationships without creating clutter and confusion. Fur-
thermore, at each semester, a student can take multiple courses.
Extracting meaningful course sequences that capture how students
follow different paths during their academic studies is non-trivial.

To handle these challenges, we first define learning paths based
on historical educational data and an effective way to compute them
using sequence mining. Furthermore, we designed two visualiza-
tion components to present the information extracted from the data.
The Content Wheel visualization shows the different types of course
relationships, and the Content Flow displays the order of content
consumption. Finally, we provide intuitive interaction tools to en-
able detailed data examination and relationship refinement.

The major contributions of our work include:

• Mining learning paths from historical educational data.

• Mapping course relationships to 2D space via the Content Wheel.

• Recommending significant learning paths with the help of the
Content Flow.

• Enabling an interactive exploration process for user-guided study
planning and analysis.

2. RELATED WORK
Our work is related to visual analytics, learning analytics and

temporal data mining.
Visual analytics is a user-centered data analysis method that inte-

grates data analysis and visualization techniques for making sense
of the data and thus making actionable decisions. Learning analyt-
ics is a young and developing concept. Some analytics techniques,
such as attention metadata [6] and tutoring and learner models [3]
are already in use in education. However, there is a lack of analyt-
ics tools and techniques with an explicit learning focus [11]. In this
work, we take a step forward and we introduce a visual analytics
system to support the decision making process in study planning.

Temporal data mining techniques include mining temporal asso-
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ciation rules [1], sequential patterns [4], and so forth. However, an
important form of temporal associations which is useful but cannot
be discovered with these techniques is the inter-transaction associ-
ations [7, 8]. We formulate our learning path mining problem as
an inter-transaction sequence mining problem. Different from the
frequent pattern mining, where only the frequent patterns are ex-
tracted, here we want to extract all possible patterns and visualize
them. From the statistics, frequent sequences are more acceptable
learning paths which we want to recommend to users.

3. SYSTEM OVERVIEW
A university keeps information about departments, majors, courses,

and student enrollment data. Note that while we focus our discus-
sion on university data, our tools and methods can be used for min-
ing and displaying course relationships and consumption patterns
from any educational dataset where such relationships exist.

The visual analytics system includes browser-based visualization
implemented using JavaScript library d3.js [2]. On the server-end,
data preparation and analysis is deployed to extract proper infor-
mation, such as courses hierarchy/orders, for visualization.

3.1 Course Relationships
Course Relationship Extraction. An academic discipline, or

field of study, is a branch of knowledge that is taught and researched
at the college or university level. Universities follow different dis-
cipline classification schemes and assign available courses accord-
ingly. We are interested in capturing both discipline-discipline and
discipline-course relations. We extract these relations from the data
by using the information about schools, departments, research ar-
eas, and courses. Figure 1 shows a snapshot of the discipline hier-
archy built from our data.

Engineering

Computer 
Science

Electrical 
Engineering

Theory System Applications

Figure 1: An example of discipline hierarchy.

Course Relationship Visualization. One obvious way to visu-
alize the discipline-discipline and discipline-course relations is to
use a hierarchical model. Disciplines and courses can be repre-
sented as nodes and their relationships can be represented as edges.
However, as soon as disciplines and courses start to span out, and
courses belong to more than one discipline, a hierarchical model
becomes unsuitable. A proper placement strategy is expected to
satisfy the following principles: (a) it should be as compact as pos-
sible given the limited screen, (b) it should reduce visual clutter, (c)
it should be representative, i.e., important courses, disciplines and
relationships should be easily recognized.

To meet these objectives, we made several decisions into design-
ing the Content Wheel. We map courses and disciplines in a 2D
space as follows: all the courses are placed in an outer circle, while
disciplines are displayed in the middle. We use links to represent
the relations between disciplines and courses, while we use rela-
tive positions to indicate the relations among disciplines. Further-
more, while courses are spatially fixed on a circle, the disciplines
can move around with the pulling force from their covering courses
and pushing force from their parallel disciplines. Detailed informa-
tion is shown on the user’s demand through interaction.

Our design is inspired by the d3 Concept Browser project [9] and
the circle packing technique. Figure 2 shows an example Content
Wheel. Disciplines are shown as circles. The size of the discipline

node is proportional to the number of courses taken in that disci-
pline. Hence, more significant disciplines can be easily identified.
The hierarchy relation is represented by the circle packing. For in-
stance, “theory” and “graphics” are sub-disciplines of “computer
science” and hence they are represented by circles packed inside
the “computer science” circle.

Course Relationship Interactive Analysis. The Content Wheel
allows one to visualize important courses, disciplines and their re-
lationships. A user can focus on a course by clicking on it. For
example, the user can select the course “Object-Oriented Systems
Design” in Figure 2. Figure 3 zooms in on “Object-Oriented Sys-
tems Design” and its associated disciplines. In a similar fashion, a
user can zoom in on a discipline and visualize all discipline-course
relations. Figure 4 shows the visualization result after the discipline
“System” is clicked in Figure 3.

Figure 2: Analyze disciplines, courses, and their relationships.

Figure 3: Analyze an example course and its disciplines.

3.2 Learning Paths
Learning Path Extraction. We define a learning path as a se-

quence of courses taken in adjacent terms. However, students take
concurrently a number of courses at each term, so a transcript is not
a strict sequence of courses but rather a sequence of sets of courses
as illustrated in Figure 5(a). The figure shows that the student took
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Figure 4: Analyze an example course and its disciplines, and all
of other courses of one of its disciplines.

Figure 5: From student histories to learning paths.

courses C1 and C2 during term a, course C3 during term b, and
courses C4 and C5 during term c.

Since each student can take multiple classes during each term,
for each two consecutive terms, there are many possibilities of class
ordering. Given each course taken in one term, we consider each
course taken in the next term as one option, i.e., one path. For ex-
ample, one path goes from C3 to C4, and a second path is C3 to C5.
The complete learning paths from a student’s history are extracted
iteratively using permutation. Figure 5(b) shows the learning paths
extracted from the transcript in Figure 5(a). Via conducting the
same processing on all students’ enrollment histories, we can ex-
tract all learning paths.

However, calculating and aggregating the learning paths is not
straightforward. The most important challenge comes from the
large amount of courses and terms. Theoretically, the number of
different paths would increase exponentially with them. In reality,
students’ options are limited by course prerequisites and workload
balance. Hence, the number of possible paths is practically smaller.
However, it is still challenging to process the data.

We map our learning path mining problem to an inter-transaction
sequence mining problem [8]. An inter-transaction sequence de-
scribes the sequence relationships among different transactions. We
consider a student transcript as an ordered set of transactions along
the dimension of time. Each transaction contains the courses se-
lected for a specific term by the student. In a typical four-year col-
lege, a student’s enrollment history spans freshman, sophomore,
junior, and senior years. Consequently, our learning paths are large
sequences, which poses an additional challenge.

First, we “align” student histories. In the database, we have en-
rollment history data of students at different classes. Therefore,
all course sequences need to be aligned at the freshman year in
order to show meaningful paths towards receiving a bachelor de-
gree. Furthermore, in the dataset we use for the demo purposes, the

class information is hidden for the sake of privacy, and the enroll-
ment history for each student might be incomplete. We estimate the
freshman year of each student as the one in which there is course
taken in the fall term, but no other courses taken before it.

Similarly to other mining techniques [7], to efficiently calculate
the weights of the links within the course sequences, we build a tree
structure. The root node of the tree is a “null” node; the nodes on
the second level of the tree represent the courses in the first term;
the nodes on the third level of the tree represent the courses in the
second term; and so on. In this tree structure, except the root node
and the courses in the first level, the courses in other levels may
appear multiple times. To calculate the weights, we scan all of the
learning paths once, and for each learning path (C1, C2, · · · , Cm),
we just need to traverse one path of the tree structure from the top
to the bottom, and increase the count for each node that is traversed
along. The worse space complexity for this calculation is Nm,
where N is the number of courses for each term and m is the total
number of terms. Since not every course in a term will have a link
to every course in the following term, the actual space complexity
is far lower than Nm.

Learning Path Visualization. The large number of different
paths poses visualization challenges as well. We designed our Con-
tent Flow following the same objectives as with the Content Wheel.
Here, we aim at representing the most significant paths globally,
that is through all terms, and allowing local analysis between con-
secutive terms as well.

Similar to the parallel sets visualization [5], we map terms to
different layers. The courses in the same term are displayed in the
same layer, with each course represented by a horizontal line seg-
ment. The length of the segment represents the significance of the
course in a specific term based on the learning paths we extracted.
The width of a line that connects two courses in consecutive terms
shows the popularity of that path among all the learning paths. An
example Content Flow is shown in Figure 6.

Figure 6: Extract and visualize course sequences.

Learning Path Interactive Analysis. By placing the mouse
pointer over a course above a line segment, the user can check the
course description and popularity. At the same time, the courses
which precede and come after the specified course would also be
highlighted. If the user points over a link between courses, a learn-
ing path across all the terms will be shown with its text description.

We provide interactive filters for the users to select a portion of
courses or terms to generate learning paths. One example would be
to consider only courses taken by over ten percents of all students.
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Since when the learning paths are visualized, the result may still be
cluttered, we also provide a drag-and-drop tool for the users to fur-
ther eliminate courses. Students can remove uninteresting courses
in order to obtain a clear view of significant learning paths.

4. DEMONSTRATION
For the demo, we will use the CourseRank dataset [10] to show

how the Content Wheel and Content Flow visualization can help
study planning.

Using the Content Wheel, as shown in Figure 7, demo partic-
ipants can first have a general impression of disciplines covered
and courses taken by a group of students. Then they click on the
different discipline circles to reveal courses that fall under those
categories. Alternatively, they can click on the course dots to un-
cover which disciplines cover those courses. Through this process,
participants will discover interesting patterns. For example, Fig-
ure 7 shows the summary of courses taken by the computer science
major students. Yet, in addition to their technical focus, computer
science students are also enrolling in arts and economics courses.
In particular, the Social Dances of North America is the most pop-
ular course selected from the art discipline. These findings could
be taken into consideration in the study planning process.

Figure 7: Courses taken by computer science major students

Using the Content Flow, demo participants will easily explore
different aspects of learning paths. First, the courses that students
are taking are shown for each term. For example, Figure 6 shows
that Linear Algebra and Programming Abstraction are the most
commonly taken courses in the first term of freshman year (for
computer science major students). Second, when demo participants
place the mouse cursor over a specific course, the classes that stu-
dents are typically enrolled in before and after that course will be
hilighted, as in Figure 8. Therefore, interesting associations can be
seen, such as Ordinary Differential Equations is often taken after
Discrete Mathematics. This association reflects the courses depen-
dency or scheduling information, which can be directly utilized for
courses planning. Third, the user can also check each complete
learning path, which shows a sequence of courses taken across all
terms. Figure 9 represents one such path.
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