
CAQE: A Contract Driven Approach to Processing
Concurrent Decision Support Queries

Venkatesh Raghavan
Pivotal, Inc.

vraghavan@gopivotal.com

Elke A. Rundensteiner
Worcester Polytechnic Institute

rundenst@cs.wpi.edu

ABSTRACT
Real-time analytical systems need to handle workloads comprised
of expensive decision support queries with diverse quality of ser-
vice requirements known as contracts. Contract driven multi-query
processing, being an NP-hard problem, remains unaddressed to
date. The traditional approach of blindly pipelining the entire input
through a shared execution plan is not viable due to the diversity in
query contracts. To tackle this challenge, we now develop a flexi-
ble model to express contracts and accompany it with an effective
means to measure the run-time contract satisfaction. We propose
our Contract-Aware Query Execution framework CAQE. In this
work, we exploit the principle that “different portions of the in-
put contribute to disparate subsets of queries with varying degrees
of progressiveness.” Therefore, CAQE’s processing of the input
chunks is driven by how the different query contracts are being met
at run-time. To maximize the contract satisfaction of the work-
load, CAQE leverages the dependencies of input chunks across the
queries. This enables us to determine the impact of processing par-
ticular input chunks on improving the run-time contract satisfac-
tion. Our experiments demonstrate the effectiveness of CAQE in
increasing the overall contract satisfaction of the workload, specifi-
cally 2 fold better than existing multi-query processing techniques.

1. INTRODUCTION
Real-time decision support applications must handle workloads

of queries with varying quality of service requirements, known as
contracts [19,26]. Users of such applications range between those
who are willing to pay more for getting a high degree of responsive-
ness (known as progressive result generation [23, 29]), to cost con-
scious users that can tolerate some delay. In this work, we tackle the
problem of handling workloads of queries with diverse contracts.

1.1 Motivating Real World Applications

Example 1. Stock ticker applications on smart mobile devices
enable (1) customers to watch real-time quotes on a list of stocks
with a contract requirement of 15 seconds refresh, (2) compile trend
analysis on an hourly basis, (3) aggregate the activity on news,

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

blogs, twitter and other social media, about the stocks in customized
watch lists, and lastly (4) recommend stocks to diversify the portfo-
lio. Each user may vary in their progressiveness of the system they
are willing to pay for.

Example 2. Internet aggregators access and combine data
from several sources to produce complex results. For example, a
travel planner enable searching the database of Hotels (H) and
Tours (T) to find competing packages [32]. As observed by [26],
users of such aggregators often have to wait for a long time for
their request to finish, or be presented with stale results. The user
expectations of such applications can vary from those that expect
a near instantaneous response to those that prefer periodic alerts.
Consider the workload defined below.

• Q1: John Smith is planning a business trip to Paris that min-
imizes the distance from the venue; while maximizing the rat-
ing. John is on a break in-between meetings, and has 10-15
minutes to quickly narrow down his top choices.

• Q2: Student Jane Doe is searching for deals in Paris that
are cheap and can compromise on distance from points of
interest. She wishes to be alerted about attractive packages
as soon as they are identified to facilitate immediate action.

• Q3: ACME travel agency designs competitive European tours
[32]. Their preference is to maximize ratings and number of
sights while minimizing the cost to produce hourly reports
about newly available tours.

The above queries perform joins across the same base tables but
differ in which dimensions are of interest. Most importantly, the
degrees of progressiveness of the query execution are different.

1.2 Contract-MQP Problem
In this work, we address the problem of Contract-driven Multi-

Query Processing (Contract-MQP). Given a workload of queries
augmented with their contracts the objective is to develop an exe-
cution strategy that maximizes the workload contract satisfaction.
For a real-time application to simultaneously meet the contracts of
multiple consumers the application must scale. Therefore, exploit-
ing the sharing of execution of computationally intensive queries
without compromising on user contracts is crucial. While we focus
on multi-criteria decision queries over joins, our proposed princi-
ples are general and can be extended to other classes of queries.

1.3 State-of-The-Art Techniques
Multi-query processing (MQO) [28] is typically solved by one

of two methodologies. The time-shared approach [22] divides the

121 10.5441/002/edbt.2014.12

total available processing time into slices and allocates them to dif-
ferent queries in a round-robin fashion. In this approach, each
query is processed separately with no sharing of intermediate re-
sults for common sub-expressions. Alternatively, the shared query
plan approach pipelines each tuple through a shared multi-operator
plan [7,18,33]. Each query is viewed as a subscriber that consumes
the results produced by a producer operator within this larger inte-
grated plan. For computationally intensive queries the shared plan
approach is superior to the time-shared approach due to its effec-
tiveness in reducing the computation load [10, 33].

Multi-criteria decision support (MCDS) queries are at the core
of advanced analytics that extract value from the underlying datasets
by analyzing them across multiple dimensions. A rich variety of
such queries have been proposed including Top-K queries [8, 13],
convex hull [20], nearest neighbor [1, 9] and skyline queries [3].
Many applications require an intuitive means to formulate user pref-
erences over multiple criteria of interest, and return a set of par-
tially ordered results that satisfy it. The ease of expressing multi-
dimensional preferences has made skyline queries popular [14,31].

The time-shared MQP approach is not practical for processing
resource intensive skyline over join queries. To elaborate consider
tables R and T with cardinalities of 200K and 100K respectively.
A query plan containing a join filter with selectivity of 0.1 and
skyline dimensions d=2 will generate ≈ 1 million join results and
require > 1 million pairwise comparisons [5]. Clearly, processing
multiple such skyline over join queries individually is prohibitively
expensive because it ignores critical optimization opportunities. To
the best of our knowledge, we are the first to look into the problem
of optimizing workload with multiple skyline over join queries.

1.4 Research Challenges in Contract-MQP
The Contract-MQP problem is NP-hard since its sub-problem,

multi-query optimization of select-project-join queries, is a well es-
tablished NP-hard problem [28]. The Contract-MQP problem is es-
pecially difficult for skyline over join workloads for the following
reasons. The set-based skyline over join operation is blocking by
nature. In the worst case scenario, to generate a single skyline re-
sult we may have to process all of the join results first [5]. This ap-
proach contradicts the high responsiveness (progressive) contracts
of some users – who expect partial results to be reported as early
as possible rather than waiting until the end of query processing.
That is, the skyline operators in the shared query plan approach
may be blocking the progressiveness of other operators in the plan
that serve a different query. To increase progressiveness of a single
query Qi, we may be forced to first fully generate large portions
ofQi’s intermediate tuples servicing other queries in the workload.
This defeats the chief objective of Contract-MQP.

Although existing shared query plan approaches have been ef-
fective for the simpler select-project-join queries [7, 18], they rely
on the queries being monotonic [11]. That is, they produce an
append-only result stream assuming that the processing of a new
input tuple never incurs deletion of a previously generated result
tuple. Unfortunately skyline over join queries do not exhibit this
convenient property. Instead, during the skyline evaluation a newly
generated join result can potentially dominate several previously
generated join results – making them invalid in the final output.

Moreover, current MQO techniques [7,10,18,33] tend to assume
all queries have equal importance. Thereby they ignore the fact that
user queries may have diverse and possibly conflicting contracts.

1.5 Our Proposed Approach: CAQE
To address the Contract-MQP problem, we propose our Contract-

Aware Query Execution (CAQE) framework. CAQE takes as in-

put a set of skyline over join queries (SQ) and their associated set
of contracts (SC). CAQE exploits the core principle that “differ-
ent portions of the input contribute to disparate subsets of queries
with varying degrees of progressiveness.” The traditional view of
multi-query processing is to blindly pipeline the entire input tu-
ples through a shared plan [10, 18]. This approach however is
not viable when the workload queries have varying and sometime
conflicting contracts. To overcome this drawback, we model the
problem as evaluating small units of work on a shared execution
plan. This execution framework allows CAQE’s contract-driven
optimizer to adaptively pick (at run-time) the next input chunk to
be processed. The decision is driven by prioritizing the current
subset of queries whose contracts are not yet being met and iden-
tifying the input chunks which can meet the run-time contracts of
the affected queries. This approach enables CAQE to maximize
the overall contract satisfaction of the workload. To the best of our
knowledge, we are the first work to address Contract-MQP prob-
lem. Our contributions are:

• We develop a flexible model to express a rich diversity of
progressiveness contracts. This is accompanied with an ef-
fective means to measure the run-time contract satisfaction.

• We design a min-max-cuboid shared query plan structure that
facilitates sharing among queries.

• We propose a contract-driven optimizer that employs a cost
benefit model to determine the order in which the different
input chunks are processed on the min-max-cuboid shared
plan – thereby maximizing the workload satisfaction metric.

• We build a contract-aware execution strategy that progres-
sively outputs the results of the different queries. In addition,
our executor provides continuous feedback to the optimizer
about the run-time satisfaction of the queries and trigger cor-
rective steps when contracts are not being met.

• Our experimental analysis over benchmark datasets demon-
strates that CAQE consistently outperforms existing tech-
niques. In many cases CAQE is 2 fold better in satisfying
query contracts while generating 20 folds fewer join results
and conducting 17 folds fewer skyline comparisons than ex-
isting techniques.

2. BACKGROUND
In this section, we review the preference model and the query

algebra representing a skyline over join (SJ) query.

2.1 Preference Model for Skyline Operation
For a d-dimensional data set R, we use ak (1 ≤ k ≤ d) to

represent each dimension and D = {a1, . . . , ad} the set of all d
dimensions, called the full-space. For a tuple τi ∈ R, the value of
the attribute ak can be accessed as τi[ak]. Given a set of attributes
V ⊂ D, the preference P over the set of objects R is defined as
P := (V,�) where � is a strict partial order on the domain of
V . Here, V is termed as subspace. Without loss of generality, we
assume that ∀ak : τi[ak] ≥ 0, and that smaller values are preferred.

Definition 1 (Full Space Dominance). For a set R of d- di-
mensional tuples, a tuple τi ∈ R dominates tuple τj ∈ R (de-
noted as τi ≺ τj), iff (∀(ak ∈ D) (τi[ak] ≤ τj [ak]) ∧ ∃(al ∈ D)
(τi[al] < τj [al])).

Example 3. Let Hotels table (with columns price [p], rating
[r], distance [d], WiFi [w]) have following entries: h1($200, 5,

122

0.5, $20), h2($350, 5, 0.5, $20), h3($89, 2, 3, $0). Here, hotel h1

is cheaper than hotel h2 for the same rating and distance. Thus
h1 dominates h2. In contrast, hotel h1 and hotel h3 each is better
than the other in at least one dimension. Therefore, hotel h1 does
not dominate h3 (h1 ⊀ h3) and vice versa (h3 ⊀ h1).

Definition 2 (Subspace Dominance). For a set R of d- di-
mensional tuples, and a set of attribute dimensions V ⊆ D tuple
τi dominates by a tuple τj in subspace V iff (∀ak ∈ V (τi[ak] ≤
τj [ak]) ∧ ∃al ∈ V (τi[al] < τj [al])). This is denoted as τi ≺V τj .

Example 4. In Example 3, if the user is only interested in hotels
with lower price and free WiFi capability, then hotel h3 dominates
the remaining two hotels. Therefore, in subspace V = {p, w}:
h3 ≺V h1 and h3 ≺V h2.

2.2 Project and Skyline Operations
For a tuple τ , F = {f1, . . . , fk} is a set of k mapping functions,

where fj takes as input a set of distinct attributes Bj to return a
value x, i.e., fj : Dom(Bj)→ Dom(x).

• Project (PROJECT[F,X](R)) operator applies a set of k scalar
mapping functions F to transform each d-dimensional object τi ∈
R into a k-dimensional output object r′i defined by a set of at-
tributes X = {x1, . . ., xk} where xi is generated by fi ∈ F .

Example 5. If the total price of a ten day trip is the sum of
the hotel nightly rate, WiFi charges, and air fare, then the mapping
function ftotal−price is defined as (price+WiFi)∗10+air_fare.

• Skyline (SKYP). For a set of tuples R and a preference P ,
SP (R) returns the subset of all non-dominated objects in R.

• Skyline over Join (SJ[JC,F,X,P](R,S)) performs the following
in order: (1) combines tuples in tables R and S based on the join
condition JC, (2) applies the set of scalar mapping functions F
that operate on each join tuple to generate a transformed join tuple
(with attributes X), (3) generates the skyline of such tuples based
on the preference P = (E,�) where E ⊆ X .

Q1:SJ[JC1,'{f1,'f2},'X1,'P1]$(R,$T);$$$$P1$=${d1,$d2}$$

Q2:SJ[JC2,'{f1,'f2,'f3},'X2,'P2]$(R,$T);$P2$=${d1,$d2,$d3}$$

Q3:SJ[JC1,'{f2,'f3},'X3,'P3]$(R,$T);$$$$$P3$=${d2,$d3}$$

Q4:SJ[JC2,'{f2,'f3,'f4},'X4,'P4]$(R,$T);$$P4$=${d2,$d3,$d4}$$

Figure 1: Running Query Workload

Example 6. Figure 1 represents a sample workload SQ con-
sidered in our work. Here, all queries access the same base tables
R and T . They however each query differs the join condition spec-
ified {JC1, JC2} and the scalar mapping functions {f1 . . . f4} em-
ployed on the join results before performing the skyline operation
and lastly their respective sets of skyline dimensions {P1 . . . P4}.

3. SPECIFYING PROGRESSIVENESS RE-
QUIREMENTS VIA CONTRACTS

In this section, we introduce a versatile model to express user
progressiveness contracts. Based on this model we design a suc-
cess metric called progressiveness score that measures how the ex-
ecution strategy is meeting the contracts across the workload at run-
time. We utilize this metric to formulate our optimization goal.

3.1 Progressiveness Contract
The progressiveness contract follows the micro-economic prin-

ciple of the utility of the result tuple [19]. Put differently, the pro-
gressiveness contract C for queryQ is a progressive utility function
ϑ that assigns a utility score to each result tuple. The result tuple τi
is reported at time τi.ts.

Definition 3. Result(E , Q, tstart, tend) for query Q and exe-
cution E is defined as the set of all results {τ1, . . . τN} ordered by
time of the respective result generation. Here tstart is the query
submission time, and tend is the time query execution finishes.

Definition 4. For query Q and execution run E , the progres-
sive utility function ϑ is defined as a function that maps each result
tuple τk ∈ Result(E , Q, tstart, tend) to a utility score between 1
(most useful) and 0 (least useful) based on its usefulness.

3.2 Contract Specification Models
We now present a sample of the alternative models supported in

CAQE to specify contracts.

3.2.1 Time Based Contract
Commercial systems such as IBM DB2, Microsoft SQL Server,

and Oracle, enable users to specify contracts based on response
time. The time indicates the deadline by which all results need to
be reported. Result tuples produced after time thard are useless to
the application, that is, have utility zero.

!"
#
"$
%&

'(
)*

)

&#()

!""#$

%&'($)*'+,-./*$$

0*-'($)*'+,-./*$$

122*3(-./*$

!"#$%&'()*+,''(ϑ)!

"-,'
%./+01'23'-$45'

6$

3$

!"#$%&'()*+,''(ϑ)!

"-,'7-$458'

6$

3$ 9' 23'

!"#$%&'()*+,'(ϑ)!6$

3$

:'+,5;#%5'*;%<;%'
<,+'5,=-,4%'

!$ 4$ 5$ 6$ 7$ 8$

2>9$

9$

(a) (b)

Figure 2: Time Based Utility Function

Example 7. Figure 2.a depicts a time constraint where all tu-
ples generated after 30 minutes have no use. We propose to model
such time-based contract by utility functions:

ϑtime(τk) =

{
1 for τk.ts ≤ 30
0 for τk.ts > 30

(1)

Example 8. Alternatively, one can specify a decay function that
decreases the result utility as query execution progresses. For ex-
ample, the utility function that models decay in Figure 2.b. is:

ϑtime(τk) =

 1 for τk.ts ≤ 5
0.8 for 5 < τk.ts ≤ 30

log(1/τk.ts) for τk.ts > 30
(2)

3.2.2 Cardinality Based Contracts
A user may be interested in the number of results being generated

at a certain time (an exact count or a percentage).

123

!"#$%&'()*+,'(ϑ)!

!"! #! $!-./'.0!

123!

4!

%&!#!

4!

-./'540!

5'.63!

'! (!

5'.67!

5'.68!

9'+,:;#%:'<,+':,)'

32=!

!"#$%&'()*+,'(ϑ)!

>'+,:;#%:'<,+'?$@;%,'

%&!$!-./'540!

.!

'! (!

5'.67!

'5'.6A!

>'+,:;#%:'<,+'?$@;%,'

4!

'5'.68!

!"#$%&'()*+,'(ϑ)!

(a)
!"#$%&'()*+,'(ϑ)!

!"! #! $!-./'.0!

123!

4!

%&!#!

4!

-./'540!

5'.63!

'! (!

5'.67!

5'.68!

9'+,:;#%:'<,+':,)'

32=!

!"#$%&'()*+,'(ϑ)!

>'+,:;#%:'<,+'?$@;%,'

(b)

Figure 3: Cardinality Based Utility Function

Example 9. The requirement that 10% of total results be re-
turned every minute is represented in Figure 3.a. Here the x-axis
represents the % of the total results to be returned every minute. In
Figure 3.a, for x ≥ 10 the utility score of each tuple is equal to 1
and when x < 10 the utility score is a negative score of the ratio of
the actual number of tuples generated and the required number of
result tuples. The utility function for this contract is:

ϑcard(τk) =

{
1 for ni,j/Nest ≥ 0.1

ni,j/(Nest ∗ 0.1)− 1 for ni,j/Nest < 0.1
(3)

where Nest is the estimated final result size of the query Q,
ni,j = |Result(Q, E , ti, tj)| is the number of results generated
between the time interval ti and tj .

Example 10. An example preference about the query output
rate occurs when the user can handle at most 5 tuples/sec. The
corresponding contract is depicted in Figure 3.b. Here, the x-axis
represents the number of tuples generated every second and y-axis
the utility of each tuple. The utility function of such a contract is:

ϑcard(τk) =

{
(ni,j/5) for ni,j ≤ 5
(5/ni,j) for ni,j > 5

(4)

3.3 Hybrid Contracts
The user can flexibly combine several classes of specifications to

specify a hybrid contract.

Example 11. A stock market analyst John Doe requires at least
10% of all results to be reported every minute, while all results must
be generated within 30 minutes. The utility score of tuple τk for this
hybrid contract is obtained as the product of the utility score de-
fined via the cardinality- and time-based contracts (see Equations
3 and 1 respectively).

For ease of elaboration, we assume the utility scores to be inde-
pendent1. The combined utility score of a tuple thus becomes:

ϑ(τk) = ϑcard(τk) ∗ ϑtime(τk) (5)

3.4 The CAQE Optimization Goal

Definition 5. Given a set of skyline over join queries SQ where
each queryQi ∈ SQ is associated with a contract Ci. The contract-
driven multi-query optimization problem is to design a shared
execution strategy Eshared of the workload that maximizes the cu-
mulative progressiveness score of the queries in SQ. That is,

Maximize :

|SQ|∑
i=1

pScore(Qi, Ci, Eshared) (6)

where pScore is defined below. Each contract Ci is modeled by
its utility function ϑi. The progressiveness score for Qi ∈ SQ,
Eshared, is defined as the total utility score assigned to each tuple
τk generated at time instance τk.ts, is computed as follows:

pScore(Qi, Ci, Eshared) =
|Result(Qi,Eshared,tstart,tend)|∑

k=1

ϑi(τk)

(7)
where τk ∈ Result(Qi, Eshared, tstart, tend) (see Definition 3).

4. CAQE: AN OVERVIEW
We now present a brief overview of our Contract-Aware Query

Execution (CAQE) framework. The core principle exploited in this
work is: “different portions of the input contribute to disparate sub-
sets of queries with varying degrees of progressiveness.” By pro-
cessing at different levels of data abstractions we expose and then
exploit opportunities for fine-grained sharing among complex sky-
line over join queries. Given this overall approach, we address the
following open questions:

1. Given a workload of skyline over join queries, how to ef-
fectively partition the total work into smaller units of work
(chunks) that maximizes execution sharing without sacrific-
ing progressiveness?

2. How does the processing of a given input chunk affect the
run-time satisfaction of an individual workload query?

3. Results produced by processing one chunk can determine
which subsets of the results produced by other chunks can
contribute to the final output of workload queries. How do
we exploit such output dependencies among chunks?

4. Lastly, how can the overall contract satisfaction across queries
be maximized?

The CAQE framework as depicted in Figure 4 is composed of
four pipelined steps as described below. As the first step, CAQE
generates the shared min-max cuboid plan Pshared for a given
workload SQ that maximizes the sharing of expensive operations
(join and skyline operations) across queries (Section 4.1).

Multi-Query Output Look Ahead evaluates the workload at a
coarse granularity over this shared min-max cuboid plan to build an
1The framework can support richer models that capture the depen-
dence between the cardinality and time-based utility scores.

124

Mul$%Query*Output**
Space*Look*Ahead*

Shared*Min%Max*
Cuboid*Plan*Generator*

Abstract(Mul,-Query(
Output(Space*

Queries((

Shared(Plan(

Contract%Driven*
Op$miza$on*

Contract%Aware*
Execu$on*

(Chosen(Output(Abstrac,on(

Updated(Output(Space(
&(

Contract(Sa,sfac,on(Metrics(

Progressive(Results(

User(Contracts(

Figure 4: Overview of the CAQE Framework

abstract multi-query output space. For each input data source, we
form an d-dimensional abstraction where d is the total number of
skyline dimensions used in the workload. In Section 5 we elaborate
the methodology by which we perform coarse level query process-
ing. Rather than directly diving into tuple-level processing, we look
ahead into this multi-query output space to quickly identify groups
of input tuples that contribute to multiple queries. This approach
facilitates the sharing of common sub-expressions across queries.

Contract-Driven Optimization analyzes the abstract-level space
to enable CAQE to determine the dependencies among regions in
the output space across multiple queries that can be exploited to
increase progressiveness for queries as designated by contracts.
Contract-driven optimization employs a novel contract-based ben-
efit model to determine the order in which the output regions are
considered for tuple-level processing (Section 5.3).

Contract-Aware Execution iteratively processes the region se-
lected by the contract-driven optimizer over the shared min-max
cuboid plan. The executor exploits the dependency knowledge cap-
tured by our abstract multi-query output space to identify which
subset of the join results generated thus far can be output to any
of the workload queries. We continuously monitor the run-time
satisfaction of the queries in meeting their respective contracts and
adatively take corrective steps when necessary to maximally satisfy
the contracts (Section 6).

4.1 Shared Min-Max Cuboid Plan
Next we generate a shared query plan that compactly represents

the workload SQ. The objectives of shared plan are to (1) reduce
unnecessary operations such as scans and skyline comparisons, and
(2) minimize the total number of intermediate results. Given that
skyline operation represent the most blocking query operation in
this work, we henceforth describe our solution for workloads con-
taining queries that differ in their skyline dimensions while the re-
maining query properties are identical. Generating shared plans for
selects, joins and group by operations have already been discussed
in literature [10, 18] and can be applied as is.

Consider the workload represented in Figure 1 (Section 2). If

Distinct Value Attributes (DVA) -property2 holds, the skyline re-
sults over the subspaces {d2, d3} are guaranteed to also be in the
skyline over the subspaces {d1, d2, d3} and {d2, d3, d4}. If how-
ever the DVA-property does not hold, we can still compute the
skyline results over subspace {d1, d2, d3} from the results in sub-
spaces {d1, d2} and {d2, d3}. For a tuple τi to be in the skyline
SKY(d1,d2,d3), we need to only compare τi to those tuples in sub-
spaces {d1, d2} and {d2, d3} with the same d2 and/or d3 attribute
values. This allows us to perform dominance comparisons along
dimensions d1 and d3 only once rather than separately for queries
Q2, Q3 and Q4.

d1d2$ d1d3$ d1d4$ d2d3$

d1$ d4$d2$ d3$

d3d4$d2d4$

d1d2d3$ d1d2d4$ d2d3d4$

Q2$ Q4$Q3$Q1$

d1d3d4$

{Φ}$

d1d2d3d4$

Figure 5: Full Skycube

For some workload of queries maintaining the entire 2d− 1 pos-
sible subspaces (known as skycube [36]) as in Figure 5 is unneces-
sary. We therefore prune the space to only contain subspaces that
contribute to at least one query.

Definition 6. For query Qi = SJ[JCi,Fi,Xi,Pi](R,S), a sub-
space U serves Qi iff U is a subset of the skyline dimension spec-
ified in the Qi’s preferred dimensions Pi. The set of all queries in
SQ that U contributes to is denoted as QServe(U ,SQ).

Example 12. In Figure 5, the results in subspace {d2, d3} con-
tribute to queries Q2, Q3 and Q4, whereas the subspace {d2, d4}
contributes to only Q4.

If a given subspace U , such as {d2, d3}, contributes to more than
one query then the skyline comparisons performed for skyline at-
tributes di ∈ U can be shared. In contrast, for query Q4 with the
final skyline dimensions {d2, d3, d4}, maintaining skyline results
in child subspaces {d2, d3} and {d2, d4} does help other queries.

Next, if we have a sub-tree in the lattice rooted at subspace V
where each subspace U ⊂ V serves the same set of queries then
we only maintain the root subspace V . We therefore propose min-
max-cuboid as our structure to represent the shared plan. The min-
max-cuboid plan is guaranteed to contain the minimal subset of
subspaces while maximizing sharing (see Definition 7).

Definition 7. For a workload SQ, the min-max-cuboid M is
the set of subspaces such that for each subspace U ∈ M at least
one of the following properties holds:

1. (|U| = 1) ∨ (|QServe(U ,SQ)| > 1)

2. @V s.t. [(U ⊂ V) ∧ (QServe(U ,SQ) ⊆ QServe(V,SQ))]
2DVA-property states that no two tuples share the same value for
any given skyline dimension [36].

125

3. U is the complete set of skyline dimensions of one Qi ∈ SQ

where |U| is the number of skyline dimensions in subspace U .

!"!#!$! !#!$!%!

!"!#! !#!$!

!"! !%!!#! !$!

"#! "$!"%! "&!

&'(')*+*

&'(')*"*

&'(')*#*

'()*+,-.*! "(./0.*!

,!"*!#*!$-! "#!

,!%-*,!#*!$*!%*-! "$!

,!"-!,!"*!#-! "%1!"#!

,!$-!,!#*!$-! "#1!"&1!"$!

,!#-! "%1!"#1!"&1!"$!

Figure 6: Min-Max Cuboid

Example 13. In Figure 6, all subspaces in level 0 meet condi-
tion 1 of Definition 7 since |U| = 1. Subspaces in level 1 service
queries Q1 and Q3. Lastly, subspaces in level 2 are the skyline
dimensions for queries Q2 and Q4.

5. MULTI-QUERY OUTPUT LOOK AHEAD
The objective of the Multi-Query output Look Ahead (MQLA)

step is to perform the query evaluation over the shared min-max
cuboid plan at a coarser granularity of values rather than at the level
of individual tuples. MQLA benefits CAQE’s query processing ca-
pability in the following ways:

1. Modular Execution. Establish mapping between the coarse
abstractions of the input space containing input tuples and
output regions containing the results of different queries that
are generated during execution. This enables CAQE to chop
the total work into smaller chunks.

2. Contract Driven Processing of Input Chunks. Identify
where the skyline results for the different queries lie in the
abstract multi-query output space. This enables CAQE to
prioritize the processing of the input chunks based on the
run-time satisfaction of the different queries.

3. Advanced Execution Sharing. The mapping between in-
put and output spaces facilitates CAQE to quickly identify
groups of input tuples that contribute to multiple queries and
thereby facilitating execution sharing.

4. Avoid Redundant Work. By aggressively pruning output
regions that are guaranteed to not generate even a single sky-
line result for any workload query.

During the actual tuple-level query execution (Section 6) we pop-
ulate this multi-query output space with the actual skyline results
as they are being generated.

5.1 Coarse-Level Join Operation
We now perform the join execution for all queries at a coarser

granularity of values rather than at the level of individual tuples.
To facilitate this coarse grained processing, we assume the input
data sets are partitioned into a d-dimensional quad tree. Now for a
pair of input cells, one from each table LR

a ∈ R and LT
b ∈ T , we

first determine if tuples in these cells will produce even a single join
result for any of the queries. To facilitate this coarse-grained join
evaluation, each cell maintains a signature for each join predicate
that captures the domain values of its member tuples.

Example 14. Consider a supply chain application over the ta-
bles RETAILER and TRANSPORTERS. Join predicate
for Q1 is r_country = t_country while that of Q2 is r_part
= t_part. To illustrate coarse-level join processing, consider two
leaf cells one from each table. LR

i includes suppliers from {Brazil,
China, Mexico} that supply {Tires, Iron Ore, Brass Sheets}, and
(2) LT

j contains transporters from {Brazil, China, Germany, Mex-
ico} that specialize in transporting {Dairy Products, Medical Sup-
plies}. In otherwords, LR

i [country] = {Brazil, China, Mexico},
LR

i [part] ={Tires, Iron Ore, Brass Sheets}, while LT
i [country] =

{Brazil, China, Germany, Mexico}, LR
i [part] ={Dairy Products,

Medical Supplies}

Notation Meaning
LT
i (li, ui) An leaf cell in table T defined by

its d−dimensional lower and upper bounds
LT Set of all leaf cells for the table T
Sigi Signature of a given cell for the join predicate JCi

Ri A d-dimensional region in the output space that
contains results of one or more queries in the workload

REG(Qj) Set of non-dominated regions that contribute to Qj

RQL(Ri) Set of queries that output region Ri contributes to

Table 1: Notations Used In Section 5

For query Q1 and input cells LR
i ∈ R and LT

j ∈ T , if the con-
dition (|LR

i [Sig1] ∩LT
j [Sig1]| 6= φ) holds then the output region

generated by LR
i 1 LT

j is guaranteed to be populated with at least
one join result for query Q1.

Example 15. Consider the Example 14 of a supply chain ap-
plication over RETAILER and TRANSPORTERS tables.
Join predicate for Q1 is s_country = t_country while that of Q2

is s_part = t_part. From the signatures of the cells we can deter-
mine that the output regions resulting from LR

i ./ LT
j will satisfy

query Q1 since LR
i [country] ∩LT

j [country] = {Brazil, China}
6= φ. In contrast for Q2, LR

i [part] ∩LT
j [part] = φ and thus will

not contribute to Q2. Therefore, the output region need only to be
considered for skyline-level processing for Q1 (and not Q2).

5.2 Coarse-Level Skyline Operation
Next, we perform the abstract-level skyline operations rather than

conducting expensive pairwise tuple comparison for each query in
the workload. This effectively determines which of output regions
generated in the previous step are guaranteed to not contribute to a
single workload query. Therefore such output regions can be safely
eliminated from further processing.

In other words, for each query Qi we identify output regions
that can potentially contribute to the skyline results depending on
the actual result distribution determined during tuple-level process-
ing. At the end of this step, for each query Qj ∈ SQ, we return
a set of non-dominated regions REG(Qj) that contribute to Qj .
Conversely, for a region Ri we define the set of queries that Ri

serves as region query lineage RQL(Ri). The comparison be-
tween attribute values of two different output regions Ri and Rj

is meaningful only if they serve the same subset of queries i.e.,
RQL(Ri) ∩RQL(Rj) 6= φ.

Definition 8 (Region Domination). Given a subspace V , and
two regions Ri(li, ui), Rj(lj , uj) , the dominance relationship be-
tween them is characterized as: (1) Ri dominates Rj if ui �V lj;
(2)Ri partially dominatesRj iff at least one output cellOf ∈ Ri

and Og ∈ Rj , s.t. uf �V lg , (3) else incomparable.

126

Theorem 1. Given subspaces V and U s.t. U ⊂ V , if Ri is a
non-dominated region in the subspace U , then Ri is guaranteed to
not be dominated in subspace V3.

Proof: Proof by contradiction. For subspace U ⊂ V and a
pair of output regions {Rj , Ri}, let (Ri ⊀U Rj) ∧ (Ri ≺V Rj)
hold. Given that the DVA property [36] means ∀ak∈V(uj [ak] <
li[ak]). SinceU ⊂ V , this translates to the fact that ∀am∈U (uj [am] <
li[am]). Hence (Ri ≺U Rj). This is a contradiction to our as-
sumption that (Ri ⊀U Rj). Thus if Ri is not dominated in sub-
space U ⊂ V then it is also not dominated in subspace V .

Corollary 1. Given subspaces U1, U2 s.t. U1 ⊂ V and U2 ⊂ V
and U1 6= U2, if region Ri ∈ SKYU1 and Rj ∈ SKYU2 then
{Ri, Rj} ∈ SKYV .

In CAQE we perform abstract-level dominance comparisons in
a bottom-up fashion starting at subspaces in Level 0 of the Min-
Max Cuboid. By utilizing Theorem 1 and its Corollary 1, we first
populate the Min-Max Cuboid (M) to determine the list of queries
a region Ri contributes to.

Example 16. Consider three output regions: R1[(6, 8, 8, 4)
(8, 10, 10, 6)], R2[(8, 6, 6, 5) (10, 8, 8, 7)], and R3[(7, 5, 4, 1)
(9, 7, 6, 4)]. For level 0 in Figure 6, R1 belongs to SKY(d1),
and R3 belongs to SKY(d2), SKY(d3), and SKY(d4). For level
1 by Theorem 1, we deduce that SKY(d1,d2) = {R1, R3} and
SKY(d3,d4)={R3}. Next, we check ifR1 contributes to SKY(d3,d4)

and if R2 belongs to either SKY(d1,d2) or SKY(d3,d4). At the
end of processing, level 1 has SKY(d1,d2) = {R1, R2, R3} and
SKY(d2,d3)={R2, R3}.

5.3 Contract-Driven Optimization
A naive technique for query execution is to blindly pipeline the

tuples mapped to input cells associated with each output region
over the shared execution plan. In this work, we estimate the im-
pact of tuple-level processing of each output region on the contract
satisfaction metric of each query, to maximize the cumulative sat-
isfaction of the workload (see Definition 5).

In real-time applications, it is not practical to find the optimal
ordering by which the output regions are sent for tuple-level pro-
cessing since the cardinality estimation is very error prone, espe-
cially with respect skyline queries [14]. In this work we instead
take the approach of iteratively picking the next region best esti-
mated to improve the overall satisfaction of the workload. This
feedback-driven iterative approach in-turn identifies the impact of
each region selection decision on the overall contract satisfaction
metric, and thus to take immediate corrective actions whenever a
poor choice is being made.

5.3.1 Contract Satisfaction Metric
We identify “the current best” candidate among all regions for

tuple-level processing as the region with the highest contract sat-
isfaction metric at the given time instance tcurr . Let tc be time
required by region Rc to complete its tuple-level processing and is
estimated to progressively outputN i

est(tc) after time tcurr+tc. We
assign each query a run-time weight wi. At the start of the query
execution we set ∀Qi∈SQ(wi = 1). The Cumulative Satisfaction
Metric (CSM) of Rc at time tc is:

CSM(Rc, Eshared, C, tc) =
∑

Qi∈SQ

wi ∗
Ni

est(tc)∑
j=1

ϑi(τj) (8)

3Under the DVA assumption.

where N i
est(tc) is the progressiveness estimate for query Qi at

time tcurr + tc (see Definition 10 and Equation 10) and the utility
score ϑi is associated with the contract Ci ∈ C of query Qi.

To compute CSM for each region Rc, we develop a cardinality
model to estimate: (1) for each query Qi ∈ SQ the number of sky-
line results that can be output early at time tcurr+tc — the benefit
of considering Rc and (2) the number of intermediate results gen-
erated by the shared query plan that will affect the execution time
for Rc (i.e., tc) — the cost of considering Rc for query execution.

5.3.2 Progressiveness Based Benefit Model
Next, we describe our cardinality estimation model to compute

the progressiveness benefit of a region. We introduce the concept
of dependency graph to capture the output dependencies among
the different pairs of output regions.

R1

R3

R4

!"""""""""""""""""#"""""""""""""""""$""""""""""""""""""%"

$

#"

!!"

%"

!#"

&"

'"

("

)"

*"+"

,"
-"

."

!""

!#"

/01234" /!" /5" /#" /6"

780920:" ;7!<"75<"7#=" ;7!<"75=" ;75<"7#=" ;7!<"7#="

>+?"@3AB+A41"CD+EFG0" >,?"*0F04.04-H"I9+FJ"

R1

R2 R3

R4

Q
3 !Q1, Q2!

R2

Q1, Q2!

Figure 7: Dependency Graph

Definition 9. A directed dependency graphDG(V,E), where
(1) V is set of vertices (regions); (2) E is a set of directed edges
between regions where an edge ei,j between regions Ri and Rj

is annotated with the set of queries Wi,j for which Ri partially
dominates one or more output cells in Rj .

Example 17. In Figure 7, output regions R1, R2, R3, and R4

contribute to different subsets of workload queries. For queries Q1

and Q2, R2 has cells, that if populated during query tuple-level
processing, can completely dominate R1. Therefore R2 should be
considered for execution before R1 to avoid unnecessary computa-
tion. We denote this dependency by the directed edge

−−−→
R2R1 anno-

tated by the setW2,1 = {Q1, Q2}.

As root regions are sent for execution, non-root regions become
root nodes making them candidates for possible future execution.

Definition 10. The progressiveness estimate of region Rc for
query Qi at time tc is the fraction of all the results produced by Rc

that are guaranteed to be in the final skyline at time tcurr + tc and
is denoted as ProgEst(Rc, Qi, tc).

Let LR
a and LT

b be the input cells contributing to the region Rc.
For query Qi with selectivity σi, the estimated number of skyline
results Rc can produce is established by [4] as:

Cardinality(Rc, Qi) = ln(σi · nR
a · nT

b)
d−1/(d− 1)! (9)

where nR
a = |LR

a | and nT
b = |LT

b |.

127

Definition 11. The progressive cell count (ProgCount) for a
region Rc at time t and query Qi ∈ RQL(Rc) is the total number
of cells in Rc that are not dominated by cells mapped to another
region that contributes to the same query Qi.

Example 18. In Figure 7.a let us assume that the output cells
O[(3, 5)(4, 6)] andO[(3, 6)(4, 7)] are populated during tuple-level
processing ofR2. Then, all output cells in the output regionR1 can
be dominated for queries {Q1, Q2}. Thus, theProgCount(R1, Q1)
= ProgCount(R1, Q2) = 0. In contrast, for Q3 the progressive
count for R1 is 2 since tuples that map to its cells O[(5, 8)(6, 9)]
and O[(5, 9)(6, 10)] can be progressively output at the end of pro-
cessing R1, since the remaining output cells could potentially be
dominated by tuples that map to region R3.

From Definition 11 and Equation 9 the progressiveness estimate
of Rc for query Qi can defined as follows:

ProgEst(Rc, Qi, tc) =
(ProgCount(Rc, Qi, tc)

CellCount(Rc, Qi)

)
∗ Cardinality(Rc, Qi)

(10)

whereCellCount(Rc, Qi) denotes the total number of output cells
in the region Rc for query Qi.

5.4 Putting It All Together

Algorithm 1: Contract-Driven Optimization

Input : R (Region Collection); input partitions (LR, LT);
query workload SQ contracts SC

Output: Iteratively pick the next region Rnext to process.
Build the initial dependency graph, DG;
for each Rc in DGroot: do

computeCSM(Rc,SQ,SC);
Add Rc to priority queue PQueue (sort by CSM);

while |R| 6= φ do
Rc ← remove(PQueue) /* Top of the list */;
Perform contract-driven execution for region Rc;
Discard regions dominated by generated tuple(s) in Rc;

for each edge ec,f =
−−−−→
Rc, Rf ∈ DG do

Remove ec,f ;
if Rf ∈ PQueue then

Update Rf ’s CSM scores.
DGroot′ ← new root nodes due to removal of ec,f ;

for each Rg ∈ DGroot′ do
compute CSM(Rg,SQ,SC)(Definition 10);
Add Rg to PQueue;

DGroot ← DGroot ∪DGroot′ ;
Remove Rc from R;

return;

The pseudo-code of the contract-driven optimization is listed in
Algorithm 1. The progressive benefit model (Equation 10) esti-
mates the number of tuples that a region is likely to output after
its evaluation. Our cost model estimates the time needed (tc) to
evaluate region Rc over the shared query plan. The root regions
in the dependency graph are ranked based on their CSM scores
(Equation 8) and maintained in an inverted priority queue. We it-
eratively pick the topmost region from the queue for tuple-level
processing. Based on how the run-time contract satisfaction metric

of each query Qi are being met during tuple-level processing, we
update the CSM-based benefit model by adjusting its weight (see
Section 6). This process is repeated until all regions have either
been considered for tuple-level processing or have been dominated
by newly generated tuple(s).

6. CONTRACT-AWARE EXECUTION
Given a particular region selected for processing by the opti-

mizer, CAQE’s contract-aware execution engine process the tuples
in the input cells associated with the chosen region over the shared
min-max cuboid plan. For each scheduled region Rc the contract-
driven executor performs the following three operations:

1. Tuple Level Processing. Conduct tuple-level evaluation (join,
project and skyline) over the shared min-max cuboid plan.

2. Progressive Result Reporting. For each query Qi ∈ SQ
determine the subset of the generated result tuples that are
guaranteed to be in the final skyline.

3. Run-time Satisfaction Metric and Optimizer Feedback.
Based on contracts and the skyline results generated so far,
we update the run-time satisfaction metric of each queryQi ∈
SQ. Use this run-time metric to update the benefit model
used by the contract-driven optimizer to pick the next region.

Tuple Level Processing. For the chosen regionRc, we first evalu-
ate the join conditions between the tuples in the input cell LR

a and
those in LT

b . Join results are then mapped to their output cells by
applying the mapping functions. For each output cell Ox we main-
tain the cell query-lineage (CQL) bit vector representing the list
of queries that the cell contributes to. The CQL is easily derived
from the region query-lineage of all the regions thatOx contributes
to. For subspace V in the min-max cuboid M, we limit the skyline
comparisons for the new generated tuples in cellOx ∈ Rc to tuples
in cells, say Oy , that satisfy both these conditions:

1. |CQL(Ox) ∩ CQL(Oy)| 6= φ

2. ∃z ∈ V s.t. (lx[az] = ly[az])

For all regions Rf such that there exists an edge
−−−−→
Rc, Rf in the

dominance graph DG (see Section 5.3.2) and queries RQL(Rc)∩
RQL(Rf), we identify output cells in Rf that are dominated by
the newly generated tuples in Rc. This allows us to discard all join
results that map to such dominated cells forRQL(Rc)∩RQL(Rf)
as they are guaranteed to not contribute to its final result of queries
in RQL(Rc) ∩RQL(Rf).

Progressive Result Reporting. To support progressive result re-
porting, we push the decision making from the individual tuple-
level to the coarser granularity of output cells. More precisely, we
translate the problem of determining which result can be progres-
sively output into a problem of determining output cells with the
following properties: (1) no future results are guaranteed to map to
the output cell, and (2) the tuples in output cell are guaranteed to
not be dominated by future tuples that map to any other output cell.

Example 19. In Figure 8, if region R3 is picked for tuple-level
processing, at the end of its processing, we can safely output all
tuples in all of its output cells for query Q3. This is due to the fact
that no future tuples can dominate it (as derived from the depen-
dency graph) and tuples in region R2 do not contribute to Q3. In
contrast, for Q2 we can only progressively output tuples in cells

128

R1

R3

R4

1$$$$$$$$$$$$$$$$$3$$$$$$$$$$$$$$$$$5$$$$$$$$$$$$$$$$$$7$

5

3$

11$

7$

13$

9$

A$

B$

C$

Da

b$
c$

d$

d2$

d1$

Progressive$Output$
For$Q3$

R2

Region$ R1$ R2$ R3$ R4$

Queries$ {Q1,$Q2,$Q3}$ {Q1,$Q2}$ {Q2,$Q3}$ {Q1,$Q3}$

Progressive$Output$
For$Q2$and$Q3$

Figure 8: Multi-Query Progressive Output

O[(4, 4)(5, 5)], O[(5, 4)(6, 5)] and O[(6, 4)(7, 5)] since the tuples
in the remaining cells may be dominated by future tuples that map
to cells O[(3, 5)(4, 6)], O[(4, 5)(5, 6)] and O[(5, 5)(6, 6)] of R2.

Satisfaction Based Feedback Mechanism. For each progressive
result reported for query Qi ∈ SQ we calculate its utility by the
utility function vi defined in this contract Ci. For query Qi and its
associated contract Ci, the run-time contract satisfaction metric at
a given time instance tj , is the average utility score of all the re-
sults being reported at time tj (denoted as v(Qi, tj)). Based on
this metric we adjust Qi’s weight wi in Equation 8 for the next it-
eration of query processing. This enables us to pick regions that
satisfy queries with low run-time satisfaction to meet their respec-
tive contracts in the future. This translates to changing the weight
wi to w′i in our CSM-based benefit model:

w′i = wi +
vcurr−max − v(Qi)∑N
j (vcurr−max − v(Qj))

(11)

where vcurr−max is the maximum satisfaction of any single query
during the current time period.

Example 20. At the end of picking region R3, let the run-time
satisfaction metric of the queries be {0, 1, 0.7, 0} i.e., vcurr−max =
1. By Equation 11 the new weights are {1.43, 1, 1.13, 1.43}4. In
other words, we bump up the priorities of Q1, Q2 and Q3 since
they have not yet meet their respective contracts.

7. EXPERIMENTAL STUDY

7.1 Experimental Settings
Platform. All measurements obtained on a workstation with AMD
2.6GHz Dual Core CPUs with Java heap set to 4GB. All algorithms
were implemented in Java.

Contract Models. As described in Section 3.2, progressiveness
contracts in CAQE follow the micro-economic principle to deter-
mine the utility of a result tuple [19]. We tested CAQE’s effective-
ness under different classes of contracts, namely time-based (C1,
C2 and C3), cardinality-based (C4) and hybrid (C5) contracts. Ta-
ble 2 summarizes the contract models used in this study where tC1

4Let us assume that the original weights ∀iwi = 1

Utility Functions

C1 ϑC1(τk) =

{
1 for τk.ts ≤ tC1

0 for τk.ts > tC1

C2 ϑC2(τk) = 1/log(τk.ts)

C3 ϑC3(τk) =

{
1 for τk.ts ≤ tC3

1/(τk.ts− tC3) for τk.ts > tC3

C4 ϑC4(τk) =

{
1 for ni,j/N ≥ 0.1

ni,j/(N ∗ 0.1)− 1 for ni,j/N < 0.1

ϑC5(τk) = ϑcard(τk) ∗ ϑtime(τk), where
C5 ϑtime(τk) = 1/τk.ts; ϑcard(τk) = ϑC4(τk)

Table 2: Progressive Contracts Used in the Experimental Study

and tC3 are tunable parameters for contracts {C1} and {C3} re-
spectively, while ni,j is the time interval used in contracts C4 and
C5. In Table 2N is the total of output tuples for query Q and τk.ts
is the output time of the result tuple τk.

Data Sets. We conducted our experiments using the de-facto stan-
dard datasets used to stress test skyline algorithms [3]. This in-
cludes three extreme attribute correlations, namely independent,
correlated, or anti-correlated. For correlated data a few tuples
dominate a vast majority of tuples in that table. In contrast, for
anti-correlated datasets a large portion of the input can potentially
correspond to the final skyline results, making skyline operations
resource intensive (both memory and CPU). For each data set R
(and T), we vary the cardinality N [10K–500K] and the number of
skyline dimensions d [2-5]. The attribute values are real numbers
in the range [1–100]. The join selectivity σ is varied in the range
[10−4–10−1]. We set |R| = |T | = N .

Query Workload. We focus on queries similar to the motivating
examples in Section 1. That is, queries that perform join, project
and skyline operations. More specifically, we consider queries that
differ in their skyline dimensions. Each workload query is assigned
a query priority pri [1 – 0] that classifies the queries into HIGH
[1 – 0.7], MEDIUM [0.69 – 0.4] and LOW [0.39, 0] priority.

Competitor Techniques. To the best of our knowledge, CAQE
is the first technique to support the Contract-MQP. To showcase
the effectiveness of CAQE, we compared against existing skyline
over join algorithms, namely JFSL [17], Skyline-Sort-Merge-Join
(SSMJ) [14] and ProgXe+ [27]. In all systems, while queries are
processed in the order of the priority pri, these existing techniques
do not share work across skyline queries. To compare CAQE against
sharing-based technique, we propose a shared skyline approach
(S-JFSL) that pipelines the join tuples over our min-max cuboid
plan (see Section 4.1).

Evaluation Metrics. In our analysis we vary the: (1) contract
model used, (2) query priorities, (3) data distributions, and (4) num-
ber of workload queries. For a given workload and its associated
contract model, we measure: (1) the utility of each result tuple for
each workload query, (2) the total execution time to return the com-
plete result set, (3) memory usage (number of join results), and (4)
CPU usage (number of skyline comparisons needed). Lastly, we
calculate the average satisfaction metric of each workload query.

7.2 Contract Satisfaction Metric
We now analyze the performance of the algorithms under vary-

ing contract and data distribution models. In this set of experiments
(Figure 9 and Figure 10), we vary the priority of the queries such
that for contract models {C1, C2} queries with a larger number

129

 0

 20

 40

 60

 80

 100

C1 C2 C3 C4 C5

Av
g.

 Q
ue

ry
 S

at
is

fa
ct

io
n

M
et

ric

S-JFSL
JFSL

ProgXe+
CAQE

SSMJ

 0

 20

 40

 60

 80

 100

C1 C2 C3 C4 C5

Av
g.

 Q
ue

ry
 S

at
is

fa
ct

io
n

M
et

ric

S-JFSL
JFSL

ProgXe+
CAQE

SSMJ

 0

 20

 40

 60

 80

 100

C1 C2 C3 C4 C5

Av
g.

 Q
ue

ry
 S

at
is

fa
ct

io
n

M
et

ric

S-JFSL
JFSL

ProgXe+
CAQE

SSMJ

(a) Correlated (b) Independent (c) Anti-correlated

Figure 9: Comparing the Avg. Contract Satisfaction Metric for CAQE, S-JFSL, JFSL, ProgXe+ and SSMJ; |SQ| = 11 N = 500K

 0

 0.5

 1

 1.5

 2

 2.5

 3

Anti-Corr Ind Corr

R
at

io
 o

f #
Jo

in
-T

up
le

s
G

en
er

at
ed

For All Distributions: CAQE = 1

S-JFSL
JFSL

ProgXe+
CAQE
SSMJ

 1

 10

 100

 1000

 10000

 100000

Anti-Corr Ind Corr

 R
at

io
 o

f S
ky

lin
e

C
om

pa
ris

on
s

(lo
g)

For All Distributions: CAQE = 1
For Corr. : S-JFSL=ProgXe=1

S-JFSL
JFSL

ProgXe+
CAQE
SSMJ

 0

 5

 10

 15

 20

 25

Anti-Corr Ind Corr

R
at

io
 o

f E
xe

cu
tio

n
Ti

m
e

For All Distributions: CAQE = 1

S-JFSL
JFSL

ProgXe+
CAQE
SSMJ

(a) Join Tuples Generated (b) Skyline Comparisons Conducted (c) Total Execution Time

Figure 10: Comparing the Statistics Measured for S-JFSL, JFSL, ProgXe+ and SSMJ Against CAQE (|SQ| = 11, N = 500K,C2)

of skyline dimensions have a higher priority than queries with a
smaller dimensions. In contrast, for {C3, C4} we assigned queries
with smaller number of skyline dimensions a higher priority. Lastly,
for {C5} priorities were uniformly assigned.

Correlated datasets are tailor made for skyline algorithms since
a handful of join tuples can dominate the entire result space [5].
Therefore, for such datasets we set the contract parameters tC1

= tC3 = 10s and ni,j = 1s. In Figure 9.a we observe that for
contracts {C1, C3, C4, C5}, CAQE and S-JFSL both exploit the
sharing opportunity provided by our min-max cuboid plan to pro-
gressively output the dominating tuples early on. They also ex-
ploit it to prune vast amounts of intermediate tuples. For these
same contracts, existing techniques return tuples that have at worst
4x smaller utility score ({C1}) than CAQE and at best have 1.5x
smaller utility score. Contract {C3} is our toughest requirement
to meet, for instance a tuple with a time stamp of 12 seconds has
a utility of 0.5. Even under such stringent contract requirements,
CAQE’s contract-driven ordering technique allows us to meet a sat-
isfaction metric of 66% which is approximately 4x better than both
ProgXe+ and SSMJ, and 3x better than the shared execution strat-
egy S-JFSL.

For an independent 4-d dataset, several hundreds of join tuples
contribute to the final skyline rather than the mere 16 tuples pro-
duced in the correlated dataset. Accordingly we set tC1 = tC3 =
40s. Cardinality-based contract {C4} requires 10% of the tuples
to be progressively produced every 10s (ni,j). Under this model,
the performance of the count based ProgXe+ algorithm is compa-
rable to CAQE’s satisfaction based metric. In Figure 9.a for con-
tracts {C2, C3, C5} the contract-driven, rather than count-driven,
approach of CAQE enables it to perform 2.5x better than the others.

The anti-correlated data distribution is the most resource inten-
sive dataset for a skyline algorithm. This is evident from the fact
that a 4-d skyline has 75K+ join tuples in the final skyline. Given
the expensive nature of this dataset we set tC1 = tC3 = 30 minutes
and ni,j = 10 minutes. For all contract models except {C2}, sky-
line results returned by JFSL have no value to users of the workload
queries. In Figure 9.c we observe that both CAQE and ProgXe+
outperform the other techniques by a factor of≈2x. For time-based
contracts such as {C1, C3} CAQE returns skyline results that have
1.5x and 1.8x better utility than that of ProgXe+. For contracts
{C4, C5} when smaller dimensional skyline queries have higher
priority, ProgXe+ is competitive with CAQE. However, when the
higher dimensional queries are of more importance, then CAQE
outperforms ProgXe+ by ≥ 1.5x.

7.3 Comparing CPU and Memory Utilization
The CPU and memory utilization of the skyline over join algo-

rithm is directly related to the number of intermediate tuples gen-
erated by the join operation as well as the expensive pairwise dom-
inance comparison needed to evaluate the final skyline. In Figures
10.a - 10.c we illustrate that employing a shared execution approach
enables both CAQE and S-JFSL to produce fewer join tuples than
their competitors. In fact, for the independent dataset, CAQE gen-
erates 31% fewer join results than both JFSL and SSMJ and 16%
fewer than ProgXe+.

In terms of skyline comparisons, the contract-driven processing
of join results over the min-max cuboid plan empowers CAQE to
deliver skyline results earlier than its competitors while having to
perform several fold fewer pairwise skyline comparisons. In par-
ticular, as shown in Figure 10.b for independent datasets, CAQE

130

requires 66x, 2.7x, 7x, and 20x fewer comparisons than the JFSL,
S-JFSL, ProgXe+, and SSMJ techniques respectively.

By generating a smaller number of join tuples as well as per-
forming fewer dominance comparisons, CAQE is able to outper-
form the compared techniques in the overall execution time of the
query workload. In fact, CAQE is at least 2x faster than ProgXe+,
and ≈ 24x better than JFSL. Lastly, CAQE outperforms the shared
execution strategy S-JFSL by 17x.

 0

 20

 40

 60

 80

 100

1 3 5 7 11

Av
g.

 Q
ue

ry
 S

at
is

fa
ct

io
n

M
et

ric

S-JFSL
JFSL

ProgXe+
CAQE

SSMJ

(a) Contract Model: C2

 0

 20

 40

 60

 80

 100

1 3 5 7 11

Av
g.

 Q
ue

ry
 S

at
is

fa
ct

io
n

M
et

ric

S-JFSL
JFSL

ProgXe+
CAQE

SSMJ

(b) Contract Model: C3

Figure 11: Increasing Number of Queries in the Workload

7.4 Increasing Size of Workload
Next we measure the effectiveness of the techniques for varying

workload sizes. Due to space limitations, we restrict the discussion
to independent data distribution datasets and to contracts {C2, C3}
which are the strictest contract models presented in Table 2 (Section
7.1). In Figures 11 and 11.b, as the number of workload queries in-
creases the average satisfaction of each query in the workload drops
proportionally. In Figure 11.a and all workload sizes, due to the
nature of the logarithmic decay function of contract {C2}, none of
the techniques can achieve the optimal 100% contract satisfaction.
However, as the workload size increases, CAQE’s adaptive execu-
tion strategy enables it to have the smallest drop in performance
of 20% in comparison to the 36% and 38% drop for ProgXe+ and
SSMJ respectively. In Figure 11.b for the contract {C3} all com-
pared techniques exhibit optimal query satisfaction when only han-
dling a single query in the workload. However, as the number of
queries increases we observe in Figure 11.b that existing techniques
suffer from a steep drop in performance (up to 85% regression). In
contrast, CAQE’s novel execution strategy enables it to only expe-
rience a relatively smaller drop of 30% in query satisfaction.

8. RELATED WORK
Skyline Algorithms over Single Relation. The majority of re-
search on skylines has focused on the efficient computation of a
skyline over a single relation [2, 3, 6, 16, 23]. This can be broadly
categorized as non-index and index-based solutions. Block nested
loop (BNL) [3] is the straightforward non-index based approach
that compares each new object against the skyline of objects con-
sidered so far. The Sort Filter Skyline (SFS) [6] improves on BNL
by first sorting the input data by a monotonic function. Nearest
Neighbor (NN) [16] and Branch & Bound Search (BBS) [23] are
index-based algorithms.

Subspace Skylines over Single Relation. A Skyline Cube is de-
fined as containing skylines results for all combinations of skyline
dimensions [24, 36]. This is reminiscent of the precomputed data
cube technique in data warehousing [12]. Each combination of di-
mensions is termed as subspace [24, 34, 36] and for a given set
of d dimensional objects, there are 2d − 1 subspaces representing
the preferences of various users. [36] presented efficient algorithms
that can compute skylines over all 2d−1 subspaces in the skycube.
Alternatively, [24] studied the problem of capturing the semantics
of subspace skylines by identifying decisive subspaces. To provide
an indexed based solution to the skycube problem, [30] proposed
the SUBSKY technique by using a single B-Tree. To efficiently sup-
port subspace skyline queries in databases that receive frequent up-
dates [34] presented an alternative compressed skycube approach.
However, these techniques ignore (1) multi-relational skylines, and
(2) do not support QoS sensitive query evaluation – both now tack-
led by our work.

Skylines over Join Queries. Existing techniques [3, 14, 15, 21,
27, 31] process a single skyline over join query, while ours is the
first effort at processing multiple skyline over join query. Table 3
summarizes the differences between our approach versus the state-
of-the-art skyline techniques.

Skyline- Supports
Over Multiple Progressive User
Join Queries QoS

SkyCube [36] X X
BUS, TDS [24] X X

PruningJoin+ [17] X
SAJ [17] X

Sort-Based [14, 31]
[15, 21] X X

ProgXe+ [27] X X

z Our Approach X X X X

Table 3: Summary of the related work

Quality of Service. In computer networking, QoS defines vary-
ing levels of services for applications and types of data. Applica-
tions such as Voice over IP and streaming multimedia must ensure
a certain level of user experience by reducing packet loss. This is
accomplished by reserving network capacity based on bandwidth,
delay, and error rates [25]. In streaming databases, to provide real-
time responses, [19, 35] enable the user to specify a contract in
terms of latency, data freshness, CPU and memory usage. Their fo-
cus is different from ours in the complexity of the queries targeted,
the objective, and the approach taken. First, [35] sheds data from
incoming streams to handle load and meet the desired QoS. Sec-
ond, they do not support the more complex non blocking queries
such as skyline over join queries.

131

9. CONCLUSION
In this work, we introduce an NP-Hard Contract-MQP problem

that aims to optimize the processing of concurrent decision sup-
port queries each augmented by a quality of service contract. In
this effort, we design a rich model to express progressiveness con-
tracts and accompany it with an effective measure for determining
the run-time satisfaction of these contracts. We propose Contract-
Aware Query Execution (CAQE) framework that unblocks query
processing by using a multi-granular execution strategy. CAQE’s
execution model enables us to expose and then exploit previously
ignored opportunities for fine-grained sharing among complex queries.
Our feedback driven execution strategy continuously monitors the
run-time satisfaction of the workload and aggressively takes cor-
rective steps to maximally satisfy the contracts. We demonstrate
the superiority of CAQE over existing multi-query processing tech-
niques by showing that in many cases CAQE is 2 fold more effec-
tive in satisfying the QoS contracts.

Acknowledgment
This work is supported by the National Science Foundation under
Grant No. IIS-0633930, CNS-305258 and CRI-0551584. We thank
David Sampson, Dr. Lyublena Antova, Dr. Rhonda Baldwin, and
Dr. Florian Waas for their valuable feedback.

10. REFERENCES
[1] C. C. Aggarwal. Towards meaningful high-dimensional

nearest neighbor search by human-computer interaction. In
ICDE, pages 593–604, 2002.

[2] I. Bartolini, P. Ciaccia, and M. Patella. Salsa: computing the
skyline without scanning the whole sky. In CIKM, pages
405–414, 2006.

[3] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, pages 421–430, 2001.

[4] C. Buchta. On the average number of maxima in a set of
vectors. Inf. Process. Lett., 33(2):63–65, 1989.

[5] S. Chaudhuri, N. N. Dalvi, and R. Kaushik. Robust
cardinality and cost estimation for skyline operator. In ICDE,
pages 64–73, 2006.

[6] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting. In ICDE, pages 717–816, 2003.

[7] N. N. Dalvi, S. K. Sanghai, P. Roy, and S. Sudarshan.
Pipelining in multi-query optimization. In PODS, pages
59–70, 2001.

[8] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS, pages 102–113, 2001.

[9] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. E.
Abbadi. Approximate nearest neighbor searching in
multimedia databases. In ICDE, pages 503–511, 2001.

[10] G. Giannikis, G. Alonso, and D. Kossmann. Shareddb:
Killing one thousand queries with one stone. PVLDB,
5(6):526–537, 2012.

[11] L. Golab and M. T. Özsu. Update-pattern-aware modeling
and processing of continuous queries. In SIGMOD, pages
658–669, 2005.

[12] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data
cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-total. In ICDE, pages 152–159,
1996.

[13] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting
top-k join queries in relational databases. In VLDB, pages
754–765, 2003.

[14] W. Jin, M. D. Morse, J. M. Patel, M. Ester, and Z. Hu.
Evaluating skylines in the presence of equijoins. In ICDE,
pages 249–260, 2010.

[15] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski. Prefjoin:
An efficient preference-aware joinoperator. In ICDE, pages
995–1006, 2011.

[16] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the
sky: An online algorithm for skyline queries. In VLDB,
pages 275–286, 2002.

[17] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica. Relaxing
join and selection queries. In VLDB, pages 199–210, 2006.

[18] S. Krishnamurthy, M. J. Franklin, J. M. Hellerstein, and
G. Jacobson. The case for precision sharing. In VLDB, pages
972–986, 2004.

[19] A. Labrinidis, H. Qu, and J. Xu. Quality contracts for
real-time enterprises. In BIRTE, pages 143–156, 2006.

[20] H. Min and S.-Q. Zheng. Time-space optimal convex hull
algorithms. In SAC, pages 687–693, 1993.

[21] M. Nagendra and K. S. Candan. Skyline-sensitive joins with
lr-pruning. In EDBT, pages 252–263, 2012.

[22] S. Narayanan and F. Waas. Dynamic prioritization of
database queries. In ICDE, pages 1232–1241, 2011.

[23] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. In SIGMOD,
pages 467–478, 2003.

[24] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best views
of skyline: A semantic approach based on decisive
subspaces. In VLDB, pages 253–264, 2005.

[25] J. Pongsajapan and S. H. Low. Reverse engineering
tcp/ip-like networks using delay-sensitive utility functions.
In INFOCOM, pages 418–426, 2007.

[26] H. Qu, J. Xu, and A. Labrinidis. Guiding personal choices in
a quality contracts driven query economy. In PersDB
Workshop, SIGMOD Conference, 2009.

[27] V. Raghavan and E. A. Rundensteiner. Progressive result
generation for multi-criteria decision support queries. In
ICDE, pages 733–744, 2010.

[28] T. K. Sellis and S. Ghosh. On the multiple-query
optimization problem. TKDE., 2: 2:262–266, 1990.

[29] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive
skyline computation. In VLDB, pages 301–310, 2001.

[30] Y. Tao, X. Xiao, and J. Pei. Subsky: Efficient computation of
skylines in subspaces. In ICDE, page 65, 2006.

[31] A. Vlachou, C. Doulkeridis, and N. Polyzotis. Skyline query
processing over joins. In SIGMOD, pages 73–84, 2011.

[32] Q. Wan, R. C.-W. Wong, I. F. Ilyas, M. T. Özsu, and Y. Peng.
Creating competitive products. PVLDB, 2(1):898–909, 2009.

[33] S. Wu, B. C. Ooi, and K.-L. Tan. Continuous sampling for
online aggregation over multiple queries. In SIGMOD, pages
651–662, 2010.

[34] T. Xia and D. Zhang. Refreshing the sky: the compressed
skycube with efficient support for frequent updates. In
SIGMOD, pages 491–502, 2006.

[35] Y. Xing, S. B. Zdonik, and J.-H. Hwang. Dynamic load
distribution in the borealis stream processor. In ICDE, pages
791–802, 2005.

[36] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang.
Efficient computation of the skyline cube. In VLDB, pages
241–252, 2005.

132

