
ALIAS: Author Disambiguation in Microsoft Academic
Search Engine Dataset

Michael Pitts #1, Swapna Savvana #2, Senjuti Basu Roy #3, Vani Mandava ∗4, Dhineshkumar Prasath #5

Institute of Technology,CWDS, University of Washington Tacoma
1 pittsm@uw.edu, 2 ssavvana@uw.edu,3 senjutib@uw.edu,5 dkp11@uw.edu

∗ Microsoft Research, USA
4 vanim@exchange.microsoft.com

ABSTRACT
We present a system called ALIAS, that is designed to search for
duplicate authors from Microsoft Academic Search Engine dataset.
Author-ambiguity is a prevalent problem in this dataset, as many
authors publish under several variations of their own name, or dif-
ferent authors share similar or same name. ALIAS takes an author
name as an input (who may or may not exist in the corpus), and out-
puts a set of author names from the database, that are determined as
duplicates of the input author. It also provides a confidence score
with each output. Additionally, ALIAS has the feature of finding a
Top-k list of similar authors, given an input author name. The un-
derlying techniques heavily rely on a mix of learning, mining, and
efficient search techniques, including partitioning, clustering, su-
pervised learning using ensemble algorithms, and indexing to per-
form efficient search to enable fast response for near real time user
interaction. While the system is designed using Academic Search
Engine data, the proposed solution is generic and could be extended
to other problems in the category of entity disambiguation. In this
demonstration paper, we describe different components of ALIAS
and the intelligent algorithms associated with each of these com-
ponents to perform author name disambiguation or similar authors
finding.

1. INTRODUCTION
The ability to search literature and collect/aggregate metrics around

publications is of pivotal interest in modern research. Special-
ized search engine technologies (such as Google scholar, Microsoft
Academic Search) are designed to cater to the academic and in-
dustry researchers across hundreds of scientific disciplines to en-
able search, browsing, and exploration functionalities over different
scientific disciplines and domains. Microsoft Academic Search1

(henceforth referred to as MAS) allows search and exploration over
a wide variety of scientific disciplines, from astronomy to zoology.
It currently covers more than 50 million publications and over 19
million authors, with updates added each week. Prevalence of noise
is one of the hardest problems in this dataset, as the raw data is col-

1http://academic.research.microsoft.com/

(c) 2014, Copyright is with the authors. Published in Proceeding of the 17th
International Conference on Extending Database Technology (EDBT 2014)
on OpenProceedings.org. Distribution of this paper is permitted under the
terms of the Creative Commons license CC-by-nc-nd 4.0.

lected by crawling and extracting data over hundreds of publishers
websites, each adhering to its own format and standard of repre-
sentations. The problem gets further magnified as many authors
publish under several variations of their own name, or different
authors share similar or same name. Thus author-ambiguity is a
tremendous challenge that exacerbates the overall search experi-
ence. Figure 1 and Figure 2 explain these scenarios using MAS
dataset examples.

Figure 1: Example of author name variations: the names “Bryan J
Smith” and “Bryan Smith” refer to the same person

In the light of this opportunity, we develop ALIAS2, an intelli-
gent and effective system that determines duplicate authors from
the MAS corpus, given an input author. ALIAS makes the fol-
lowing contributions- a) The user interface of ALIAS has auto-
complete suggestions based on prefix matching on author name.
An author who does not exist in the corpus, she could be added to
the database by the user. b) ALIAS outputs a set of duplicate au-
thors, given an input author. While the actual disambiguation algo-
rithm is designed using intelligent supervised learning algorithms,
the user interface still accepts incomplete inputs (for input authors
who do not exist in the database) and the remaining metadata values
are imputed using novel data mining solutions. Additional com-
putational challenges arise to enable this functionality, as ALIAS
has to handle all possible combinations of incomplete author in-
put. A multi-layer inverted index [7] is designed to enable fast
search. ALIAS has an additional feature of finding similar authors,
where the similarity is formalized by considering an exhaustive set
of author metadata and an efficient search is conducted using novel
multi-dimensional indexing techniques. d) The disambiguation and
the similar author finding algorithm also output a confidence score
with each output. The interface enables side-by-side comparison
between each output and the input.

The problem of record matching and de-duplication has been
studied in the past [1, 2, 3]. Most of the previously studied tech-
niques rely heavily on approximate string matching to find the ap-
propriate solution. Specific to the interest of academic publication
and related applications, a recent work proposes BibPro [4], a ci-

2Youtube video link: http://youtu.be/LxA4Ms0U75U

648 10.5441/002/edbt.2014.65

Figure 2: Example of a paper that is co-authored by an author with
an ambiguous name and missing affiliation

tation parser that extracts components of a citation string, consid-
ering sequence alignment. Similarly, the web intelligence commu-
nity has addressed author name disambiguation problems [5, 6] and
some of its variants. Conversely, our proposed approach primarily
relies on a series of techniques - such as, partitioning, clustering,
and supervised learning algorithms with the objective to learn the
importance of different author metadata in the disambiguation task.
The aforementioned techniques are designed with the help of rig-
orous feature engineering that captures explicit as well as implicit
characteristics of author metadata. We note that much of our pro-
posed solutions can be generalized to other problems in the cate-
gory of entity disambiguation. Furthermore, ALIAS accepts author
names as inputs that do not need to exist in the database, or the user
could input incomplete author metadata. Finally, ALIAS enables
near real-time interaction with the user by using novel indexing
techniques.

To summarize, ALIAS makes the following contributions:

• We design ALIAS, a novel author disambiguation system
using MAS dataset that accepts an author input in the user
interface, and outputs duplicate authors (along with their re-
spective confidence scores) from MAS corpus.

• ALIAS also returns a ranked list of k similar authors and
respective confidence score, given an input author.

• To guarantee real-time interaction, ALIAS is designed us-
ing an offline and an online layer. The technical solution
of ALIAS constitutes a mix of various learning techniques
and mining algorithms, combined with indexing techniques.
In particular, the offline layer consists of partitioning, clus-
tering, supervised learning techniques, a multi-layer inverted
index and a multi-dimensional index. The online layer makes
use of the indexes to perform efficient duplicate detection or
similarity search.

• Unlike existing work on entity disambiguation, the duplicate
detection task is formulated as a supervised learning prob-
lem, by designing an ensemble of classification techniques
with the objective to learn appropriate functions leveraging
author metadata to determine duplicates.

Next, we first describe the technical specifications of ALIAS and
then demonstrate application scenarios with the system.

2. TECHNICAL SPECIFICATION

2.1 System Overview
ALIAS is designed as a desktop or a web application that has

two primary features: 1) Duplicate Detection and 2) Similar Au-
thor Finding. The majority of the system components are pre-
computed and stored to increase the speed of the application. Fig-
ure 3 presents the system overview for Duplicate Detection feature.
Since different authors may have similar names, the author names
of the MAS corpus are first partitioned based on name similarity, as
described in Section 2.2. After that, a set of clusters are designed
inside each partition. Next, the duplicate detection task is defined

 Partition authors based on name similarity

 Inside each cluster,
-Determine the cluster centroid, form all possible author-pairs
-Train an ensemble of decision trees using author metadata
-Use cross-validation. For each pair of authors, if the probability
 of being duplicates ≥ Threshold, consider duplicate.
-Use majority voting for final prediction.
- Compute Confidence score as the average of probability.

 Input Author name

Offline Layer

Online Layer

Does the author exist
in the corpus?

Yes
No

Output the pre-
computed duplicates,
and Confidence Score

Enter additional inputs. Map the input to the
closest partition, and then to the cluster

!!!!"Pair input author with each author inside cluster
 -Determine duplicate using ensemble of classifiers,
 by majority voting, using appropriate Threshold
 - compute Confidence Score

Create a set of clusters inside each partition considering all the features

Figure 3: Overview of duplicate detection process in ALIAS

as a binary classification task inside each cluster, where the objec-
tive is to leverage author metadata to identify a pair of authors as
duplicates or not. An ensemble of decision tree classifiers [7] are
designed inside each cluster. MAS website allows authenticated
users (i.e., authors) to make direct edits in the author-profiles by
adding, confirming, or deleting respective publications metadata,
affiliation, and area of interests information, or by sending requests
to merge multiple author profiles. This author edit data constitutes
the ground truth in ALIAS and is used to create the labeled data
for supervised learning (details in Section 2.2). The classification
algorithms use author meta-data that a user may not have entered
as inputs in the interface. Therefore, ALIAS handles such cases by
imputing the missing author metadata using clustering techniques,
such that the classification algorithm could make use of it for dupli-
cate detection. In particular, ALIAS creates a set of clusters (more
details in Section 2.3 and 2.2) and maintains a centroid for each
cluster, which is used to impute the remaining missing attribute
values. Given an author name that does not exist in the corpus,
ALIAS first detects the most similar partition, and then use other
author metadata to perform efficient matching to map the inputs to
its closest cluster inside the partition. Efficient partition finding and
centroid matching are the only two online processes that take place
at runtime. For Similar Author Finding feature, each author record
is transformed to a point in a multi-dimensional space, and the en-
tire search space is indexed using multidimensional indexing [8]
for efficient similarity search. This index is created offline, and a
top-k nearest neighbor search interface is designed for the online
computation. Section 2.2 describes the offline component, whereas
Section 2.3 presents the online computations.
ALIAS is primarily implemented in Java, using R-studio and

SQL Server. The raw author corpus and related metadata are stored
as relational tables using SQL-Server. Java provides the main user
interface functionality to the client and also runs on the server to al-
low program interaction. R-studio is used for partitioning, cluster-
ing, supervised learning algorithm implementations, the results of
which are stored in a SQL database server and later retrieved. The
multidimensional indexing is primarily implemented using Java that
interacts directly with the author records stored in the SQL database.

649

(a) Duplicate Detection -Scenario 1 (b) Duplicate Detection -Scenario 2 (a)

(c) Duplicate Detection -Scenario 2 (b) (d) Similar Author Finding

Figure 4: Different Functionalities of ALIAS

2.2 Offline Layer
In this section, we present the details of the five offline compo-

nents: partitioning based on name similarity, clustering inside each
partition, classification algorithm inside each cluster, multi-layer
inverted index, and multidimensional index for similarity search.
Partitioning: ALIAS pre-computes a set of partitions based on
author name similarity. The partition is designed considering indi-
vidual substring matching on first, middle, and last names between
author pairs, and aggregating them at the end. A pair of authors
are placed into the same partition if their aggregated Levenshtein
distance [7] is smaller than a particular threshold value β. The ob-
jective is to detect duplicates efficiently, and avoid all pair match.
Clustering: Inside each partition, ALIAS pre-computes a set of
clusters based on all other remaining metadata. ALIAS uses fol-
lowing metadata (i.e., attributes): Affiliation, Expertise, Primary
expertise, Advisor Information, Publication Count, Collaboration
count, First year of publication, Last year of publication. Cluster-
ing is designed to expedite online computation and to handle in-
complete author input. The intuition is to compare an input author
only with a subset of similar authors in the MAS corpus and block
comparison with the rest. Our implementation uses k-Medoid clus-
tering algorithm [7] for clustering. Our initial experimental results
have demonstrated that the best results are obtained when k = 10

clusters are created on an average inside each partition. As we shall
see in Section 2.3, the centroids of the clusters are used to impute
incomplete author inputs. Intuitively, given an input author whose
“Expertise” field is left blank in the interface, ALIAS imputes that
with the value “Database”, if this author is most similar to a cluster
centorid which has the “Expertise=Database”.
Ensemble of Classifiers: Inside each cluster, the duplicate detec-
tion solution is designed as a binary classification task for an author
pair. Given an author-pair, appropriate metadata are extracted and
a single vector is created that contains individual characteristics of
each of the two authors, as well as some characteristics that capture
relative similarity between an author pair. The individual charac-
teristics are extracted using author metadata as described above,
whereas, the latter type of characteristics are captured consider-
ing the following additional factors: Conference overlaps, Journal
overlaps, Keyword overlap, and Domain overlap3. These character-
istics are typically known as features. The overall task is to design
a function that accurately classifies an author-pair as duplicates or
otherwise. Mathematically, given author-pair features X, the task
is to predict the class label Y (0= not-duplicates/1=duplicates) by
designing a classifier C,

C : X → C(X)

3Overlap is calculated as the Jaccard Index.

650

such that the error in classification P (C(X) 6= Y) is minimized.
A single classifier designed for such purpose comes inadequate
to make accurate classification due to noise and imbalance in the
dataset. Instead, we propose a series of classifiers (ensemble) con-
sidering random partitions of the feature space. Each classifier out-
puts its own decision; the idea is to combine these individual de-
cisions at the end to accurately classify new examples. Previous
work [9] has demonstrated that majority voting is guaranteed to
achieve an overall higher accuracy of an ensemble method when
the individual classifiers have accuracy > 0.5, which we also use
to combine individual classification decisions.

In our implementation, we design an ensemble with 200 deci-
sion trees using majority voting, where each decision tree makes
an independent decision. A pair of authors are marked duplicate
by a classifier, when the probability of being duplicate is greater
than a threshold (α is empirically chosen to be 0.8). The overall
confidence score is chosen to be the average probability over all the
classifiers that classifies the pair to be duplicate.
Multi-layer Inverted Index: Two layers of inverted indices are
designed over the pre-computed partitions, and on the clusters in-
side each partition to efficiently match an author input to its closest
cluster inside a partition for duplicate detection.
Multidimensional Indexing: The objective is to perform efficient
similarity search on author metadata. We transform each author
metadata (excluding name and email id) to a point in the multi-
dimensional space, and the entire search space is indexed. A top-
k nearest neighbor search interface is designed that takes an au-
thor input as the query and returns a ranked list of k-most similar
authors. For our implementation purpose, we use Euclidean dis-
tance [7] as the distance metric. The confidence score is computed
as the normalized similarity (1 - normalized distance) between the
input author and an output.

2.3 Online Layer
As the user types the name, a list of auto-suggestion shows up

based on prefix matching. For duplicate detection, if the author
name already exists in the database, its corresponding duplicate list
is retrieved from the stored results along with the computed con-
fidence score. Otherwise, additional inputs are requested from the
user (refer to Figure 4b and 4c). The author name is first mapped
to the closest pre-computed partition and then to the closest clus-
ter. Technically, the process thus becomes computing the similarity
(or distance) [7] between the cluster-centroid and the input values
and selecting that centroid that has the highest similarity (smallest
distance) with the inputs. While we are aware of several measures
to compute similarity or distance, our current implementation con-
siders Cosine Similarity [7] for that purpose. To allow incomplete
inputs, the total number of materialized cluster centroids is expo-
nential inside each partition(more specifically, n × 2m, where n-
clusters are materialized for each possible subset of m attributes),
the challenge is to be able to perform this similarity computation
efficiently at run-time. The multi-layer inverted index described
above is used to efficiently identify a partition and then the cluster
inside the partition. The advantage of using this indexing scheme
is that it avoids the exponential number of similarity computation
at run-time. In particular, ALIAS identifies the closest partition
in constant time and only performs n comparisons inside a par-
tition to find out the centroid with the highest Cosine Similarity.
The cluster centroid along to impute the missing values along with
the input author metadata constitutes a complete test record. The
trained classifiers are then used to detect the duplicate list.

For similar author finding feature, the user has to additionally
specify an integer value k. A call goes to the pre-computed multidi-

mensional index structure to return the top-k ranked list of authors
who are most similar to the input author.

3. SYSTEM DEMONSTRATION
MAS dataset is used to demonstrate ALIAS. It consists of 250, 000

unique author records and related metadata, selected randomly from
the larger MAS corpus, but only for Computer Science domain.
Our demonstration contains three main processes: 1) Flexible In-
put; 2) Duplicate Detection; 3) Similar Author Finding.

As shown in Figure 4a, Step 1 involves typing an author name.
A list of autosuggestion shows up based on prefix matching. The
user can then select either of the features. If the author exists in
the database, based on the selected feature (Duplicate Detection or
Similar Author Finding), the appropriate output shows up (Figure
4a or 4d respectively), leading to Step 2 or 3.

If the input author does not exist in the corpus (refer to Figure 4b
and 4c), an alert window pops up, and a form is provided to enter
additional metadata values for that input author. After that, the user
can choose either of the features, and based on that, she would be
lead to Step 2 or Step 3 (e.g., Figure 4c shows the case when the
user has chosen Duplicate Detection Feature.).

For both Step 2 and Step 3, an additional window at the bot-
tom provides attribute-by-attribute comparison between the input
author and any author in the output that the user has clicked on.
4. CONCLUSION

In this paper we propose ALIAS, a system that aims to perform
duplicate author detection and top-k similar author finding using
MAS dataset. ALIAS uses a mix of mining techniques, learning
algorithms and indexing techniques including partitioning, cluster-
ing, classification, multi-layer inverted indices, and multidimen-
sional indexing. ALIAS outputs a confidence score for duplicate
detection and similar author finding tasks and accepts incomplete
author metadata as inputs. To the best of our knowledge, ALIAS is
the first ever tool with these improved functionalities. The proposed
solutions of ALIAS are generic and could be adopted to address the
task of entity disambiguation and related problems.

5. REFERENCES
[1] A. Arasu, M. Götz, and R. Kaushik, “On active learning of

record matching packages,” in SIGMOD Conference, 2010,
pp. 783–794.

[2] A. Arasu and R. Kaushik, “A grammar-based entity
representation framework for data cleaning,” in SIGMOD
Conference, 2009, pp. 233–244.

[3] A. Arasu, S. Chaudhuri, and R. Kaushik,
“Transformation-based framework for record matching,” in
ICDE, 2008, pp. 40–49.

[4] C.-C. Chen, K.-H. Yang, C.-L. Chen, and J.-M. Ho, “Bibpro:
A citation parser based on sequence alignment,” IEEE Trans.
Knowl. Data Eng., vol. 24, no. 2, pp. 236–250, 2012.

[5] K.-H. Yang and Y. H. Wu, “Author name disambiguation in
citations,” in Web Intelligence/IAT Workshops, 2011.

[6] R. Zhang, D. Shen, Y. Kou, and T. Nie, “Author name
disambiguation for citations on the deep web,” ser. WAIM’10,
2010, pp. 198–209.

[7] J. Han and M. Kamber, Data Mining: Concepts and
Techniques. Morgan Kaufmann, 2000.

[8] A. Guttman, “R-trees: a dynamic index structure for spatial
searching,” SIGMOD Rec., vol. 14, no. 2, Jun. 1984.

[9] L. Lam and S. Y. Suen, “Application of majority voting to
pattern recognition: an analysis of its behavior and
performance,” Trans. Sys. Man Cyber. Part A.

651

