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ABSTRACT
Semantic drift is a common problem in iterative information extrac-
tion. Previous approaches for minimizing semantic drift may incur
substantial loss in recall. We observe that most semantic drifts are
introduced by a small number of questionable extractions in the
earlier rounds of iterations. These extractions subsequently intro-
duce a large number of questionable results, which lead to the se-
mantic drift phenomenon. We call these questionable extractions
Drifting Points (DPs). If erroneous extractions are the “symptoms”
of semantic drift, then DPs are the “causes” of semantic drift. In
this paper, we propose a method to minimize semantic drift by
identifying the DPs and removing the effect introduced by the DPs.
We use isA (concept-instance) extraction as an example to demon-
strate the effectiveness of our approach in cleaning information ex-
traction errors caused by semantic drift. We perform experiments
on a isA relation iterative extraction, where 90.5 million of isA
pairs are automatically extracted from 1.6 billion web documents
with a low precision. The experimental results show our DP clean-
ing method enables us to clean more than 90% incorrect instances
with 95% precision, which outperforms the previous approaches
we compare with. As a result, our method greatly improves the
prevision of this large isA data set from less than 50% to over 90%.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Textual Databases

General Terms
Algorithms, Performance, Experimentation

1. INTRODUCTION
Iterative bootstrapping is used extensively in information extrac-

tion (IE) [22, 28, 25, 14]. Starting with a small number of seed in-
stances in a target semantic class, it iteratively adds new instances
selected by a model. The method is attractive because it requires
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minimal supervision; it is efficient for even tera-scale extraction
[14]; and it is domain and language independent [11]. Indeed,
bootstrapping approaches have shown good performance in many
web-scale information extraction tasks [1, 24].

One of the biggest issues of iterative information extraction is
semantic drift [17, 5]: As iterations proceed, the extractions may
shift from the target class to some other classes [5]. As we know,
state-of-the-art iterative IE methods can be divided into two cat-
egories, syntax-based and semantic-based, both of which have the
semantic drift problem.

Syntax-based Extraction: Most iterative IE systems, including Kno-
wItAll [7], Snowball [1], TextRunner [6], and NELL [3], are syntax-
based, that is, each iteration finds additional syntactic patterns that
can be used for information extraction. In other words, they rely
on more syntactic patterns to produce more results. As depicted
in Fig. 1(a), given seeds such as dog and cat in the “Animal” class
(or so called concept), we may discover a syntactic pattern P1=“...
X is a mammal ...”, which enables us to find other animals such
as elephant and dolphin. However, it may also produce syntactic
patterns such as P2=“Sometimes, X is as clever as human beings”,
which is error prone. It may produce extractions such as computer
or robot, which in turn, will provide more irrelevant syntactic pat-
terns. Eventually, the extraction for the “Animal” concept drifts to
some other concepts. ◻
Semantic-based Extraction: Some recent work [24] proposed a se-
mantic-based iterative mechanism. For a given syntactic pattern, it
performs multiple semantic iterations. Each iteration extracts new
results to be added to a knowledge base, which enables it to under-
stand more text and produce more extractions in the next iteration.
Let us consider the syntactic pattern such as for extracting isA re-
lationships. In the first iteration, the system has no knowledge, and
only sentences that match the pattern without any ambiguity are
used for extraction. For example, given a sentence S1=“Animals
such as dog, cat, pig and chicken ...”, we extract dog, cat, pig,
chicken as instances of “Animal”. In the next iteration, (dog isA
Animal) becomes part of our knowledge and may enable us to un-
derstand sentences that we were not able to understand in the previ-
ous iteration. For instance, given another sentence S4 = “Animals
from African countries, such as Giraffe and Lion”, where both
“Animals” and “African countries” are candidate concepts, “Gir-
affe” and “Lion” are candidate instances. Since we know (Lion
isA Animal), we may decide that in sentence S4, such as modifies
animals rather than African countries. This knowledge enables us
to obtain new knowledge (Giraffe isA Animal) instead of (Giraffe
isA African country).

However, semantic-based extraction as described above is not
immune to semantic drift. Consider a sentence S3= “Common food
from animals such as pork, beef, and chicken” in Fig. 1(b). Assume
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Figure 1: Snapshots of Iterative Extraction for “Animal” with Two Different Bootstrapping Mechanisms

we already know (chicken isA animal), we may parse the sentence
incorrectly to get wrong knowledge (pork isA animal) and (beef
isA animal). Then the wrong knowledge probably will introduce
more errors in the next iterations. Eventually, the extraction for the
“Animal” concept drifts to other concepts such as “Food”. ◻

There is already some work on reducing semantic drift. For ex-
ample, Type Checking [14] checks whether the type of extracted in-
stances matches the target class, and Mutual Exclusion [5] detects
errors if extracted instances belong to mutually exclusive classes,
such as “Animal” and “Artefact.”. However, such constraints only
tackle a small percentage of semantic drifts. Other methods [17,
20, 4] keep the most reliable instances in each iteration to main-
tain high precision, where an instance’s “reliability” is determined
either by some heuristic models (e.g., an instance is more reliable
if it is extracted more frequently) [17], or by combining evidences
from multiple extractions [20, 4]. Not surprisingly, these methods
sacrifice recall for increased precision.

In this paper, we present a novel approach to overcome semantic
drift. We consider semantic drift to be triggered by certain patterns
or instances that we call Drifting Points (DPs). The DPs them-
selves are not necessarily erroneous extractions, rather, they trigger
semantic drift from the target class to some other classes such as the
pattern P2 in Fig. 1(a) and the instance “chicken” in Fig. 1(b). In
that sense, erroneous extractions are the “symptoms” of semantic
drift, while DPs are the “causes” of semantic drift. Identifying DPs
enables us to cut off the propagation of semantic drift. Compared
with detecting each erroneous extraction directly, focusing on DPs
makes the problem much easier, as DPs are easier to model for
two reasons: First, the number of DPs is much smaller than that
of erroneous extractions, as one DP may introduce many errors.
Second, there are various kinds of erroneous extractions [5, 14, 20,
4], which are hard to be captured by a single approach or model. In
contrast, we identify two types of DPs that hold four strong proper-
ties (see Sec. 2.2), which enable us to identify DPs and eventually
identify erroneous extractions more effectively.

Overcoming semantic drift through DPs raises some nontrivial
challenges. Firstly, we must reach a high precision and recall in
identifying DPs, as one incorrectly identified DP may let us take a
number of correct extractions as erroneous extractions (false-neg-
atives), while one missing DP may let us miss to identify a number

of erroneous extractions (false-positives). Secondly, we need to
clearly figure out the relationship between DPs and erroneous ex-
tractions, such that we can decide how to identify erroneous extrac-
tions with identified DPs. Note that not all the instances introduced
by a DP are erroneous extractions. Take the DP instance “chicken”
for example, though it introduces erroneous extractions like “pork”
and “beef”, it may also introduce correct extractions such as “duck”
from the sentence “... animal such as duck and chicken”. Hence,
after DPs are detected, we should recognize which extractions in-
troduced by a DP are erroneous ones.

In order for detecting DPs precisely (Challenge 1), we define two
types of DPs according to their different characteristics and impact
on semantic drifts. In particular, the first type of DPs are usually
polysemous instances such as “chicken”, which are not erroneous
extractions by themselves, but some of their introduced extractions
might be erroneous ones. The second type of DPs are erroneous
extractions by themselves and can only introduce erroneous extrac-
tions. Based on this categorization on DPs, we then identify some
important properties for differentiating the two types of DPs from
non-DPs. For instance, a non-DP probably only introduces high-
frequency instances into a class, since these instances are correct
ones which are also introduced by many other instances under the
target class. In contrast, a second-type DP only introduces low-
frequency instances, since these instances does not belong to the
target class and thus are seldom introduced by other instances un-
der the target class. Whereas, a first-type DP probably introduces
both high-frequency instances and low-frequency instances. Thus,
the difference between the frequency distributions of instances in-
troduced by a first-type DP, a second-type DP and a non-DP can be
quite obvious. However, this is not a definite property, as non-DPs
sometimes may also introduce low-frequency instances which are
correct ones but rarely introduced by other instances. Therefore, it
is inaccurate to detect DPs with any heuristic functions developed
from this single property.

As an alternative, we resort to a supervised learning approach
that takes advantages of all the identified properties of DPs in de-
tecting DPs. However, one drawback of supervised learning is that
it relies on large training data. In our case, we perform extrac-
tion on a large number of (e.g., millions of) target concepts, which
means we need labeled data for each concept. This is infeasible.
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To address this issue, we start with some seed instances labeled
strictly based on the mutual exclusive heuristic [5]. We then intro-
duce a semi-supervised, multi-task learning method that not only
leverages unlabeled training data for a better understanding of the
new data (semi-supervised), but also improves the classifier for one
concept by exploiting its related concepts (multi-task).

The main difficulty in Challenge 2 lies on how we detect the er-
roneous extractions from those introduced by the first-type of DPs.
Note that only a part of instances introduced by a first-type DP are
erroneous ones, but there are no reliable evidence can be leveraged
to answer whether an instance introduced by a first-type of DP is a
correct one or not. In that case, we propose to check the correct-
ness of these instances at sentence extraction level. In particular,
for each sentence that is introduced by a first-type DP, we check all
possible extractions to this sentence, and score each of them using a
probabilistic model based on the generated instances obtained from
the extraction. We take the extraction with the highest score as the
correct extraction to this sentence, while those instances obtained
by incorrect extractions to this sentence will be rolled back.

In summary, our main contributions are the following:

● We propose a novel method to overcome semantic drift by
identifying the cause of the semantic drift: the drifting points
(DPs). Comparing previous approaches that focus on the
phenomenon of semantic drifts, our approach achieves higher
precision and recall as we are able to cut off the propagation
of semantic drift.

● We use semi-supervised, multi-task learning based on a small
number of automatically labeled training data. This method
not only leverages unlabeled data for a better understanding
of new data, but also exploits the knowledge in related con-
cepts to improve the classifier learning for each concept. This
enables us to detect DPs in millions of concepts.

● We adopt several DP-based cleaning strategies to identify
and roll back incorrect extractions introduced by different
kinds of DPs. We thus effectively cut off the propagation
of errors in the iterative extraction process, and as a result,
we clean a very large proportion of semantic drift errors.

We perform experiments on a semantic-based isA relation iter-
ative extraction, where 90.5 millions of isA pairs in 13.5 million
concepts are extracted from 1.6 billions of web pages with such as
pattern. The results show that our DP cleaning method enables us
to achieve 90% precision and 94% recall, which outperforms the
previous approaches we compare with.

Roadmap: We define Drifting Points (DPs) in Sec. 2, and then
present how we detect DPs in Sec. 3, We introduce how we roll
back error extractions activated by DPs in Sec. 4. We report our
experiment results in Sec. 5. After covering related work in Sec. 6,
we conclude in Sec. 7.

2. OVERVIEW ON DRIFTING POINTS
In this paper, we are concerned with overcoming semantic drift

in semantic-based isA relationships extraction. In the following,
we first give definition of DPs in semantic-based isA relation ex-
traction, and then define two types of DPs with their properties.
Finally, we present the two challenging problems we need to solve
in our method.

2.1 Drifting Points (DPs) in Semantic-based
IsA Relation Extraction

In semantic-based isA relation extraction, we aim at extracting
Instances such as dog, cat, pig for target Class (or Concept) such as

“Animal” in an iterative bootstrapping manner with a Hearst (such
as) pattern. In this context, we say an existing knowledge, i.e., an
instance under a target class (or an isA pair), triggers the extraction
of some other instances under the same class, if it enables us to
understand a sentence, thereby generating these new isA pairs from
the sentence. For example, chicken triggers the extraction of pork,
beef under the “Animal” class in S3 in Fig. 1(b). Also, we call these
new generated instances (such as pork, beef) as sub-instances of the
existing instance (such as chicken) that triggers them.

In semantic-based isA relation extraction, we say Semantic Drift
happens to a target class if the extractions shift from the target one
to some other irrelevant classes. In particular, we define the er-
roneous extractions happen with semantic drift as Drifting Errors
below:

Definition 1. (Drifting Errors). We call an instance as a Drift-
ing Error w.r.t. a target class, if this instance does not belong to the
target class but some other classes irrelevant to the target one.

Note that not all erroneous extractions are drifting errors. For ex-
ample, erroneous extractions caused by typos like Syngapore, and
Micorsoft are not drifting errors. In other words, drifting errors are
those caused by semantic misunderstanding. However, according
to our observations to the large data set we employ in our experi-
ments, more than 90% erroneous extractions are drifting errors.

We define instances that trigger drifting errors to a target class as
Drifting Points (DPs) below:

Definition 2. (Dirfting Points (DPs)). We say an instance is a
Drifting Point w.r.t. a target class if it introduces drifting errors to
this target class.

2.2 Types of DPs
According to our observations, there are two types of DPs which

have different characteristics and different impact on semantic drifts,
and thus are necessary to be treated differently. The first type of
DPs are not erroneous extractions by themselves but part of the in-
stances triggered by this kind of DPs are drifting errors, such as
chicken w.r.t. the “Animal” class as we show in Fig. 1(a). We form-
ally define this kind of DPs as Intentional DPs below:

Definition 3. An Intentional DP is a polysemous instance that
belongs to both the target class and another irrelevant class. Hence,
it tends to introduce instances from the irrelevant class into the tar-
get class as drifting errors.

In contrast, the second type of DP is an erroneous extraction by
itself and all of the instances triggered by this kind of DP are drift-
ing errors. We formally define them as Accidental DPs below:

Definition 4. An Accidental DP is an extraction error by itself.
It happens accidentally or randomly and then it triggers drifting
errors in the subsequent iterations.

An Accidental DP results from mistakes that happen accident-
ally. There are two situations in which an Accidental DP occurs.
First, it might come from incorrectly parsed sentences. For ex-
ample, the following sentence

“... animals other than dogs such as cats ...”
may be parsed incorrectly and produce (cat isA dog). Thus cat
becomes an Accidental DP in the “dog” class as it will very likely
introduce drifting errors into the “dog” class. Second, although
the sentence is parsed correctly, the knowledge in the sentence is
incorrect. For example,
“He has toured in various countries such as France, Portugal, New

York, Mauritius, Norway and Japan ...”,
contains a wrong fact (New York isA country). Thus New York
might become an Accidental DP in the “Country” class.
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Figure 2: Distributions of instances triggered by DPs and non-DPs

2.3 Properties of DPs
We identify four important properties for the two types of DPs,

which we leverage to detect DPs from non-DPs.

Property 1. For a target class, the distribution of instances
triggered by a DP is different from the distribution of instances that
truly belong to the target class.

Intuitively, a non-DP instance only triggers instances that belong
to the target class, but a DP can potentially trigger instances of
other classes. For example, Fig. 2 compares the distributions of
instances triggered by some labeled DPs and non-DPs under “An-
imal” in our experimental data set (90.5 millions of isA pairs). In-
stances triggered by non-DP instances of “Animal” such as dog,
cat, snake, and monkey are similar to the distribution of instances
in “Animal” (denoted as the AVG distribution in Fig. 2). But a DP
instance, such as chicken, triggers instances whose distribution is
quite different from the AVG distribution. This is because it trig-
gers not only “Animal” instances but also “Food” instances such as
beef, pork, milk, and Meat.

Although Property 1 generally holds, there exist cases where the
distribution of instances triggered by a non-DP is different from the
AVG distribution. For example, a non-DP may trigger instances
that are correct but are rarely or not as frequently triggered by oth-
ers. For example, as shown in Fig. 2, monkey triggers the extraction
of chimpanzee much more frequently than other non-DP instances.

Property 2. If classes C1 and C2 are mutually exclusive, then
an instance e ∈ C1 ∩C2 is very likely an Intentional DP.

For example, apple is an instance of both “Fruit” and “Com-
pany”, which are mutually exclusive, so apple is likely to be an
Intentional DP. This property has been used to identify suspicious
instances [5] based on pre-identified mutually exclusive classes.

Property 3. An Accidental DP is usually supported by very
weak evidence, that is, the instance is derived from very few (mostly
only one) sentences.

Intuitively, an Accidental DP is obtained by mistake. The prob-
ability that the same mistake occurrs repeatedly is low probability

in different sentences. For example, from billions of pages, state-
ments such as (cat isA Dog) and (New York isA Country) can only
be found in one sentence. Therefore, an Accidental DP usually has
a low frequency, i.e., supported by weak evidence.

However, we cannot soly rely on Property 3 to identify Acci-
dental DPs, since as many as 50% of non-DPs in our extraction are
only obtained once. Thus, if we regard low-frequency instances as
Accidental DPs, 50% of non-DPs will be considered as Accidental
DPs.

Property 4. An error extraction (e isA C) triggered by a DP is
usually supported by weak evidence, since the extraction is usually
not triggered by other instances of C.

Intuitively, this property holds for error instances triggered by
DPs. By definition, an error extraction triggered by a DP will not
be triggered by non-DPs. Besides, it seldom happens that the same
error instances will be triggered by different DPs according to Prop-
erty 1. For example, beef is triggered by DP chicken for the “An-
imal” class in Fig. 1(b). It turns out when we extract isA relation-
ships from billions of sentences, no instances other than chicken
would trigger the extraction of beef as an instance of “Animal”.

2.4 Problems Definition
Although the above four properties provide some clues to DPs

and drifting errors caused by DPs, none of them is definite. In this
paper, we introduce machine learning approaches that take advant-
age of the four properties to solve the following two problems: i)
Identify the two types of DPs when we extract isA pairs for mil-
lions of concepts (Sec. 3); ii) Identify drifting errors introduced by
the two types of DPs (Sec. 4).

3. DRIFTING POINTS DETECTION
We resort to supervised learning methods for detecting DPs. For

each concept, a DP Detector is trained to classify instances into
three categories: (1) Intentional DPs, (2) Accidental DPs, or (3)
non-DPs. One drawback of supervised learning is that it requires
large amount of training data. To make things worse, we have mil-
lions of concepts.

In our approach, we use semi-supervised learning to leverage
unlabeled data for better understanding of the new data, and we
use multi-task learning to improve our understanding of a certain
concept by exploiting its related concepts. This is particularly ne-
cessary as lots of concepts do not have much training data among
the millions of concepts. In the following, we start with feature
selection, then we describe how to obtain a set of seed DPs and
non-DPs, and finally, we present our method called Concept Ad-
aptive Drift Detection for our purpose.

3.1 Designing Features
In the DP detector of the target concept C, each instance e is

represented by a feature vector x(e) = [f1(e), f2(e), ..., fd(e)]T ∈
Rd, where d is the number of features. Four features corresponding
to the four properties of the DPs are explored here. To illustrate
the effect of the four features, we depict the distribution of feature
values of 1,097 manually labeled Intentional DPs, Accidental DPs
and non-DPs under the “Animal” concept in our experimental data
set in Fig. 3.

(1) Feature with Property 1: According to Property 1, the first
feature explores the frequency distribution of instances triggered
by an instance e. We take the similarity between the frequency dis-
tribution of instances triggered by e and the frequency distribution
of target concept C’s instances obtained in the first iteration as a
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Figure 3: Comparing the feature values of Intentional DPs, Accidental DPs and non-DPs under the “Animal” concept

feature, which is sufficient to distinguish many DPs and non-DPs.
More specifically,

f1(e) = Cosine(F⃗ (sub(e)), F⃗ (E(C,1))) (1)

where sub(e) denotes the set of instances triggered by e (which
will also be called as Sub-instances of e), and E(C, i) is the set of
instances that have already been learned under a given concept C
after i-th iteration. Here F⃗ (X) is the frequency distribution of a set
of instances X , and Cosine(X⃗, Y⃗ ) measures the cosine similarity
between the two vectors X⃗ and Y⃗ after they are mapped into the
same space.

As we can see in Fig. 3(a), for f1(e), non-DPs mostly have much
higher values than DPs, and the accidental DPs have very small val-
ues since they mostly only have very few sub-instances which are
usually not correct instances of the concept. The values of Inten-
tional DPs are usually a bit higher than Accidental DPs, but not as
high as most of the non-DPs.

(2) Feature with Property 2: The second feature corresponding
to Property 2 is the number of C’s mutually exclusive concepts that
also obtain e as their instance. That is,

f2(e) = ∣{C′∣e ∈ E(C′),C ′ ⊥ C}∣ (2)

where E(C) is all of the learned instances under C, and C′ ⊥ C
indicates concept C′ and C are mutually exclusive.

As we can see in Fig. 3(b), all of the Intentional DPs have f2(e)
values larger than 2, and most of the non-DPs and Accidental DPs
have this feature value as 0. However, there are also a small num-
ber of non-DPs and Accidental DPs that have values larger than
0, because one such non-DP or Accidental DP might be accident-
ally (and incorrectly) learned as an instance of concept C′ though
C′ ⊥ C.

(3) Feature with Property 3: The third feature corresponds to
Property 3. Here we adopt a scoring function, denoted as score(.),
to estimate the probability of each instance being correct. The
higher score(e), the more likely that e is a good instance to the
concept.

f3(e) = score(e) (3)

Most of the previous ranking methods [17, 15] tend to give higher
scores to instances with higher frequencies. But frequency is not
a good indicator, as it is common that the frequency of a drifting
error is higher than that of a correct instance. In this paper, we
employ a random walk based ranking model [23] to score instances.
In particular, we build a random walk graph for each target class,
where each instance under the class is taken as a node, and each
sentence parsing be represented as edges pointing from an instance
to its triggered sub-instances between nodes. The random walk
score of an instance e is the probability that we could randomly
walk from the instances obtained in the first iterations to the node
of the instance e.

As we can see in Fig. 3(c), for f3(e), since both non-DPs and
Intentional DPs are correct instances of the concept, they usually

have relatively higher scores than Accidental DPs, which are usu-
ally drifting errors of the concept.

(4) Feature with Property 4: According to Property 4, the forth
feature mainly concerns about the quality of sub-instances triggered
by e, which could be reflected by the average score of the sub-
instances triggered by e. That is,

f4(e) = AV G(score(sub(e))) (4)

As we can see in Fig. 3(d), since sub-instances of non-DPs are
usually correct, but have different scores due to different popular-
ities, the f4(e) values of non-DPs under the “Animal” concepts
distribute almost uniformly between 0 and 0.06. The sub-instances
of Intentional DPs include both correct instances and drifting er-
rors, thus the average scores of its sub-instances are mostly lower
than 0.04. The sub-instances of Accidental DPs are drifting errors
with low scores, thus the feature values of Accidental-DPs are very
small (mostly less than 0.01).

3.2 Preparing Training Set
We do not have labeled data for DPs or non-DPs, although evid-

enced correct isA pairs can be obtained from verified sources (such
as Wikipedia), or from highly frequent extracted pairs in the first
iteration [24]. In this section, we define some heuristic rules based
on the definitions of DPs and the mutually exclusive assumption [5]
to label a number of obvious Intentional DPs, Accidental DPs and
non-DPs.

3.2.1 Using the Mutually Exclusive Assumption with
Millions of Concepts

Previous work [5] also used mutual exclusion for data cleansing.
However, it is for certain pre-identified pairs of concepts (e.g., “cit-
ies” and “politicians”). When millions of concepts are involved in
the extraction, it is impossible to pre-identify all pairs of concepts
that are mutually exclusive or highly similar. As an alternative, we
introduce a similarity measure to identify mutually exclusive con-
cepts. We call the isA pairs extracted in the first iteration as core
pairs. The core pairs have high quality, because we have not con-
sidered any ambiguous sentences yet. For a concept C, we call
its instances in the core pairs as its core instances, and we denote
them as Core(C). The similarity between concepts C1 and C2 is
defined as:

Sim(C1,C2) = Cosine(Core(C1),Core(C2)) (5)

where Cosine measures the cosine similarity between two sets.
Fig. 4 shows the distribution of concept pairs for different similarity
scores. From experimental studies on our labeled data, we found
that 0.0001 is good threshold for mutually exclusiveness. That is,
if Sim(C1,C2) < 0.0001, then C1 and C2 are mutually exclusive
concepts.

We also explore the idea of highly similar concepts. Two con-
cepts (e.g., “nations” and “countries”) are considered highly sim-
ilar if instances belonging to one concept are likely to belong to the
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Figure 4: The distribution of cosine score between concepts

other. From observation in our experiments, we consider C1 and
C2 highly similar if Sim(C1,C2) > 0.1. We could safely take the
Mutually Exclusive concepts of a concept C as the Mutually Ex-
clusive concepts of a concept C′, if C and C′ are highly similar
concepts.

3.2.2 Defining Evidenced Correct and Incorrect In-
stances

In order for detecting obvious DPs and non-DPs, we also need to
find some evidenced correct or incorrect instances based on mutu-
ally exclusive concepts. We say an instance is an evidenced correct
instance of a concept if this isA relation is obtained from some veri-
fied sources or is among the highly frequent extracted pairs in the
first iteration. In contrast, we say an instance is an evidenced incor-
rect instance of a concept if this instance is accidentally extracted
for this concept for only once in some latter iteration other than
the first one, but it is recognized as an evidence correct instance of
some other concept that mutually exclusive to this concept. For ex-
ample, assume “City” and “Country” are mutually exclusive, if we
have evidence that New York is an instance of “City”, but New York
was accidentally extracted as an instance of “Country” only once in
some latter iteration other than the first one, then we say New York
is an evidenced incorrect instance of “Country”.

3.2.3 Heuristic Rules for Labeling Seed Instances
To this point, we introduce three heuristic rules for labeling ob-

vious DPs and non-DPs below.

RULE 1. We label e of concept C as an Intentional DP if e is
an evidenced correct instance ofC, but part of its sub-instances are
evidenced correct instances of other concepts C′ where C′ ⊥ C.

For example, we have chicken as an evidenced correct “Animal”
instance, and also find that its sub-instances like pork and beef are
evidenced instances of “Food”. Since “Animal” and “Food” are
mutually exclusive, we label chicken as an Intentional DP of “An-
imal”.

RULE 2. We label e of concept C as an Accidental DP if e is
an evidenced incorrect instance of concept C.

For example, once New York is decided as an evidenced incorrect
instance of “Country”, it must be an evidenced correct instance of
another concept, say “City”, which should be mutually exclusive
with “Country”, then New York is very likely an Accidental DP of
“Country”.

RULE 3. We label e of concept C as a non-DP if e and all its
sub-instances are evidenced correct instances of C.

Potential Problems: A small number of instances (about 7% of
all instances in our experiments) are labeled as Intentional DPs,
Accidental DPs, or non-DPs. The strictness of the heuristic rules
guarantees the correctness of the labeled data. However, the small
training set only covers 66.4% of the one million concepts, and
the left 33.6% have no training set, most of which are small con-
cepts with no identified mutually exclusive concepts. On the other
hand, the data labeled after the three rules probably has a biased
distribution on feature 2 due to these rules labeling DPs and non-
DPs relying on the mutually exclusive relation between concepts.
Among all the four features, only feature 2 concerns about mutu-
ally exclusive relation. As a result, a DP detector trained on this
kind of labeled data set may over-fit to a single dimension (feature
2).

3.3 Learning DP Detectors
In order to train DP detectors with the small set of biased training

data, we have to address the problems with the data we described
above.

First, to avoid over-fitting to a single dominant dimension, we
follow a commonly used method which performs a non-linear map-
ping to transform the original data into the kernels of the data in a
Hilbert space [19]. Hilbert space is an abstract vector space pos-
sessing the structure of an inner produce that allows length and
angle to be measured [19]. The advantage of Hilbert space let
us be able to perform full rank kernel Principal Component Ana-
lysis (PCA) [19] to obtain a new representation of the original data,
which won’t be biased to a single dimension.

Second, for the problem that many concepts have no or only a
very small training set, we propose to overcome this bottleneck
through novel methods that leverage different kinds of knowledge
instead of using more labels. Our premise is that it is cheaper to
use a very large amount of unlabeled data than to manually annot-
ate a larger portion of instances. Also, humans often adapt know-
ledge obtained from previous experiences to improve the learning
of new tasks. To address the problem of an insufficient number
of labeled data, it is advantageous to adapt knowledge from other
related concepts. In light of these, we propose a new algorithm,
namely Concept Adaptive Drift Detection that not only leverages
unlabeled data for a better understanding of new data, but also ex-
ploits the knowledge in other related concepts.

3.3.1 Non-Linear Mapping
We now introduce how to transform the original data into the

kernels of the data in a Hilbert spaceH with a non-linear mapping,
then we describe how to perform full rank kernel Principal Com-
ponent Analysis (PCA) [19] in the Hilbert spaceH to obtain a new
representation of the original data.

Specifically, suppose there are n instances under a concept and
let X = {x1, x2, ..., xn} be the original feature representations,
where xi ∈ Rd denotes the i-th instance, and d is the dimension
of features. Let φ ∶ Rd →H be the non-linear mapping from Rd to
the Hilbert space H, such that φ(xi) denotes the mapping of xi in
H. The covariance matrix inH is given by:

CH = 1

n

n

∑
i=1
φ(xi)φ(xi)T (6)

To perform rank kernel PCA in H, we aim at finding the eigenval-
ues λ ≥ 0 and the eigenvectors V satisfying λV = CHV . Although
H could have an arbitrarily large, possibly infinite dimensionality,
the inner product of any two data φ(xi) and φ(xj) can be explicitly
expressed by a kernel matrix K, i.e., Kij = φ(xi)φ(xj)T . Thus
we need to solve the eigenvalue problem nλα = Kα, where α =
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[α1, ..., αn]T are coefficients such that V = ∑n
i=1 αi [19], to obtain

the new representations X̃ = {x̃1, x̃2, ..., x̃n}. Let α1, α2, ..., αr

be the normalized eigenvectors corresponding to all the non-zero
eigenvalues 0 < λ1 ≤ ... ≤ λr . Once we have obtained αi∣ri=1, the
mapping of the testing datum xj corresponding to the eigenvector
V p (1 ≤ p ≤ r) can be computed as x̃pj = ∑

r
i=1 α

p
i (φ(xi)φ(xj)T ),

which composes x̃j = [x̃1j , x̃pj , ..., x̃
r
j ]T .

3.3.2 Concept Adaptive Drift Detection
Denote the new representation of an instance xi ∈ Rd after the

transformation as x̃i ∈ Rr . Suppose there are t concepts. Let yci ∈
{0,1}3 be the label of an instance x̃i for the c-th concept (1 ≤ c ≤
t). If xi is an Intentional DP of the c-th concept, yci = [1,0,0]. If
xi is an Accidental DP of the c-th concept, yci = [0,1,0]. If xi is
a non-DP of the c-th concept, yci = [0,0,1]. This boolean labeling
enables us to have equal distance between the three categories.

The DP detector of the c-th concept can be represented as a func-
tion Fc ∶ Rr → {0,1}3, which maps the data from the represent-
ation x̃i to yci . Suppose there are n instances in all and the first
m(m < n) instances are labeled for the c-th concept. A good DP
detector Fc can be trained within the regularized empirical error
minimization framework as follows:

min
Fc

m

∑
i=1
loss (Fc(x̃i), yci ) + λΩ(Fc), (7)

where loss(⋅, ⋅) is a loss function to measure the distance between
Fc(x̃i) and yci , Ω(⋅) is a regularization function on Fc and λ is the
regularization parameter. Among various kinds of loss functions,
we adopt the least square loss for its simplicity and effectiveness.
Assuming that the training data are centered, we use the linear clas-
sifier Fc(x̃i) = WT

c x̃i as the DP detector, where Wc ∈ Rr×3 is
called the classifier for Fc. Then (7) can be rewritten as:

min
Wc

m

∑
i=1

∥WT
c x̃i − yci ∥2F+λΩ(Wc). (8)

where ∥.∥F denotes Frobenius norm. The classifier Wc should be
as small in magnitude as possible so that it would not over-fit the
labelled data. ∥Wc∥2F is thus considered in the regularization term
to control the complexity of Wc. However, the regularization func-
tion Ω(.) in our problem depends not only on ∥Wc∥2F but also other
factors below.

With the small set of labeled data in hand, we propose a semi-
supervised multi-task learning algorithm. Firstly, we learn the clas-
sifier starting with a small set of labeled instances and increasingly
involving unlabeled instances. Secondly, we learn classifiers for
the t concepts simultaneously such that we can share the know-
ledge among concepts to obtain better performance. This learning
process brings challenges on defining the regularization function
Ω(.). Next, we discuss how to define Ω(.) in two schemata.

1. Leveraging unlabeled data: We propose to exploit the man-
ifold structure of both the labeled and unlabeled data via a stat-
istical approach. Denote Nk(x̃i) as the k-nearest neighbor set of
x̃i including itself. Inspired by [26], for any instance x̃j ∈ Nk,
we assume that its label can be predicted by its k-nearest neigh-
bors via a local prediction function fc

i (x̃j). For each x̃i, we define
fc
i (x̃j) = (pci)T x̃j + bci where pci is the local predictor, and bci is

the bias term. In all, we will have n local prediction functions for
the n instances.

The inconsistency between the local prediction function fc
i and

Wc is ∥fc
i (xj) −WT

c xj∥2F . To exploit the distribution of the un-
labeled data, we propose to smooth the disagreement between the
local prediction functions and the global prediction function by

minimizing the following:

min
Wc,p

c
i

n

∑
i=1

∑
x̃j∈Nk(x̃i)

(∥(pci)T x̃j + bci −WT
c x̃j∥2F+∥pci∥2F ), (9)

where the minimization of ∥pci∥2 controls the complexity of the
local predictor pci . Denote X̃i = [x̃i, x̃i1 , ..., x̃ik ], where each x̃ij
(1 ≤ j ≤ k) is a k-nearest neighbor of x̃i. We rewrite (9) as:

min
Wc,p

c
i

n

∑
i=1

(∥X̃T
i p

c
i + bci1k+1 − X̃T

i Wc∥2F+α∥pci∥2F ), (10)

where α is the regularization parameter of the local function, 1k+1
is vector of all ones in (k+1)-dimension. By setting the derivatives
of (10) to zero w.r.t. bci and pci , we have:

bci =
1

k + 1
(X̃T

i W1k+1 − (pci)T X̃i1k+1) (11)

pci = (X̃iHX̃
T
i + λI)−1X̃iHX̃

T
i W

(i)
c (12)

where H = I − 1

k + 1
1k+11

T
k+1 is the centering matrix and I is the

identity matrix. Substituting (11) and (12) into (10) and denoting
X̃ = [x̃1, ..., x̃n], we can rewrite Eq. (10) as follows:

min
Wc

Tr(WT
c X̃(

n

∑
i=1
SiLiS

T
i )X̃TWc), (13)

where Tr(⋅) is the trace operator of a matrix, Si ∈ {0,1}n×(k+1) is
a selection matrix in which (Si)u,v = 1 if x̃u is the v-th element in
Nk(x̃u), and (Si)u,v = 0 otherwise. And

Li =H −HX̃T
i (X̃iHX̃

T
i + λI)−1X̃iH. (14)

Integrating ∥Wc∥2F and (13) into the regularization term of (8), we
have the following object function for training a DP detector:

min
Wc

m

∑
i=1

∥WT
c x̃i − yci ∥2F+

λ(Tr(WT
c X̃(

n

∑
i=1
SiLiS

T
i )X̃TWc) + β∥Wc∥2F) .

(15)

where β is the regularization parameter of Wc when we minimize
∥Wc∥2F . Until now, the object function (15) is convex, which can
be readily solved.

2. Multi-Concept Learning: In (15), the DP detectors of different
concepts are trained separately. Next, we illustrate how we ad-
apt knowledge among different concepts for a more discriminating
Drift Detection. The assumption is that the drift detectors of differ-
ent concepts have some shared structural information in common.
It is therefore reasonable to leverage the relevance between them
to optimize the training of the drift detectors when we have few
labeled data.

Suppose there are t concepts {C1,C2, ...,Ct}, with correspond-
ing classifiers for their DP detectors as {W1,W2, ...,Wt}. We
define a matrix W = [W1,W2, ...,Wt]T ∈ R3t×r which is the ho-
rizontal concatenation of the DP detectors. Note that W encodes
the information of all the drift detectors. With the new denotion
W , we further extend (15) by training the DP detectors of differ-
ent concepts in a joint framework. As shown in [8], sparse models
can be used to exploit the shared information among multiple vari-
ables. In light of this, we propose to minimize the following object
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function, which trains the t DP detectors simultaneously.

min
Wc ∣tc=1

t

∑
c=1

[
m

∑
i=1

∥WT
c x̃i − y

c
i ∥

2
F+λ(Tr(W

T
c X̃(

n

∑
i=1

SiLiS
T
i )X̃TWc)

+β∥Wc∥
2
F ) + (

r

∑
i=1

3t

∑
j=1

∣W
1
2
ij ∣)

1
2

]

(16)

Let us define

A = X̃(
n

∑
i=1
SiLiS

T
i )X̃T . (17)

Let X̃l
c = [x̃1, ...x̃m] be the data matrix comprising all the labeled

training data for the c-th concept. Then (16) can be written as

min
Wc ∣tc=1

t

∑
c=1

∥(X̃l
c)

TWc − Yc∥
2

F

+λ(
t

∑
c=1

Tr(WT
c AWc) + β ∥W ∥2,1 + γ ∥W ∥

2
F )

(18)

where γ is the global regularization parameter.
Through optimizing (18), the tDP detectors of different concepts

can be trained simultaneously, in which ∑r
i=1∑3t

j=1 ∣W
1
2
ij ∣ uncovers

the shared structure of different detectors via `2,1-norm minimiza-
tion. In that way, the shared knowledge of different concepts can
be transferred among the t drift detectors, thereby resulting in more
reliable detectors.

Next, we illustrate how to optimize the object function (18). Let
wi be the i-th column of W , i.e., WT = [w1, ...,wr]T . We define
a diagonal matrix D with its diagonal elements Dii = 1

2∥wi∥ . The
problem in (18) is then equivalent to:

min
Wc ∣tc=1

t

∑
c=1

∥(X̃l
c)

TWc − Yc∥
2

F

+λ(
t

∑
c=1

Tr(WT
c AWc) + βTr(W

TDW ) + γ ∥W ∥
2
F )

(19)

By setting the derivative of (19) w.r.t. Wc to 0, we have:

2X̃l
c(X̃

l
c)

TWc − 2X̃
l
cYc + 2λAWc + 2λβDWc + 2λγWc = 0

⇒Wc = (X̃l
c(X̃

l
c)

T
+ λA + λβD + λγI)

−1
X̃l

cYc
(20)

Therefore, we can use Algorithm 1 to train the t detectors.

Algorithm 1: Multi-Concept DP Detectors Training

1: Initialize Wc for c = 1, ..., t randomly;
2: Compute Li∣ni=1 according to (14);
3: Compute A according to (17);

4: repeat
Update each diagonal element of D by Dii = 1

2∥wi∥
for c← 1 to t do

Calculate Wc∣tc=1 according to (20)
end
until The value of (18) Convergence;

5: Return Wc∣tc=1.

Theorem 1. The objective function value of Eq. (18) monoton-
ically decreases in each iteration until convergence.

Theorem 1 guarantees the convergence of the optimizing process
in Algorithm 1. Due to the limitation of space, we put the proof of
Theorem 1 in the appendix.

4. DRIFTING ERRORS CLEANING WITH
DETECTED DPS

We now introduce how we clean drifting errors brought by detec-
ted DPs. For Accidental DPs, which are drifting errors themselves
and trigger other drifting errors, we not only drop themselves, but
also roll back all the extractions activated by them. Whereas, for
Intentional DPs, we do not drop the DPs since they are correct in-
stances, but we check whether each extraction triggered by an In-
tentional DP is a drifting error. In the following, we show how we
perform such checking in Section 4.1, and then we describe how
we rollback extractions triggered by detected DPs in Section 4.2.

4.1 Extractions Triggered by Intentional DPs
Suppose the extraction we perform on a sentence is triggered

by an Intentional DP. To judge whether the extraction is correct or
not, we find all possible ways of extraction, and score each of them
using a probabilistic model based on the isA pairs obtained from
the extraction. We take the extraction with the highest score as the
expected correct extraction.

Specifically, assume the extraction of a sentence s is triggered
by an Intentional DP (Ce, e). We denote the sentence as s ∶=
{Cs,Es} where Cs is the candidate set of concepts in the sen-
tence, and Es is the candidate set of instances in the sentences.
Apparently, Ce ∈ Cs and e ∈ Es. We define the score that C ∈ Cs

is the correct concept of the extraction as:

Score(s,C) = ∑
e′∈Es

⎛
⎜⎜
⎝

score(C, e′)
∑

C′∈Cs

score(C′, e′)

⎞
⎟⎟
⎠

(21)

where score(C, e′) is the random walk score of an isA pair (C, e′).
If Score(s,Ce) is not the highest score among all Score(s,C),
where C ∈ Cs, we say the extraction of s triggered by (Ce, e) is a
drifting error, and it will be rolled back.

EXAMPLE 1. Given a sentence:

s =“food from animals such as pork, beef and chicken”

where Cs = {“food”, “animal”}, and Es = {pork, beef, chicken}.
Assume (chicken isA animal) is an Intentional DP, and it triggers
the extraction from s wherein “animal” is the concept. We list the
random walk scores of every candidate concept and instance pair.

(pork, food, 0.15), (pork, animal, 0.001),
(beef, food, 0.10), (beef, animal, 0.002),

(chicken, food, 0.35), (chicken, animal, 0.250).

We have: Score(s,“animal”) = 0.001
0.001+0.15+

0.002
0.002+0.10+

0.250
0.250+0.35

= 0.006 + 0.019 + 0.416 = 0.441. On the other hand, we have
Score(s,“food”) = 2.556. As a result, the current extraction
triggered by (chicken isA animal) is not the one with the highest
score, so we will roll back the extraction.

4.2 Rolling Back DP Triggered Extractions
After we identify all the DPs, we roll back extractions from

sentences triggered by Accidental DPs and unqualified extractions
from sentences triggered by Intentional DPs. We decrease the count
of affected isA pairs in the knowledge base, and if the count of an
isA pair becomes 0, the isA pair is removed from the knowledge
base. This may trigger another wave of rolling back: Extractions
from sentences triggered by these isA pairs will roll back as well.
This roll-back process is performed iteratively until no more isA
pairs can be removed from the knowledge base.
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Besides, some DPs can only be triggered by the DPs learned in
earlier iterations. Removing DPs in earlier iterations consequen-
tially clean DPs in the following iterations. Meanwhile, it eases the
burden of the DP classification since many DPs’ sub-instances have
been removed. Therefore, our DP-based cleaning is conducted one
iteration after one, until no DPs can be found and no cleaning is
required.

5. EXPERIMENTS
In our experiments, we evaluate the effectiveness of our DP de-

tection method, and compare the performance of our approach with
existing approaches.

5.1 Data Set and Ground Truth
We use the Probase data1 released by the Probase people for ex-

periments. After sentence de-duplication, there are 326,110,911
sentences extracted from 1,679,189,480 web pages. To the best of
our knowledge, the scale of the data set is one order of magnitude
larger than the previously known largest corpus [18]. From these
sentences, we used 7 hours and a cluster of 10 servers to extract isA
pairs using the semantic-based iterative extraction method. The
method ran for about 100 iterations to extract about 143 millions
isA pairs (90.5 millions distinct ones) under 13.5 million distinct
concepts, where 99.999% were obtained in the first 10 iterations.

As presented in Figure 5(a), the number of learned distinct pairs
increases dramatically from only about 16.8 millions in iteration 1
to more than 90.5 millions after all iterations. However, the pre-
cision of the learned isA pairs, as was observed from more than
10k sampled data, also drops dramatically from more than 90% in
iteration 1 to lower than 50% after 5 iterations.

To set up the ground truth for evaluation, we manually labeled
1115 Intentional DPs, 2290 Accidental DPs, 4408 non-DPs, 4519
correct instances, and 5979 drifting errors under 20 different con-
cepts (listed in Table 1). Most of the 20 concepts are popular and
large concepts such as “animal”, “company”, “woman”, given that
semantic drift mostly occurs under popular concepts. To illustrate
the effectiveness of our approach on tail concepts, we also involve
one unpopular concept “key u.s. export” in our experiments. As
we could observe in Table 1, among the 16 labeled instances for
the “key u.s. export” concept, only 2 of them are labeled as errors,
i.e., the error percentage is only 0.1250. But under some popular
concepts such as “asian country”, “child”, “money” and “woman”,
the percentage of error instances could be more than 50%.

5.2 Parameters Setting
Before evaluating the performance of the DP detection method,

and comparing the effectiveness of DP-based cleaning approach
with other approaches, we need to decide two important compon-
ents and parameters settings used in this paper. One is the scoring
function score(.) used in several features, the other is a threshold k
in Section 3.2, where only frequent pairs extracted from more than
k different sentences in the first iteration will be taken labeled as a
correct instance.

1. Scoring Function (Random Walk Model): In defining the
features for DP detection, we used a Random Walk based model
to assign a score to each instance. To demonstrate the advantage
of the Random Walk model, we compare it with two other models.
One is a Frequency model, which gives each instance a score that
is proportional to the frequency that the instance is learned under a
concept. Another is a PageRank model, which do page rank [13]
based on the same graph with the one used for random walk, ex-

1http://research.microsoft.com/en-us/projects/probase/

Ranking Model p@100 p@1000 p@2000
Frequency 0.5903 0.4576 0.4421
PageRank 0.6544 0.5603 0.5068
Random Walk 0.7971 0.6111 0.5636

Table 2: The precision of top 100, 1000 or 2000 instances

Cleaning Method perror rerror pcorrect rcorrect
Before Cleaning - - 0.4305 1.0
MEx 0.9119 0.1570 0.4592 0.9832
TCh 0.9423 0.1451 0.4789 0.9724
PRDual-Rank 0.5621 0.6545 0.5812 0.6940
RW-Rank 0.5753 0.5831 0.5636 0.6509
DP Cleaning 0.9696 0.9145 0.8921 0.9393

Table 3: Comparing cleaning performance with other methods

cept that the edges are undirected. Besides, we also use 0.15 as the
teleporting probability, and we iterate the graph until the score vec-
tor converges. Table 2 lists the average precision of top 100, 1000
or 2000 instances under our labeled concepts by ranking them us-
ing one of the above models. As we can see, the Random Walk
model reaches a higher precision than the Frequency model and
the PageRank model.

2. Training Data Set Preparation: A threshold k is used in
defining strong evidence for finding obvious DPs and non-DPs. As
depicted in Figure 5(b), the average percentage of identified DPs
and non-DPs decreases from 15% to 0.8% as k increases from 0
to 8. On the other hand, the average precision of the labeled data
increases from 0.902 to 0.993 as k increases from 0 to 3. We could
reach 100% precision when k ≥ 4. To have the largest number of
absolute correct labeled instances, we set k = 4 in our experiments.
Finally, averagely we will have 7.1% of instances as labeled data,
and 92.9% of instances as unlabeled data.

5.3 Our Approach v.s. Previous Approaches
We also compare our DP-based cleaning approach with several

state-of-the-art approaches below: (1) Mutual Exclusion (MEx):
This is the Mutual Exclusion Cleaning approach used in [5], which
reports error instances belonging to mutually exclusive concepts.
(2) Type Checking (TCh): This approach identifies drifting errors
through type-checking [14, 4], where we use the well-developed
entity recognition tool Stanford Named Entity Recognizer [10] to
recognize entities with NLP tagging and grammar analysis. (3)
PRDual-Rank: This approach [9] was used in a syntactic-based
extraction process, which infers the quality of tuples and patterns
from their neighbouring nodes, and only top-ranked ones in high
quality will be kept. We adopt this technique on our data set by
changing tuples and patterns into isA pairs and sentences respect-
ively. (4) Random Walk Rank (RW-Rank): Similar to the PRDu-
al-Rank method, here we use the random walk model to do the
ranking, which has already demonstrated its advantages over other
ranking models in Section 5.2.

We evaluate the cleaning results of these methods in the follow-
ing four dimensions: (1) perror denotes the percentage of removed
errors in all the removed instances; (2) rerror denotes the percent-
age of removed errors in all the errors under each concept; (3) pcorr
denotes the percentage of remained correct instances in all the re-
mained instances; (4) rcorr denotes the percentage of remained cor-
rect instances in all the correct instances under each concept.

As presented in Table 3, although Mutual Exclusion and Type
Checking reach a high precision in removing drifting error isA
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Figure 5: A number of figures for the experiments

concept #Instances #Correct instance #Error instance Error % #Intent. DPs #Accid. DPs #Non-DPs
animal 16280 626 508 0.4479 32 256 809
asian country 784 74 165 0.6903 43 56 68
child 17313 993 1479 0.5983 527 642 181
chinese city 220 86 44 0.3384 5 8 50
chinese food 307 61 32 0.344 4 12 35
chinese university 46 23 9 0.2812 3 4 8
computer 7264 235 785 0.7696 128 258 232
computer software 1878 340 59 0.1478 12 23 208
developing country 282 42 64 0.6037 18 31 11
disney classic 142 43 26 0.3768 5 8 29
key u.s. export 26 24 2 0.125 1 5 6
money 3475 197 475 0.7068 17 86 79
people 76 47 8 0.1454 2 3 35
phone 3193 276 122 0.3065 18 67 238
president 480 70 25 0.2631 2 4 67
religion 3107 11 10 0.4761 49 143 79
student 19930 100 424 0.8091 30 189 1241
u.s. state 123 58 51 0.4678 5 13 53
weather 828 294 224 0.4324 11 29 72
woman 11502 929 1467 0.6122 203 453 907
Overall 87246 4519 5979 0.5695 1115 2290 4408

Table 1: The statistics on our manually labeled instances under 20 different concepts

pairs (91.19% and 94.23%), the recall of removing bad entities
is pretty low (15.70% and 14.51%), which demonstrates that the
two methods are very reliable, but have limitations in finding all
drifting errors. With well-learned thresholds, both PRDual-Rank
and RW-Rank reach much higher recall (65.45% and 58.31%) in
identifying drifting errors, but on the other hand, relatively low pre-
cision (56.21% and 57.53%). This illustrate that, even if the associ-
ation between sentences and isA pairs were taken into considered,
ranking methods are still unproper to be used in overcoming se-
mantic drift, due to relying on thresholds and ranking models. In
comparison, our DP cleaning method reaches the highest precision
(96.96%) and recall (91.45%). After the cleaning, the precision of
the remained entities is 89.21%, which is much higher than that
with other methods. Besides, the recall of the remaining entities is
still high (93.93%), which means that only a small number of good
entities are taken as drifting errors by mistakes.

5.4 Evaluation on DP Detection
In this experiment, we compare our method with several baseline

methods below: (1) a conventional Supervised Learning method
(using Random Forest, which is observed as a good classifier to our
task), (2) a Semi-Supervised Learning method without performing
multi-task learning together, (3) several ad-hoc methods, each of
which is designed based on an individual property in Section 2.2
with a well-learned threshold.

As listed in Table 4, the four ad-hoc methods can reach a good
precision, but usually not good enough recall. A better precision
(0.853) and recall (0.783) can be achieved by our supervised learn-

Detection Method Precision Recall F1
Ad-hoc 1 0.841 0.714 0.772
Ad-hoc 2 0.836 0.702 0.763
Ad-hoc 3 0.807 0.513 0.627
Ad-hoc 4 0.787 0.561 0.655
Supervised 0.853 0.783 0.817
Semi-Supervised 0.906 0.910 0.908
Semi-Supervised Multi-Task 0.927 0.953 0.939

Table 4: Comparing the effectiveness of DP detection methods

ing approach with automatically labelled training data. By us-
ing unlabeled data, the Semi-Supervised Learning could reach 5%
higher precision and 13% higher recall. Finally, with the multi-task
learning, the precision and recall can be further improved about
2% and 4% respectively. Thus, the Semi-Supervised Multi-Task
Learning is more effective than the other methods. We also depict
the improvement of the accuracy as we iteratively update the DP
detectors with the Semi-Supervised Multi-Task Learning method
in Figure 5(c). It takes 20 iterations to have the accuracy of the DP
detectors become stable, and the accuracy improves from 0.835 in
the first iteration to 0.921 in the 20th iteration.

5.5 Evaluation on DP-based Cleaning
We perform DP-based cleaning after we detect DPs. In the fol-

lowing, we first evaluate the precision and recall of checking ex-
tractions triggered by Intentional DPs, and evaluate the results of
DP-based cleaning.
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concept pstc rstc perror rerror pcorr rcorr
animal 0.865 0.831 0.982 0.849 0.942 0.993
asian country 0.874 0.892 0.827 0.864 0.75 0.692
child 0.965 0.901 0.992 0.990 0.78 0.812
chinese city 0.861 0.814 0.75 0.692 0.92 0.938
chinese food 0.98 0.812 0.916 0.687 0.868 0.970
chinese uni. 1.0 0.891 1.0 0.714 0.8 1.0
computer 0.970 0.921 0.991 0.905 0.791 0.977
computer s. 0.801 0.789 0.638 0.605 0.927 0.936
developing c. 1.0 0.95 1.0 0.914 0.666 1.0
disney classic 0.893 0.756 0.733 0.846 0.92 0.851
k. u.s. export 1.0 0.967 1.0 0.95 0.857 1.0
money 0.976 0.854 0.927 0.719 0.690 0.917
people 1.0 0.944 1.0 0.92 0.87 1.0
phone 0.924 0.856 0.963 0.881 0.949 0.985
president 1.0 0.879 1.0 0.8 0.965 1.0
religion 1.0 0.931 1.0 0.8 0.833 1.0
student 1.0 1.0 1.0 1.0 1.0 1.0
u.s. state 1.0 1.0 0.863 1.0 1.0 0.943
weather 0.934 0.854 0.842 0.820 0.902 0.915
woman 1.0 0.974 0.965 0.972 0.930 0.914
Overall 0.953 0.891 0.969 0.914 0.892 0.939

Table 5: The evaluation results on DP Cleaning

1. Identifying Errors Triggered by Intentional DPs: We labeled
7,800 sentence parsings triggered by labeled Intentional DPs under
the 20 concepts, where 4,511 sentences are labeled as correct ones
and the left are labeled as incorrect ones. Based on this ground
truth, we evaluate the precision pstc and recall rstc of the bad pars-
ing identification strategy to the labeled bad sentences under each
concept. As listed in column 2 and column 3 in Table 5, under
most of the 20 concepts, the strategy could successfully identify
more than 95% of bad sentence extraction with about 90% preci-
sion. This contributes to the final DP cleaning results.

2. Rolling back DP-Triggered Extractions: After identifying
the DPs, we perform DP-based cleaning by rolling back extractions
triggered by the DPs. Table 5 (from column 4 to column 7) shows
the DP cleaning results under the 20 concepts. We can on average
recognize 91.45% of error instances with 96.96% precision, which
proves the effectiveness of our cleaning approach. As a result, the
precision of the isA pairs we learned can be improved from about
43.05% to 89.21%, which is almost the same with the precision in
iteration 1. Besides, only 6.07% of isA pairs are sacrificed, which
is acceptable comparing to the great improvement of precision.

6. RELATED WORK
Semantic drift has been known as a common problem in iterative

information extraction (IE). Existing IE systems tackled semantic
drift through identifying and dropping drifting errors, but found
limitations in reaching both a high precision and recall. In this pa-
per, our method overcomes semantic drift by identifying the cause
of semantic drift, i.e., DPs. After knowing the cause, we can cut
off the propagation of drifting errors in iteration extractions.

Previous methods for identifying drifting errors can be roughly
divided into two categories: (1) multi-class based, and (2) single-
class based, according to the settings of IE systems that adopt them.
Multi-class based methods were adopted by IE systems that per-
formed iterative IE on multiple classes simultaneously, which iden-
tified drifting errors by comparing the extraction results between
multiple classes [27]. Mutual Exclusion method is a representat-
ive one of this kind, which is based on the intuition that instances
cannot belong to mutually exclusive semantic classes (unless the in-
stances are ambiguous) [5]. Patterns and instances that violate this
intuition will be taken as drifting errors. However, the mutual ex-

clusion heuristic requires us to have prior knowledge on the exclu-
sion between all classes, which can not be reached in reality when
millions of classes are involved. Single-class methods work on the
extraction results of one class, however, most of which emphasize
“probability assessment” (or called as “confidence”), which cap-
tures precision only in a heuristic manner [9]. For example, Riloff
et. al. [17] proposed to keep the most reliable instances in each iter-
ation, and the “reliability” of an instance is decided by the number
and quality of matched patterns to a class. Other methods relied
on some heuristic models to assess the correct probability of ex-
tractions, such as according to the number and the reliability of
patterns generating them [17], or combining evidences from mul-
tiple extractions [21, 2, 16]. Recently, Fang et. al. [9] also modeled
PRDual-Rank to capture the notion of precision and recall for both
tuples and patterns in a principled way, and the confidence of an in-
stance is decided by its relevant patterns. However, all these heur-
istic methods rely on arbitrary threshold to divide all extractions
into two parts, which can hardly reach both high precision and sat-
isfied recall. Differently, we model the DP detection problem into
a learning problem, which uses some well-designed features based
on the properties of DPs.

Recently, Carlson et. al. [4] also adopt a semi-supervised learn-
ing method by coupling the simultaneous training of many extract-
ors [4]. They reported a high accuracy by enforcing constraints,
including mutual exclusion, type checking [14, 4], given as do-
main knowledge, but on the other hand, also hurt the recall of
the extraction. Similarly, our method for DP detection is also a
semi-supervised learning method which starts with some seed in-
stances that are labeled using strict rules based on the mutual ex-
clusive heuristic [5]. However, we do not rely on strict constraints,
but resort to a multi-task learning method that not only leverages
unlabeled data for a better understanding of the new data (semi-
supervised), but also improves the classifier for a concept by ex-
ploiting its related concepts (multi-task). As demonstrated in the
experiments, our learning method reaches both high precision and
satisfied recall.

7. CONCLUSION
In this paper, we propose a novel method to minimize semantic

drift by identifying Drifting Points (DPs), which are the culprits
of introducing semantic drifts. Compared to previous approaches
which usually incur substantial loss in recall, DP-based cleaning
method can effectively clean a large proportion of semantic drift
errors while keeping a high recall. According to the experiments on
a large data set, the DP cleaning method can effectively clean more
than 90% of errors with more than 95% precision. After cleaning,
the precision of extracted isA pairs is improved from about 50%
to 90%. As a future work, we will adopt our method to overcome
semantic drift happening to other types of relations in IE.
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APPENDIX
Lemma 1. Given a positive semi-definite matrix Q, PQPT is

a positive semi-definite matrix for any matrix P.

PROOF. As Q is semi-definite, it can be written as Q = BTB.
Thus we have PQPT = PBTBPT . Denote C = PBT . We
have PQPT = CCT . Therefore, PQPT is a positive semidefinite
matrix.

The following is the proof of Theorem 1.
PROOF. As (X̃T

i X̃i + λI)−1 is a positive semidefinite matrix,
according to Lemma 1, we can see that H(X̃T

i X̃i + λI)−1H is

a positive semidefinite matrix. Note that H − HX̃T
i (X̃iHX̃

T
i +

λI)−1X̃iH = H(X̃T
i X̃i + λI)−1H . Therefore, Li is a positive

semidefinite matrix. Then we have qTi Liqi ≥ 0 ∀qi ∈ Rk+1. Thus
∑n

i=1 qiLiq
T
i ≥ 0, which indicates that ∑n

i=1 SiLiS
T
i is a positive

semidefinite matrix. According to Lemma 1, we can see that A is
a positive semidefinite matrix. Denote W̃c = (X̃l

c(X̃l
c)T + λA +

λβD + λγI)−1X̃l
cYc. Then it can be inferred that:
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Therefore, we have
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It has been shown in [12] that for any non-zero vectors vit ∣ri=1:
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where r is an arbitrary number. Thus, we can easily get the follow-
ing inequality:
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which indicates that the objective function value of (18) monoton-
ically decreases until convergence.
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