
Optimization Techniques for “Scaling Down” Hadoop on
Multi-Core, Shared-Memory Systems

K. Ashwin Kumar Jonathan Gluck Amol Deshpande Jimmy Lin
University of Maryland, College Park

{ashwin, jdg, amol}@cs.umd.edu, jimmylin@umd.edu

ABSTRACT
The underlying assumption behind Hadoop and, more generally,
the need for distributed processing is that the data to be analyzed
cannot be held in memory on a single machine. Today, this assump-
tion needs to be re-evaluated. Although petabyte-scale datastores
are increasingly common, it is unclear whether “typical” analyt-
ics tasks require more than a single high-end server. Additionally,
we are seeing increased sophistication in analytics, e.g., machine
learning, where we process smaller and more refined datasets. To
address these trends, we propose “scaling down” Hadoop to run on
multi-core, shared-memory machines. This paper presents a proto-
type runtime called Hone (“Hadoop One”) that is API compatible
with Hadoop. With Hone, we can take an existing Hadoop ap-
plication and run it efficiently on a single server. This allows us
to take existing MapReduce algorithms and find the most suitable
runtime environment for execution on datasets of varying sizes. For
dataset sizes that fit into memory on a single machine, our experi-
ments show that Hone is substantially faster than Hadoop running
in pseudo-distributed mode. In some cases, Hone running on a sin-
gle machine outperforms a 16-node Hadoop cluster.

1. INTRODUCTION
The Hadoop implementation of MapReduce [6] has become the
tool of choice for “big data” processing (whether directly or indi-
rectly via higher-level tools such as Pig or Hive). Among its ad-
vantages are the ability to horizontally scale to petabytes of data
on thousands of commodity servers, easy-to-understand program-
ming semantics, and a high degree of fault tolerance. There has
been much activity in applying Hadoop to problems in data man-
agement as well as data mining and machine learning. Over the past
several years, the community has accumulated a significant amount
of expertise and experience on how to recast traditional algorithms
in terms of the restrictive primitives map and reduce.

Computing environments have evolved substantially since the in-
troduction of Hadoop. For example, in 2008, a typical Hadoop
node might have two dual-core processors with a total of 4 GB of
RAM. Today, a high-end commodity server might have two eight-
core processors and 256 GB of RAM—such a server can be pur-

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

chased for roughly $10,000 USD. This means that a single server
today has more cores and more memory than did a small Hadoop
cluster from a few years ago. The assumption behind Hadoop and
the need for distributed processing is that the data to be analyzed
cannot be held in memory on a single machine. Today, this assump-
tion needs to be re-evaluated.

Although it is true that petabyte-scale datastores are becoming
increasingly common, it is unclear whether datasets used in “typ-
ical” analytics tasks today are really too large to fit in memory on
a single server. Of course, organizations such as Yahoo, Facebook,
and Twitter routinely run Pig or Hive jobs that scan terabytes of log
data, but these organizations should be considered outliers—they
are not representative of data analytics in most enterprise or aca-
demic settings. Even still, according to the analysis of Rowstron et
al. [20], at least two analytics production clusters (at Microsoft and
Yahoo) have median job input sizes under 14GB and 90% of jobs
on a Facebook cluster have input sizes under 100GB. Holding all
data in memory does not seem too far-fetched.

There is one additional issue to consider: over the past several
years, the sophistication of data analytics has grown substantially.
Whereas yesterday the community was focused on relatively sim-
ple tasks such as natural joins and aggregations, there is an in-
creasing trend toward data mining and machine learning. These
algorithms usually operate on more refined, and hence, smaller
datasets—typically in the range of tens of gigabytes.

These factors suggest that it is worthwhile to consider in-memory
data analytics on modern servers—but it still leaves open the ques-
tion of how we orchestrate computations on multi-core, shared-
memory machines. Should we go back to multi-threaded program-
ming? That seems like a step backwards because we embraced the
simplicity of MapReduce for good reason—the complexity of con-
current programming with threads is well known. Our proposed
solution is to “scale down” Hadoop to run on shared-memory ma-
chines [10]. In this paper, we present a prototype runtime called
Hone (“Hadoop One”) that is API compatible with standard (dis-
tributed) Hadoop. That is, we can take an existing Hadoop algo-
rithm and efficiently run it, without modification, on a multi-core,
shared-memory machine using Hone. This allows us to take an ex-
isting application and find the most suitable runtime environment
for execution on datasets of varying sizes—if the data fit in mem-
ory, we can avoid network latency and significantly increase per-
formance in a shared-memory environment.

Hadoop API compatibility is the central tenet in our design. Al-
though there are previous MapReduce implementations for shared-
memory environments (see Section 2), taking advantage of them
would require porting Hadoop code over to another API. In con-
trast, Hone is able to leverage existing implementations. In this pa-
per, we present experiments on a number of “standard” MapReduce

13 10.5441/002/edbt.2014.03

algorithms (word count, PageRank, etc.) as well as a Hadoop im-
plementation of Latent Dirichlet Allocation (LDA). This imple-
mentation represents a major research effort [26] and demonstrates
API compatibility on a non-trivial application.

Contributions. Our contributions can be summarized as follows:
• Hone is a scalable MapReduce implementation for multi-core,

shared-memory machines. To our knowledge it is the first Map-
Reduce implementation that is both Hadoop API compatible and
optimized for scale-up architectures.

• We propose and evaluate different approaches to implementing
the data shuffling stage in MapReduce, which is critical to high
performance.

• We discuss key challenges in implementing Hone on the JVM,
how we addressed them, and lessons we learned along the way.

• We evaluate Hone on a number of real-world applications, com-
paring it to Hadoop pseudo-distributed mode, a 16-node Hadoop
cluster, and a few other systems.

• We share a synthetic workload generator for evaluating Hone
that may be of independent interest for evaluating other systems.

2. RELATED WORK
There has been much work on MapReduce and related distributed
programming frameworks over the past several years. The litera-
ture is too vast to survey, so here we specifically focus on Map-
Reduce implementations for shared-memory environments. Per-
haps the best known is a series of systems from the Phoenix project:
the first system, Phoenix [19], evaluated the suitability of Map-
Reduce as a programming framework for shared-memory systems.
Phoenix2 [24] improved upon Phoenix by identifying inefficiencies
in handling large datasets—it utilizes user-tunable hash-based data
structures to store intermediate data. Phoenix++ [23] made further
improvements by observing that optimal intermediate data struc-
tures cannot be determined a priori, as they depend on the nature
of the application. Thus, the system provides container objects to
store map output as an abstraction to the developer. We see several
shortcomings of the Phoenix systems that limit broad applicabil-
ity. First, they are implemented in C/C++ and are not compatible
with Hadoop. Therefore, scaling down a Hadoop application us-
ing Phoenix involves essentially a full reimplementation. Second,
hash-based containers are not a feasible solution for a Java imple-
mentation, especially for applications that generate a large amount
of intermediate data. Java objects tend to be heavyweight, and
standard Java collections are inefficient for storing large datasets
in memory. We discuss this in more detail in Section 4.2.

In addition to the Phoenix systems, there have been other Map-
Reduce implementations for multi-core and share-memory envi-
ronments. Mao et al. [16] described Metis, which proposed using
containers based on hashing, where each hash bucket points to a B-
tree to store intermediate output. Chen et al. [5] proposed a “tiled”
MapReduce approach to iteratively process small chunks of data
with efficient use of resources. Jiang et al. [8] built upon Phoenix
and provided an alternate API for MapReduce. All of these systems
were implemented in C, and in some cases modify the MapReduce
model, and therefore they are not compatible with Hadoop. There
has also been a previous attempt to develop MapReduce implemen-
tations on multi-GPU systems by Stuart et al. [22].

Shinnar et al. [21] presented Main Memory MapReduce (M3R),
which is an implementation of the Hadoop API targeted at online
analytics on high mean-time-to-failure clusters. Although close in
spirit to our system, they mainly focus on scale-out architectures,
whereas we focus explicitly on single-machine optimizations. Fur-

Write 8GB Read 8GB

Cold Cache Warm Cache Cold Cache Warm Cache

HDFS 178.0s 32.7s 81.4s 28.9s
Disk 194.0s 25.3s 27.1s 1.7s

Write 64MB Read 64MB

Cold Cache Warm Cache Cold Cache Warm Cache

HDFS 5.10s 1.72s 5.64s 2.12s
Disk 0.47s 0.11s 3.27s 0.20s

Table 1: Performance comparisons between HDFS and direct disk access.

thermore, their experiments do not provide insights on scalability
and workloads behaviors in a scale-up setting. Spark [25] provides
primitives for cluster computing built on a data abstraction called
resilient distributed datasets (RDDs), which can be cached in mem-
ory for repeated querying and efficient iterative algorithms. Spark
is implemented in Scala, and so like Hone it runs on the JVM. How-
ever, Spark provides a far richer programming model than Map-
Reduce. Aside from not being directly Hadoop compatible, our ex-
periments with Spark show that it performs poorly on multi-core,
shared-memory machines (Section 6.4). This is no surprise since
Spark has not been optimized for such architectures.

Recently, Appuswamy et al. [1] also observed that most Map-
Reduce jobs are small enough to be executed on a single high-
end machine. However, they advocated tuning Hadoop pseudo-
distributed mode instead of building a separate runtime. In the next
section, we discuss Hadoop pseudo-distributed mode in detail, and
it serves as a point of comparison in our experiments. We show that
a well-engineered, multi-threaded MapReduce implementation op-
timized for execution on a single JVM can yield substantial perfor-
mance improvements over Hadoop pseudo-distributed mode.

3. HADOOP ON SINGLE MACHINE
We begin by discussing why Hadoop does not perform well on
a single machine. To take advantage of multi-core architectures,
Hadoop provides pseudo-distributed mode (PDM henceforth), in
which all daemon processes run on a single machine (on multiple
cores). This serves as a natural point of comparison, and below we
identify several disadvantages of running Hadoop PDM.

Multi-process overhead: In PDM, mapper and reducer tasks oc-
cupy separate JVM processes. In general, multi-process applica-
tions suffer from inter-process communication (IPC) overhead and
are typically less efficient than an equivalent multi-threaded imple-
mentation that runs in a single process space.

I/O Overhead: Another disadvantage of Hadoop PDM is the over-
head associated with reading from and writing to HDFS. To quan-
tify this, we measured the time it takes to read and write a big file
(8GB) and a single split of the file (64MB) using HDFS as well as
directly using Java file I/O (on the server described in Section 5.1).
These results are shown in Table 1.

We find that direct reads from disk are much faster than reads
from HDFS for both the 8GB and 64MB conditions. Performance
improvements are observed under both cold and warm cache con-
ditions, and the magnitude of improvement is higher under a warm
cache. Interestingly, we find that writing 8GB is faster using HDFS,
but in all other conditions HDFS is slower. In the small data case
(64MB), writes are over a magnitude faster under both cold and
warm cache conditions. These results confirm that disk I/O opera-
tions using HDFS can be extremely expensive [7, 15] when com-
pared to direct disk access. In Hadoop PDM, mappers read from
HDFS and reducers write to HDFS, even though the system is run-

14

ning on a single machine. Thus, Hadoop PDM suffers from these
HDFS performance issues.
Framework overhead: Hadoop is designed for high-throughput
processing of massive amounts of data on potentially very large
clusters. In this context, startup costs are amortized over long-
running jobs and thus do not have a large impact on overall per-
formance. Hadoop PDM inherits this design, and in the context of
a single machine running on modest input data sizes, job startup
costs become a substantial portion of overall execution time.
Hadoop PDM on a RAM disk provides negligible benefit: One
obvious idea is to run Hadoop PDM using a RAM disk to store in-
termediate data. RAM disks tend to help most with random reads
and writes, but since most Hadoop I/O consists of sequential oper-
ations, it is not entirely clear how much a RAM disk would help.
Our initial experiments with Hadoop PDM did explore replacing
rotational disk with RAM disk. We ran evaluations on the appli-
cations in Section 5.2, but results showed no benefits when using
a RAM disk. Moreover, previous studies have shown that a RAM
disk is at least four times slower than raw memory access [9, 17].
We expected greater benefits by moving completely to managing
memory directly, so we did not pursue study of Hadoop PDM on
RAM disks any further.

4. HONE ARCHITECTURE
The overall architecture of Hone is shown in Figure 1. Below, we
provide an overview of each processing stage.
Mapper Stage: As in Hadoop, this stage applies the user-specified
mapper to the input dataset to emit intermediate (key, value) pairs.
Each mapper is handled by a separate thread, which consumes the
supplied input split (i.e., portion of the input data) and processes
input records according to the user-specified InputFormat. Like
Hadoop, the total number of mappers is determined by the number
of input splits. This stage uses a standard thread-pooling technique
to control the number of mapper tasks that execute in parallel. Map-
pers in Hone accept input either from disk or from a namespace
residing in memory (see Section 4.2 for more details).
Data Shuffling Stage: In MapReduce, intermediate (key, value)
pairs need to be shuffled from the mappers where they are created
to the reducers where they are consumed. In Hadoop, data shuf-
fling is interwoven with sorting, but in Hone these are two separate
stages. The next section describes three different approaches to
data shuffling. Overall, we believe that efficient implementations
of this process is the key to a high-performance MapReduce imple-
mentation on multi-core, shared-memory systems.
Sort Stage: As with Hadoop, Hone sorts intermediate (key, value)
pairs emitted by the mappers. Sorting is handled by a separate
thread pool with a built-in load balancer, on streams that have al-
ready been assigned to the appropriate reducer (as part of the data
shuffling stage). If the sort streams grow too large, then an auto-
matic splitter divides the streams on the fly and performs parallel
sorting on the split streams. The split information is passed to the
reducer stage for proper stream assignment. The default stream
split size can be set as part of the configuration.
Reducer stage: In this stage, Hone applies the user-specified re-
ducer on values associated with each intermediate key, per the stan-
dard MapReduce programming model. A reducer either writes out-
put (key, value) pairs to disk or to memory via the namespace ab-
straction for further processing.
Combiners: In a distributed setting, combiners mimic the func-
tionality of reducers locally on every node, serving as an optimiza-
tion to reduce network traffic. Proper combiner design is critical

Mapper 1 Mapper 2 Mapper 3

Parallel Sort Stage

Thread Pool Executor

Data Shuffling Stage

Reducer
1

Reducer
2

Reducer
3

Reducer
4

Reducer
5

Reducer
6

Namespace
Manager

Disk
or

Memory

Disk
or

Memory

Figure 1: Hone system architecture.

to the performance of a distributed MapReduce algorithm, but it is
unclear whether combiners are useful when the entire MapReduce
application is running in memory on a single machine. For this
reason, Hone currently does not support combiners: since they are
optional optimizations, we can ignore them without affecting algo-
rithm correctness.

Namespace Manager: This module manages memory assignment
to enable data reading and writing for MapReduce jobs. It converts
filesystem paths that are specified in the Hadoop API into an ab-
straction we call a namespaces: output is directed to an appropriate
namespace that resides in-memory, and, similarly, input records are
directly consumed from memory as appropriate.

4.1 In-Memory Data Shuffling
We propose three different approaches to implement data shuffling
between mappers and reducers: (1) the pull-based approach, (2)
the push-based approach, and (3) the hybrid approach. These are
described in detail below.

Pull-based Approach: In the pull-based approach, each mapper
emits keys to r streams, where r is the number of reducers. Each
mapper applies the partitioner to assign each intermediate (key,
value) pair to one of the r streams based on the key (per the stan-
dard MapReduce contract). If m is the number of mappers, then
there will be a total m× r intermediate streams. In the sort stage,
these m× r intermediate streams are sorted in parallel. In the re-
ducer stage, each reducer thread pulls from m of the m× r streams
(one from each mapper). Figure 2 shows an example with three
mappers and six reducers, with eighteen intermediate streams.

With this approach we encounter an interesting issue regarding
garbage collection. In Java, a thread is its own garbage collection
(GC) root. So any time a thread is created, irrespective of cre-
ation context, it will not be ready for garbage collection until its
run method completes. This is true even if the local method which
created the thread completes. In Hone, we maintain a pool of map-
per threads containing tpm threads (usually for large jobs, tpm�m,
where m is the number of mappers, determined by the split size).

15

Mapper 1 Mapper 2 Mapper 3

Reducer
1

Reducer
2

Reducer
3

Reducer
4

Reducer
5

Reducer
6

Figure 2: Pull-based approach

Mapper 1 Mapper 2 Mapper 3

Reducer
1

Reducer
2

Reducer
3

Reducer
4

Reducer
5

Reducer
6

Figure 3: Push-based approach

Mapper 1 Mapper 2 Mapper 3

Reducer
1

Reducer
2

Reducer
3

Reducer
4

Reducer
5

Reducer
6

Figure 4: Hybrid approach

Thus, tpm mappers are running concurrently, and the objects that
each creates cannot be garbage collected until the mapper finishes.
Increasing this thread pool size allows us to take advantage of more
cores, but at the same time this increases the amount of garbage
that cannot be collected at any given time. Hone needs to contend
with the characteristics of the JVM, and garbage collection is one
re-occurring issue we have faced throughout this project.

Push-based Approach: In this approach, Hone creates only r in-
termediate streams, one for each reducer. This is shown in Figure 3,
where we have six streams. Each mapper emits intermediate (key,
value) pairs directly into one of those r streams based on the parti-
tioner. In this way, the mappers push intermediate data over to the
reducers. Because r streams are being updated by the mappers in
parallel, these streams must be synchronized and guarded by locks.
Due to this synchronization overhead, contention is unavoidable,
but this cost varies based on the distribution of the intermediate
keys to reducers. There are two ways of dealing with contention
cost: the first is to employ scalable and efficient locking mecha-
nisms (more discussion below), and second is to increase the num-
ber of reducers so that key distribution to reducers is spread out,
which in turn will reduce synchronization overhead. However, if
we have too many reducers, context-switching overhead of reducer
threads will negatively impact performance.

The push-based approach creates fewer intermediate data struc-
tures for the same amount of intermediate (key, value) pairs, and
thus in this manner is more efficient. In the pull-based approach,
since each mapper output is divided among r streams, the object
overhead in maintaining those streams is much higher relative to
the actual data held in those streams (compared to the push ap-
proach). In order to take advantage of greater parallelism in the re-
ducer stage (for the pull-based approach), we may wish to increase
the number of reducers, which further exacerbates the problem.

Another advantage of the push-based approach is that reducers
are only consuming from a single stream, so we would expect better
reference locality (and the benefits of processor optimizations that
may come from more regular memory access patterns) compared to
the pull-based approach. The downside, however, is synchroniza-
tion overhead since all the mapper threads are contending for write
access to the reducer streams.

Hybrid Approach: As a middle ground between the pull and push
approaches, we introduce a hybrid approach that devotes a small
number of streams to each reducer. In Figure 4, each reducer reads
from two streams, which is the default. There are two ways to dis-
tribute incoming (key, value) pairs to multiple streams for each re-
ducer: the first is to distribute evenly, and the second is to distribute
according to the current lock condition of a stream. The second
approach is perhaps smarter, but Hone currently implements the
first method, which we empirically discovered to work well. Hav-
ing multiple streams reduces, but does not completely eliminate
lock contention, but at the same time, the hybrid approach does
not suffer from a proliferation of stream objects. The number of
streams per reducer can be specified in a configuration, which pro-

vides users a “knob” to find a sweet spot between the two extremes.
In the push and hybrid data-shuffling approaches, lock efficiency

plays an important role in overall performance. We have imple-
mented and experimented with various lock implementations, in-
cluding Java synchronization, test-and-set (tas) spin lock, test and
test and set (ttas) spin lock, and reentrant lock. Each lock imple-
mentation has its own advantages and disadvantages, but overall
we find that Java synchronization in JDK7 performs the best.

Tradeoffs: We experimentally compare the three different data-
shuffling approaches, but we conclude this section with a discus-
sion of the factors that may impact performance.

Obviously, input data size is an important factor. Larger in-
puts translate into more splits, more mappers, and thus more active
streams that are held in memory (for the pull-based approach). In
contrast, there are only r streams in the push-based approach, where
r is the number of reducers. Note that the number of reducers is a
user-specified parameter, unlike the number of mappers, which is
determined by the input data. As previously discussed, the cost of
fewer data streams (less object overhead) is synchronization costs
and contention when writing to those streams. The hybrid approach
tries to balance these two considerations.

Another factor is the amount of intermediate data that is pro-
duced. Some MapReduce jobs are primarily “reductive” in that
they generate less intermediate data than input data, but other types
of applications generate more intermediate data than input data;
some text mining applications, for example, emit the cross prod-
uct of their inputs [12]. This characteristic may have a significant
impact on the performance of the three data-shuffling approaches.

Finally, the distribution of the intermediate keys will play an
important role in performance—this particularly impacts synchro-
nization overhead in the push-based approach. For example, with
that approach, if the distribution is Zipfian (as with word count and
certain types of graph algorithms), then increasing the number of
reducers may not substantially lower contention, since the “head”
of the distribution will always be assigned to a single reducer [13].
On the other hand, if the intermediate key distribution is more uni-
form, we would expect less lock contention since mapper output
would be more evenly distributed over the reducer streams, reduc-
ing the chance that multiple mappers are contending for a lock.

4.2 Challenges and Solutions
This section discusses key challenges in developing Hone for the
Java Virtual Machine on multi-core, shared-memory architectures
and how we addressed them.

Memory consumption: To retain compatibility with Hadoop, we
made the decision to implement Hone completely in Java, which
meant contending with the limitations of the JVM. In a multi-core,
shared-memory environment, the mapper, sort, and reducer threads
compete for shared resources, and thus we must be careful about
the choice of data structures, the number of object creations, proper
de-referencing of objects for better garbage collection, etc. We dis-
covered early that many Java practices scale poorly to large datasets.

16

With a naïve implementation based on standard Java collections,
on a server with 128GB RAM, an initial implementation of Map-
Reduce word count on an input size 10% of the total memory gen-
erated out-of-memory errors because standard Java collections are
heavyweight [18]. For example, an implementation using a Java
TreeMap<String, Integer> to hold intermediate data can have up
to 95% overhead, i.e., only 5% of the memory consumed is used
for actual data.

To address this issue, we extensively use primitive data struc-
tures such as byte arrays to minimize JVM-related overhead. In
the mapper stage, (key, value) pairs are serialized to raw bytes and
in the reducer stage, new object allocations are reduced by reading
pairs from byte arrays using bit operations and reusing container
objects when possible. We avoid using standard Java collections in
favor of more efficient custom implementations.
Sorting is expensive: Intermediate (key, value) pairs emitted by
the mappers need to be sorted by key. For large intermediate data
(on the order of GBs), we found sorting to be a major bottleneck.
This is in part because operations such as swapping objects can be
expensive, but the choice of data structures has a major impact on
performance also. In Hadoop, sorting is accomplished by a com-
bination of in-memory and on-disk operations. In Hone, however,
everything must be performed in memory.

We experimented with two approaches to sorting. In the first,
each thread from the mapper thread pool handles both mapper exe-
cution as well as sorting. In the second approach, mapper execution
and sorting are handled by separate thread pools. We ultimately
adopted the second design. Note that sorting is orthogonal to the
pull, push, hybrid data-shuffling approaches.

We see a number of advantages to our decoupled approach. First,
the optimal thread pool size depends on factors such as the number
of cores available, the size of the intermediate data, and skew in
the intermediate key distribution. The decoupled approach lets us
configure the sort thread pool size based on these considerations,
independent of the mapper thread pool size. Second, the decoupled
approach allows the garbage collector to clean up memory used by
the mapper stage before moving to the sort stage. Finally, combin-
ing mapping and sorting creates a mix of different memory access
patterns, which can negatively impact performance.

Hone implements a custom quick sort that works directly on byte
arrays; these are the underlying implementations of the streams that
the mappers write to when emitting intermediate data. The main
idea is to store intermediate (key, value) pairs in a data byte array
in serialized form, and to create an offset array that records offset
information corresponding to the serialized objects in the data byte
array. Offsets are also stored in byte arrays. Once mapper output
is stored in these data and offset byte arrays, quick sort is applied.
Offsets are read from the offset array and data are read using bit
operations depending on the data type (to avoid object materializa-
tion whenever possible). Values are compared with each other, but
only offset bytes are swapped. Usually, the size of the offset byte
array is much less than the size of the data byte array, and therefore
it is more efficient to perform swapping on the offset byte array.
Moreover, most of the bytes in the offset byte array contain zeros
(i.e., the high order bytes of an offset): only the non-zero bytes and
the bytes that are not equal need to be swapped. This eliminates a
large amount of the total cost of swapping elements during sorting.
Interactions between data shuffling and sorting: In the pull-
based approach to data shuffling described in Section 4.1, the sort
stage takes maximum advantage of parallelism since the intermedi-
ate data are divided among m× r streams (usually a large number).
However, in the push and the hybrid approaches, intermediate data
are held in a much smaller number of streams: r in the case of the

push approach and a small factor of r for the hybrid approach. In
both cases, this reduces the amount of parallelism available, since
each sorting thread must handle a much larger amount of data. For
large datasets, this becomes a performance bottleneck. For the push
and hybrid approaches, we remedy this by splitting intermediate
streams into several smaller streams on the fly. The sizes of these
streams is a customizable parameter, but we have heuristically set-
tled on a value that works reasonably well across different applica-
tions (10000 bytes).

Disk-based readers and writers: One of the challenges in de-
veloping a Hadoop-compatible MapReduce implementation is that
Hadoop application code makes extensive use of disk-based read-
ers and writers, mainly implemented using the RecordReader and
RecordWriter classes. The simplest way to avoid disk overhead
is to provide an API to access memory directly and then change
the application code to take advantage of these hooks. Since we
wanted to make Hone compatible with the existing Hadoop API,
we needed deeper integration.

We introduce the notion of a namespace, which is a dedicated re-
gion in memory where data are stored. Application code can access
namespaces through the standard Hadoop Job object. To main-
tain compatibility with the Hadoop API, we provide efficient in-
memory alternatives for Hadoop FileReader and FileWriter classes.
Disk paths in application code are automatically converted to ap-
propriate namespaces and output is redirected to these namespaces.

Iteration support: Iterative MapReduce algorithms, where a se-
quence of MapReduce jobs are chained together such that the out-
put of the previous reducer stage serves as the input to the next
mapper stage, are a well-known weakness of Hadoop [4]. Since
many interesting algorithms are iterative in nature (e.g., PageRank,
LDA), this is an important problem to solve. The primary issue
with Hadoop-based implementations of iterative algorithms is that
reducer output at each iteration must be serialized to disk, even
though it should be considered temporary since the data are imme-
diately read by mappers at the next iteration. Of course, serializing
serves the role of checkpointing and provides fault tolerance, but
since Hadoop algorithms are forced to do this at every iteration,
there is no way to trade off fault tolerance for speed.

In Hone, all of these issues go away, since intermediate data
reside in memory at the end of each iteration. The choice to se-
rialize data to disk can be made independently by the developer.
Thus, Hone provides natural support for iterative MapReduce al-
gorithms. In a bit more detail: typically, in an iterative algorithm,
there is a “driver program” that sets up the MapReduce job for each
iteration, checks for convergence, and decides if another iteration is
necessary. Convergence checks are usually performed by reading
reducer output (i.e., files on HDFS). In Hone, this is transparently
handled by our notion of namespaces.

Garbage collection and off-heap memory allocation: All objects
allocated in the JVM heap are scanned periodically by the garbage
collector, with frequency determined in part by the size of the heap
and in part by the rate at which new objects are created. This sig-
nificantly impacts the overall performance of Hone, with a major
culprit being the mappers, which generate a large number of ob-
jects to store the intermediate data. The techniques that we have
discussed so far (e.g., using byte arrays to serialize objects, reduc-
ing the number of data streams, etc.) help in reducing the garbage
collection overhead. As an additional optimization, we tried taking
advantage of off-heap memory, via the ByteBuffer class in the Java
NIO package. This allows us to manage the memory directly with-
out interference, since the JVM garbage collector does not touch
memory allocated in this fashion.

17

Mapper Stage

Sort Stage

Reducer Stage

JVM Heap

OS Native Memory

Intermediate Data Streams

Figure 5: Offloading intermediate data to off-heap direct native memory.

Figure 5 shows the memory heap managed by JVM encapsulated
under OS native memory, where Hone operates. Memory needed
for various MapReduce stages in Hone is still allocated through the
JVM heap, but intermediate data created by the mappers are of-
floaded into data streams that are created off-heap. These off-heap
data streams are then accessed by the sort stage, which performs in-
place sorting, and then finally handed over to the reducers. Since
this optimization uses non-standard APIs, we evaluated its impact
in a separate set of experiments (see Section 7.2), but we do not use
off-heap memory for most of our experiments.
NUMA support: To perform NUMA-specific optimizations, a sys-
tem must support the ability to pin threads to specific cores. Unfor-
tunately, Java does not provide explicit support for CPU affinity, as
the assignment of threads to cores is handled opaquely by the JVM.
However, thread-to-core affinity constructs can be supported via a
library in C/C++ and accessed in Java via JNI. Hone currently does
not take advantage of such optimizations.
Cache locality: High-performance algorithms usually require very
careful tuning to take advantage of cache locality and processor
prefetching—these effects can be substantial [3]. Hone, however,
does not currently implement any optimizations along these lines,
primarily because the intermediate JVM abstraction often obscures
the machine instructions that are being executed, compared to a
low-level language such as C where the programmer retains greater
control over the system. Nevertheless, there may be opportunities
to gain greater efficiencies via more cache-conscious designs. For
example, combiners might help an application optimize for cache
locality, e.g., by performing aggregation while intermediate data
still reside in cache. However, this must be balanced against the
overhead of context switching (from mapper to combiner execu-
tion). In the future, it would be interesting to explore whether such
cache optimizations can be reliably implemented on the JVM.

5. EXPERIMENTAL SETUP

5.1 Comparison Systems
Hone is open-source and can be downloaded at hadoop1.org. As
previously discussed, it is implemented in Java for Hadoop API
compatibility. There are a number of tunable parameters in Hone,
which are summarized in Table 2. Unless otherwise specified, all
experiments used default settings. We compared the performance
of Hone against Hadoop PDM, a 16-node Hadoop cluster, a reim-
plementation of Phoenix in Java (described below), Phoenix system
variants, and Spark. Details are provided below.

All single-machine experiments were performed on a server with
dual Intel Xeon quad-core processors (E5620 2.4 GHz) and 128GB
RAM. This architecture has a 64KB L1 cache per core, a 256KB
L2 cache per core, and a 12MB L3 cache shared by all cores of a
single processor. With hyperthreading, this machine can support up

Parameter Description

s Split size. Default value is 64MB.
r Number of reducers.
tpm Mapper stage thread pool size. Default value is 15.
tpr Reducer stage thread pool size. Default value is 15.
tps Sort stage thread pool size. Default value is 15.
arch Approach to data shuffling: {pull, push, hybrid}. Default is

pull.
lockType Type of lock for push and hybrid data shuffling: Java synchro-

nization, test-and-set (tas) spin lock, test and test and set (ttas)
spin lock, and reentrant lock. Default is Java synchronization.

hs Number of streams for each reducer for hybrid data shuffling.

Table 2: Description of Hone parameters.

to 16 threads concurrently. The machine has six 2TB 7200 RPM
disks, each with 64MB cache, arranged in a RAID6 configuration.
For Hadoop PDM, we ran Hadoop YARN 2.0.3; the configura-
tion parameters were set for the maximum allowable in-memory
buffer sizes, but note that Hadoop buffer sizes are limited to 32-
bit integers. For comparisons with Phoenix, we ran Phoenix2 and
Phoenix++; for Spark, we used version 0.8.0. Our Hadoop clus-
ter ran CDH4 (YARN) and comprises 16 compute nodes, each of
which has two quad-core Xeon E5520 processors, 24GB RAM, and
three 2TB disks. Note that with YARN, however, one node serves
as the Application Master (AM), leaving only 15 actual worker
nodes. The Hadoop cluster ran JDK6, whereas we used JDK7 ev-
erywhere else. Note that both the individual server and the Hadoop
cluster were purchased around the same time; since they represent
hardware from the same generation, our experiments fairly capture
the capabilities of a high-end server and a modest Hadoop cluster.

Java implementation of Phoenix. The Phoenix project [19, 24,
23] shares similar goals as Hone in terms of exploring MapReduce
implementations for shared-memory systems. The biggest differ-
ence, however, is that Phoenix is implemented in C/C++ and thus
abandons Hadoop API compatibility—this means that Hadoop ap-
plications need to be rewritten to take advantage of Phoenix.

Another substantial difference between Phoenix and Hone is how
intermediate data are shuffled from the mappers to the reducers.
Whereas Hone uses the pull, push, and hybrid approaches discussed
in Section 4.1, Phoenix uses an array of hash tables: the array con-
tains one hash table per mapper, and the entire data structure can be
visualized as a 2D grid. Each hash table entry has an array of keys
that hash to that location, and each key points to an array of associ-
ated values. Conceptually, we can think of each mapper as writing
to a “column” in the 2D data grid. The reducers scan entries of
the hash tables belonging to all the mappers to grab the appropriate
intermediate (key, value) pairs; conceptually, we can think of this
as reading the “rows” in the 2D data grid.

It did not appear to us that the Phoenix data-shuffling approach
can be efficiently implemented in Java, but we nevertheless at-
tempted an adaptation to help us better understand the differences
between the languages and the unique challenges that Java imposes.
Due to the overhead of materializing key and value objects in Java,
a straightforward implementation was utterly infeasible. Instead,
we opted to minimize object overhead by replacing Phoenix’s emis-
sion values arrays with byte arrays containing serialized data. The
main data structure is a Java HashMap array, with one map per map-
per, where the map keys are the intermediate keys and the map
values are the intermediate values (associated with the key), both
in serialized form. In order to support this data structure we also
needed to create a second HashMap array, one map per mapper, so
that reducers would know with which keys to query the main data
structure. In each map, the map key is the reducer id and the map

18

Application Dataset Small Medium Large
Word Count (WC) Wiki articles 128MB,

256MB,
512MB

1GB,
2GB

4GB,
8GB,
16GB

K-means (KM) 3D points 12M,
25M

51M,
102M

204M,
398M

Inverted Indexing (II) Wiki articles 128MB,
256MB,
512MB

1GB,
2GB

4GB,
8GB,
16GB

PageRank (PR) Wiki graph 0.4M,
0.8M

1.8M,
3.5M

7.2M

LDA TREC docs 125MB,
256MB

512MB 1GB

Table 3: Data conditions for each application. For k-means and PageRank,
we show the number of points and number of graph nodes, respectively.

value is the reducer’s keylist—once again, held in serialized form.
Whenever a mapper emits an intermediate (key, value) pair, the
system determines which reducer has ownership of that key and
writes the key to that reducer’s keylist. We feel that we have ac-
curately captured the data-shuffling approach of Phoenix, and that
our implementation represents a reasonable attempt to study how
the “data grid” design would fare in Java.

5.2 Applications and Datasets
Our experiments explored a range of MapReduce applications, de-
scribed below (see Table 3):
• Word Count (WC): This application counts the frequencies of all

words in a collection of text documents.
• K-means (KM): This application implements k-means cluster-

ing using Lloyd’s Algorithm. Since the algorithm is iterative,
reducer output is passed to the input of the next mapper stage
through the Hone namespace manager. These iterations proceed
until convergence.

• Inverted Indexing (II): This application builds a simple inverted
index, which comprises a mapping from terms to postings which
hold information about documents that contain those terms. An
inverted index is the core data structure used in keyword search.

• PageRank (PR): This application computes PageRank, the sta-
tionary distribution of a random walk over a graph. Like k-means
clustering, this algorithm is iterative.

• Latent Dirichlet Allocation (LDA): This application builds topic
models over text documents using Latent Dirichlet Allocation [2]
via variational inference. The implementation represents a sub-
stantial research effort [26] and demonstrates Hone on a non-
trivial application. This algorithm is also iterative.

In terms of datasets, for word count and inverted indexing, we used
articles from English Wikipedia totaling 16GB. For k-means clus-
tering, we randomly generated 398 million 3D coordinates; in all
our experiments we ran clustering with k = 10. For PageRank, we
used a Wikipedia article link graph that contains 7.2M nodes. For
LDA, we used a document collection from the Text Retrieval Con-
ference (TREC) that totals 1GB [26].

One important variable in our experiments is the amount of data
processed. To examine these effects, we generated subsets of vary-
ing sizes from the above datasets. We also divided the data con-
ditions somewhat arbitrarily into small, medium, and large cate-
gories, summarized in Table 3.

In addition to the above real applications and datasets, we built
a synthetic workload generator to better understand Hone perfor-
mance under different workloads. Details of these experiments are
discussed in Section 7.

6. APPLICATION RESULTS
In this section, we present results of experiments that compared
Hone against a variety of other systems on the applications de-
scribed in Section 5.2. To thoroughly characterize performance,
we varied both the amount of compute resources available as well
as the amount of data processed.

6.1 Strong Scalability Analysis
In a strong scalability analysis, the problem size stays fixed but the
number of processing elements varies. A program is considered to
scale linearly if the speedup (in terms of work units completed per
unit time) is equal to the number of processing elements used (N).
Maintaining strong scalability is challenging because coordination
overhead increases with the number of processing elements.

If the amount of time to complete a work unit with one process-
ing element is t1 and the amount of time to complete the same unit
of work with N processing elements is tN , the strong scaling effi-
ciency (SSE), as a percentage of linear, is given as follows:

SSE =

(
t1

N · tN

)
×100% (1)

Table 4 shows the strong scalability results for Hone and Hadoop
PDM on different applications. In all cases, the experiments ran
on the server described in Section 5.1 and Hone used the pull-
based data-shuffling approach. We increased the number of threads
from 1 to 16 (by varying the thread pool sizes) while keeping the
dataset size constant; the table shows running time in seconds and
the strong scaling efficiency based on Equation (1). For iterative
algorithms the reported values capture the running time of the first
iteration. Speedup of Hone over Hadoop PDM is summarized in
Table 5. These experiments used the large dataset condition for
each application: for word count and inverted indexing, 8GB; for
k-means, 398M 3D points; for PageRank, the Wikipedia article link
graph with 7.2M nodes; for LDA, 1GB. For both Hone and Hadoop
PDM, the number of mappers was determined automatically based
on the split size, which is 64MB in our case. We used binary search
to determine the optimal number of reducers, and figures for both
Hone and Hadoop PDM are reported with optimal settings.

From these results we see that Hone is substantially faster than
Hadoop PDM in terms of absolute running time. Keep in mind
that our machine has only 8 physical cores, so the runs with 16
threads are taking advantage of hyperthreading. Overall, Hone ex-
hibits much better strong scaling efficiency, outperforming Hadoop
PDM in nearly all conditions. It is interesting to see that efficiency
varies by application—for example, Hone achieves over 90% ef-
ficiency up to 8 threads on LDA, but for inverted indexing and
PageRank, performance deteriorates substantially as we increase
the thread count. From Table 5, we find no discernible trend on
the relative performance of Hone compared to Hadoop PDM as the
number of threads increases for the five applications.

6.2 Weak Scalability Analysis
In a weak scalability analysis, the problem size (i.e., workload)
assigned to each processing element stays constant and additional
processing elements are used to solve a larger overall problem. In
this case, linear scaling is achieved if the running time stays con-
stant while the workload is increased in direct proportion to the
number of processing elements.

If the amount of time to complete a work unit with one process-
ing element is t1, and the amount of time to complete N of the same
work units with N processing elements is tN , the weak scaling effi-

19

Hone PDM
threads WC KM II PR LDA WC KM II PR LDA

2 946 100% 480 80% 1124 92% 14.0 73% 6296 97% 2309 54% 2096 64% 3200 63% 92 82% 23673 74%
4 490 97% 281 68% 671 77% 10.8 56% 3160 97% 1498 54% 1676 40% 2102 47% 74 50% 12421 70%
8 292 81% 185 52% 480 54% 9.5 27% 1675 91% 1089 28% 1100 31% 1501 33% 69 27% 10024 44%

16 253 47% 166 29% 405 32% 7.8 17% 957 78% 837 18% 849 19% 1383 18% 66 14% 8002 27%

Table 4: Strong scalability experiments with Hone and Hadoop PDM: cells show running time in seconds and the strong scaling efficiency.

threads WC KM II PR LDA

2 2.5× 4.5× 3× 6.5× 4×
4 3× 6× 3× 7× 4×
8 3.5× 6× 3× 7× 6×

16 3× 5× 3.5× 8.5× 8×

Table 5: Speedup of Hone over Hadoop PDM based on the strong scalability
results in Table 4.

ciency (WSE), as a percentage of linear, is given as follows:

WSE =

(
tN
t1

)
×100% (2)

Figure 6 shows running times for Hone with different numbers of
threads and Table 6 provides the weak scalability efficiency com-
puted from those results. In all cases, the experiments ran on the
server described in Section 5.1. For these experiments, Hone used
the pull-based data-shuffling approach and the number of reduc-
ers was tuned using binary search, as with the strong scalability
analysis. For each application we increased the dataset size with
the number of threads. For word count and inverted indexing, the
dataset size varied from 128MB to 2GB; for k-means, from 12M to
204M points; for PageRank, from 0.4M nodes to 7.2M nodes; for
LDA, from 125MB to 1GB. Note that for the LDA application we
did not have sufficient data to run 16 threads, so that data point was
omitted from this experiment. For iterative algorithms the reported
values capture the running time of the first iteration.

As with the strong scalability experiments, we see that efficiency
varies by application. Again, since our machine has only 8 physical
cores, it is no surprise that efficiency falls off dramatically with 16
threads, since they may be contending for physical resources. In-
verted indexing and PageRank perform poorly, while the three re-
maining applications appear to scale better. In particular, both word
count and LDA scale almost linearly up to the physical constraints
of the hardware, and k-means scales well up to 4 threads. Note that
this experiment used the pull-based approach to data shuffling for
all data conditions, even though experiments below show that for
larger datasets, a hybrid approach works better. This means that we
can achieve even higher weak scaling efficiency if we dynamically
adjust the data-shuffling approach.

6.3 Comparison of Hadoop Implementations
In the next set of experiments, we compared Hone with Hadoop
PDM, our fully-distributed 16-node Hadoop cluster, and our Java
implementation of Phoenix. Running times for the five sample
applications on varying amounts of data are shown in Figure 7.
In the legend, “H-Pull”, “H-Push” and “H-Hybrid” refer to the
pull, push, and hybrid data-shuffling approaches in Hone (for the
hybrid approach, each reducer works on two streams). “Hadoop
PDM” refers to Hadoop pseudo-distributed mode. “Hadoop Clus-
ter” refers to Hadoop running on the 16-node cluster. “Phoenix”
refers to our implementation of Phoenix in Java. Note that Hone,
Hadoop PDM, and our Java Phoenix implementation ran on the
same machine; in all cases we fully utilized the machine with 16
threads. For iterative algorithms the reported values capture the

WC
KM
II
PR
LDA

R
un

ni
ng

 T
im

e
(s

)

1

10

100

1000

Number of Threads
0 2 4 6 8 10 12 14 16 18

Figure 6: Results of weak scalability experiments with Hone.

threads WC KM II PR LDA

2 95% 94% 88% 90% 98%
4 95% 94% 76% 63% 99%
8 99% 61% 66% 40% 99%

16 61% 30% 41% 18% -

Table 6: Weak scaling efficiency based on Figure 6.

running time of the first iteration. As before, we report results with
the optimal reducer setting discovered via binary search.

We summarized the speedup comparing Hone to Hadoop PDM
and the Hadoop cluster as follows: For each data size category
(small, medium, and large), we considered only the largest data
condition for each application, as shown in Table 3. For example,
with word count we considered the 512MB, 2GB, and 16GB con-
ditions. For each data condition, we selected the fastest from the
{pull, push, hybrid} approaches and divided that running time by
the running time of either Hadoop PDM or the Hadoop cluster. If
the value is greater than one, indicating that Hone is slower, we take
the negative; otherwise, we take the inverse, indicating that Hone
is faster. These values are reported in Table 7.

For word count, as we can see from Figure 7(a), the pull-based
approach to data shuffling is the fastest for small to medium datasets.
With large datasets, however, the hybrid approach appears to be
the fastest. In all cases, the push-based approach is the slowest of
the Hone configurations. Hone performs substantially faster than
Hadoop PDM across all data conditions and is faster than the 16-
node Hadoop cluster on small and medium datasets. The latter find-
ing is not surprising since Hadoop jobs on a distributed cluster have
substantial startup costs relative to the amount of data processed.
We find that our Java Phoenix implementation is very slow, some-
times by up to two orders of magnitude compared to Hone.

Results for k-means clustering and inverted indexing follow the
same general trends as word count: pull-based data shuffling is
faster on smaller datasets, but the hybrid approach is faster on big-
ger datasets. Hone is faster than Hadoop PDM across all dataset
sizes, and it is faster than the 16-node Hadoop cluster on small
to medium datasets. However, the Hadoop cluster is faster on the
large datasets. For inverted indexing, the Java implementation of
Phoenix is terrible, just like in word count. However, for k-means,
the performance gap between Java Phoenix and Hone is substan-
tially smaller—in some cases, the performance of Java Phoenix

20

H-Pull
H-Push
H-Hybrid, hs=2
Hadoop PDM
Hadoop Cluster
Phoenix

R
un

ni
ng

 T
im

e
(s

)

10

102

103

104

105

Wikipedia Articles (Size)
128MB 256MB 512MB 1GB 2GB 4GB 8GB 16GB

(a) Word Count

H-Pull
H-Push
H-Hybrid, hs=2
Hadoop PDM
Hadoop Cluster
Phoenix

R
un

ni
ng

 T
im

e
(s

)

10

100

3D Points (Count)
12M 25M 51M 102M 204M 398M

(b) K-means

H-Pull
H-Push
H-Hybrid, hs=2
Hadoop PDM
Hadoop Cluster
Phoenix

R
un

ni
ng

 T
im

e
(s

)

10

102

103

104

105

Wikipedia Articles (Size)
128MB 256MB 512MB 1GB 2GB 4GB 8GB 16GB

(c) Inverted Indexing

H-Pull
H-Push
H-Hybrid, hs=2
Hadoop PDM
Hadoop Cluster
Pheonix

R
un

ni
ng

 T
im

e
(s

)

1

10

100

Wikipedia Article Link Graph (# of Nodes)
0.4M 0.8M 1.8M 3.5M 7.2M

(d) PageRank

H-Pull
H-Push
H-Hybrid, hs=2
Hadoop PDM
Hadoop Cluster
Phoenix

R
un

ni
ng

 T
im

e
(s

)

100

1000

10000

TREC Documents (Size)
125MB 256MB 512MB 1GB

(e) LDA

Figure 7: Comparing Hone, Hadoop PDM, the 16-node Hadoop cluster, and our Java Phoenix implementation on five different applications with varying
amounts of data. Note that the y-axis is plotted on a log scale.

Hone vs. Hadoop PDM
WC KM II PR LDA

small 6× 14× 4× 30× 7×
medium 4× 3× 5× 9× 8×
large 5× 3× 4× 6× 8×

Hone vs. Hadoop cluster
WC KM II PR LDA

small 6× 7× 4× 15× 3×
medium 2× 2× 2× 5× 2×
large −2× −2× −2× 3× 2×

Table 7: Relative performance of Hone compared to Hadoop PDM (top) and
the 16-node Hadoop cluster (bottom) for different data conditions. Negative
values indicate that Hone is slower than the comparison system.

approaches Hone configurations. We believe that this is because
k-means generates far less intermediate data than inverted indexing
or word count, which confirms our thinking all along—that the op-
timization of intermediate data structures for data shuffling is the
key to achieving high performance.

We notice a different pattern for PageRank and LDA: Hone is
faster than both Hadoop PDM and the Hadoop cluster across all
data conditions. This is perhaps due to the relatively small size
of the datasets—the graph is relatively small, and the document
collection for LDA is smaller than the Wikipedia articles used in
word count and inverted indexing. Thus, these results appear to
be consistent with the above findings. The pull-based approach
outperforms all others for PageRank, but all three data-shuffling
approaches are roughly equal for LDA.

Summarizing these results, our experiments suggest a few key
takeaways. For small to medium datasets, the pull-based approach
to data shuffling seems to be the fastest, but for large datasets,
the hybrid approach can be faster—however, there are application-
specific differences, such as with LDA. In our applications, we did
not find a case where the push-based approach was convincingly
better, which suggests that contention on the reducer streams and
synchronization overhead significantly impacts performance.

In all these experiments, Hone is faster than Hadoop PDM, and
in some cases, faster than the 16-node Hadoop cluster as well. For

the cluster results, one can criticize that we have not used suffi-
ciently large datasets to make distributed Hadoop worthwhile—but
that’s exactly the point we are trying to make. As individual servers
grow in memory capacity and core count, the sizes of datasets that
can be handled in memory grows as well, and in these cases, a
scale-up solution is perhaps preferable to a scale-out solution.

Finally, comparisons to our Java Phoenix implementation show
that intermediate data structures for data shuffling need to be specif-
ically designed for the execution environment. We adapted an ap-
proach that works well for C/C++, but translates into an inefficient
design in Java. This shows, not surprisingly, that optimizations
need to be targeted to the specific execution environment.

6.4 Comparison with Other Systems
Although Phoenix and Spark have very different designs compared
to Hone, we believe that a comparison is still instructive. Here,
we describe experiments on the word count and k-means clustering
applications with varying amounts of data.

Phoenix2 [24] and Phoenix++ [23] are implemented in C/C++.
Thus, a comparison against Hone gives us a sense of how much the
choice of language matters. We downloaded both systems and ran
an “out of the box” evaluation with default settings on word count
and k-means clustering (both were existing implementations). We
used the same server as all our other single-machine experiments.
Relative performance is shown in Table 8 for word count (top) and
k-means (bottom): positive values indicate that Hone is faster and
negative values indicate that the comparison system is faster.

The earlier system, Phoenix2, is actually slower than Hone on
word count, and has scalability limitations—throwing segmenta-
tion faults beyond 2GB. Phoenix++, on the other hand, is 2–3×
faster than Hone on word count up to 8GB, but has roughly compa-
rable performance at 16GB. For k-means clustering, both Phoenix2
and Phoenix++ are substantially faster than Hone, by a factor of up
to 7× on larger data. The symbol ∼ indicates that speed is roughly
the same as Hone. Note that Phoenix++ performs “in-mapper com-
bining” [14] and requires the developer to specify a data structure
to store intermediate data (based on the application type), which
gives it a performance advantage over Phoenix2 and Hone. How-

21

Word Count
128MB 256MB 512MB 1GB 2GB 4GB 8GB 16GB

Phoenix2 2× 2× 3× 2.4× 2.1× - - -
Phoenix++ −2× −3× −2× −2× −2× −3× −2× ∼
Spark 3× 3× 3× 2× 2× 2× ∼ ∼

K-means
12M 26M 51M 102M 204M 398M

Phoenix 2 −4.5× −3.5× −4× −4.5× −6.5× −6.4×
Phoenix++ −5× −4× −5× −6× −7.5× −7×
Spark 4× 3× 3× 2× 2× 3×

Table 8: Relative performance of Hone compared to Phoenix2, Phoenix++,
and Spark for word count (top) and k-means (bottom). Negative values in-
dicate that Hone is slower than the comparisons system. Note that Phoenix2
does not scale beyond 2GB and terminates with a segmentation fault. The
symbol ∼ indicates that speed is roughly the same as Hone.

WC
II

R
un

ni
ng

 T
im

e
(s

)

10

20

30

40

Input Split Size (MB)
1MB 2MB 5MB 10MB 32MB 64MB

Figure 8: Running time of word count and inverted indexing on the 512MB
dataset with different split sizes (running 16 threads).

ever, this substantially alters the MapReduce model. These results
show that there can be significant performance advantages to adopt-
ing C/C++, but at the cost of abandoning Hadoop compatibility.

In our evaluation of Spark, we loaded all data into memory (via
the RDD abstraction) and allowed the system to fully utilize hard-
ware resources (16 threads). These evaluations were performed on
the same server as all the other single-machine experiments, and
we used existing word count and k-means implementations. Re-
sults are shown in Table 8 for word count (top) and k-means (bot-
tom). For word count, Hone is faster than Spark on datasets up to
4GB and roughly comparable in terms of speed for larger datasets.
For k-means, Hone is consistently faster than Spark for all dataset
sizes. We are quick to emphasize that this is inherently an apples-
to-oranges comparison because Hone and Spark are very different.
Whereas Spark provides a general data processing model, Hone is
limited to MapReduce. Spark was designed for distributed exe-
cution on a cluster, whereas Hone was specifically optimized for
running on a single machine. However, since Spark and Hone both
run on the JVM, the performance differences gives us a sense of
the gains that might be attributed to careful engineering against the
characteristics of the platform.

6.5 Effects of Input Split Size
In standard distributed Hadoop, input splits for the mappers are
aligned with HDFS blocks so that tasks can be efficiently placed
on machines where the blocks are held locally. Because Hone runs
on a single machine, this constraint is not applicable and thus we
have greater flexibility in tuning the split size. There are two con-
siderations to balance when setting a value: Smaller splits lead to
more mapper tasks and thus generate more opportunities to extract
parallelism. On the other hand, if the split size is too small, the
mapper threads don’t have sufficient work to perform, and thus we
waste time context switching.

We performed an experiment to empirically determine how these

Parameter Description

dm Mapper emit distribution; possible values are {one-to-one,
many-to-one, one-to-many}.

λ For dm = one-to-many, the number of intermediate (key, value)
pairs to emit per token is decided by drawing from a Poisson
distribution with mean λ . Default value is 10.

ψ For dm = many-to-one, the probability to emit an intermediate
(key, value) pair per token. Default value is 0.1.

di Intermediate key distribution; possible values are {uniform,
Zipfian, biased}.

zipfskew For di = Zipfian, the Zipfian skew parameter. Default value is
10.

α For di = biased, probability an intermediate (key, value) pair
will be sent to a single “special” reducer. Default value is 0.7.

ps Payload size, the length of the randomly-generated string that
serves as the intermediate value. Default value is 3.

bcpu Parameter to control CPU-intensiveness of the workload (in
the mapper). For each token, value of π is calculated to bcpu
digits before generating intermediate data. Default value is 2.

Table 9: Description of workload generator parameters.

two factors play out. Figure 8 plots the execution time of word
count and inverted indexing for different split sizes on the 512 MB
dataset (using 16 threads). As we can see, for word count the opti-
mal split size is 5MB, whereas for inverted indexing, the we achieve
the fastest running time with 64MB.

7. SYNTHETIC WORKLOAD RESULTS
To better understand the effects of different job characteristics on
Hone, we built a synthetic workload generator that allows us to
create different types of MapReduce jobs. Whereas our sample
applications encode a specific set of fixed characteristics, the work-
load generator lets us vary those characteristics independently. We
also used this tool to evaluate the impact of the off-heap memory
allocation optimization.

7.1 Workload Generator
The basic structure of the synthetic job is similar to the word count
application, but with a number of adjustable parameters, shown in
Table 9. The job takes as input a collection of text documents to
simulate actual data processing; the mapper tokenizes each docu-
ment and processes each token in turn. What happens next depends
on the workload parameters (details below), but intermediate (key,
value) pairs are generated with an integer between 1 and 10,000
as the key and a random string as the value. The reducers simply
count the number of values that are associated with each key and
output the final counts.
Mapper emit distribution parameter (dm) determines the num-
ber of intermediate (key, value) pairs emitted per token in the map-
per. This parameter attempts to model the fact that some Map-
Reduce algorithms generate more intermediate data than input data,
while others generate less. The possible settings are {one-to-one,
many-to-one, one-to-many}.

Implementing the one-to-one setting is straightforward: for each
input token the job emits an intermediate (key, value) pair, based
on constraints specified below. For the one-to-many setting, we
need a mechanism to stochastically determine the number of (key,
value) pairs to emit for each token. For this we draw from a Poisson
distribution with a mean of λ (set to 10 by default). In the many-to-
one case, for every token, we generate an intermediate (key, value)
pair with probability ψ . The default value of ψ is 0.1, which means
that one intermediate pair is emitted every ten tokens on average.
Intermediate key distribution parameter (di) determines how in-
termediate (key, value) pairs are assigned to reducers. For example,

22

Hone (OH) vs PDM
Hone (OH) vs Cluster
Hone vs PDM
Hone vs Cluster

Sp
ee

du
p

−6
−5
−4
−3
−2
−1

0
1
2
3
4
5
6
7
8
9

Problem Size
125MB 250MB 512MB 1GB 2GB 4GB 8GB

dm=one-to-one, di=uniform, bcpu=1

(a)

Hone (OH) vs PDM
Hone (OH) vs Cluster
Hone vs PDM
Hone vs Cluster

Sp
ee

du
p

0
1
2
3
4
5
6
7
8
9

10
11

Problem Size
125MB 250MB 512MB 1GB 2GB 4GB 8GB

dm=one-to-one, di=biased, bcpu=1

(b)

Hone (OH) vs PDM
Hone (OH) vs Cluster
Hone vs PDM
Hone vs Cluster

Sp
ee

du
p

0
1
2
3
4
5
6
7
8

Problem Size
125MB 250MB 512MB 1GB 2GB 4GB 8GB

dm=one-to-one, di=Zipfian, bcpu=1

(c)

Hone (OH)
Hone
PDM
Cluster

R
un

ni
ng

 T
im

e
(s

)

0

1000

2000

3000

α
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

dm=one-to-one, di=biased, input=8GB

(d)

Hone (OH)
Hone
PDM
Cluster

R
un

ni
ng

 T
im

e
(s

)

0

1000

2000

zipfskew

0.1 0.2 0.5 1 2 5 10 20

dm=one-to-one, di=Zipfian, input=8GB

(e)

Hone (OH)
Hone
PDM
Cluster

R
un

ni
ng

 T
im

e
(s

)

0

2000

4000

Payload size (ps)
1 5 10 15 20 25

dm=one-to-one, di=uniform, input=8GB

(f)

Hone (OH)
Hone
PDM
Cluster

R
un

ni
ng

 T
im

e
(s

)

0

1000

2000

CPU-intensiveness
1 5 10 15

dm=one-to-one, di=uniform, input=8GB

(g)

Hone (OH)
Hone
PDM
Cluster

R
un

ni
ng

 T
im

e
(s

)

0

1000

2000

3000

CPU-intensiveness
1 5 10 15

dm=one-to-one, di=biased, input=8GB

(h)

Figure 9: Experimental results using our synthetic workload generator.

word count exhibits a Zipfian intermediate key distribution since
term occurrences are (roughly) Zipfian (i.e., lots of occurrences of
common words and a long tail). Graph algorithms often behave
similarly due to the presence of “supernodes”, or nodes with many
incoming edges. On the other hand, intermediate data in k-means
clustering is uniformly distributed.

In order to capture these different characteristics, we provide a
parameter di that can be set to {uniform, Zipfian, biased}. In all
cases the intermediate key is an integer between 1 and 10,000, but
the selection of the key is based on this setting:
• In the case of uniform, the integer is selected based on a uniform

distribution.
• In the case of Zipfian, the key is drawn from a Zipfian distribution

with skew parameter zipfskew, with a default value of 10.
• In the case of biased, the intermediate key is selected such that

each emitted (key, value) pair is assigned to a “special” reducer
with probability α , or is otherwise assigned to one of the other
reducers with uniform probability. This means that if we have r
reducers, one reducer will receive α fraction of all intermediate
data, while the remaining data will be distributed evenly among
the r−1 other reducers. The default value of α is 0.7.

Payload Size (ps) determines the size of the intermediate value.
In word count the payload is always an integer, but other Map-
Reduce applications may emit bigger values that have complex in-
ternal structure. In the workload simulator, the value in the inter-
mediate (key, value) pair is a randomly-generated string of length
ps, with three as the default value.
CPU-intensiveness parameter (bcpu) controls the amount of pro-
cessing that is performed in the mapper in the simulated workload.
To simulate workloads that are CPU-intensive to varying degrees,
we compute π to bcpu digits for each token before proceeding to
generate intermediate output. The default value is two.

7.2 Summary of Findings
We have been exploring the performance of Hone and other sys-
tems under different workloads using the synthetic workload gen-
erator. This is the subject of ongoing explorations, but in Figure 9
we share a few of our initial findings. In particular, we have been
using this approach to examine the performance impact of the off-
heap memory optimization discussed in Section 4.2; the is abbrevi-
ated “OH” in the figure legends. The basic setup is the same as in
all the experiments above, comparing Hone (using the pull-based

approach to data shuffling) with Hadoop PDM and the 16-node
Hadoop cluster. As with before, all in cases we used binary search
to find the optimal number of reducers, and report results based on
those settings.
Hone gracefully handles skew: Figure 9(a) shows that if the in-
termediate key distribution is uniform, then Hone is faster than
Hadoop PDM for all data conditions examined and Hone is faster
than the full Hadoop cluster for smaller datasets. This finding
is consistent with the results from Section 6. However, for non-
uniform intermediate key distributions, Hone appears to be faster
than Hadoop PDM and the full Hadoop cluster for the data condi-
tions we examined; this is shown in Figures 9(b), 9(c), 9(d), and
9(e). Skew creates stragglers (tasks that take substantially more
time than the others), which is a well-known issue for Hadoop in
a distributed environment [13, 11], and the effects appear to carry
over to Hadoop PDM as well. On the other hand, the design of
Hone makes it more resistant to skew effects.
Hone is less sensitive to payload size: Increasing the payload size
increases disk activity and increases pressure on the communica-
tion channels for Hadoop PDM and the Hadoop cluster. On the
other hand, Hone appears to be relatively insensitive to the payload
size since everything is held in memory (provided, of course, that
we have sufficient memory). This result is shown in Figure 9(f).
Hone effectively utilizes CPU resources: As the workload be-
comes more CPU-intensive, Hone is able to effectively utilize avail-
able cores; see Figures 9(g) and 9(h). Our single server has only 8
physical cores, so at some point we begin to saturate all available
compute capacity—the full Hadoop cluster obviously has an ad-
vantage here because it has more cores. In Figure 9(h), we make
an interesting observation: for Hadoop PDM and the Hadoop clus-
ter, increasing the CPU-intensiveness parameter (at least up to 10)
does not have much of an impact on the overall running time, which
suggests that there are bottlenecks elsewhere (e.g., I/O and skew is-
sues). In this sense, Hone achieves a better balanced design.
Hone off-heap can be up to 2× faster than Hone on-heap: With
Hone, offloading intermediate data to off-heap native direct mem-
ory consistently improves performance, compared to the default
setting where all intermediate data are stored on the JVM heap.

8. CONCLUSIONS
As others have suggested, we need to re-think scale-out vs. scale-
up architectures as the amount of cores and memory on high-end

23

commodity servers continues to increase. There is no doubt that
the total amount of data is also growing rapidly, but it is unclear
if the datasets used in typical analytical tasks today are increasing
as fast. The crux of the scale-out vs. scale-up debate hinges on
these relative rates of growth: server capacities are (roughly) grow-
ing with Moore’s Law, which should continue for at least another
decade. If dataset sizes are growing at a slower rate, then scale-up
architectures will become increasingly attractive.

Ultimately, the datacenter is likely to consist of a mix of scale-
out and scale-up systems—we will continue to run large, primarily
disk-based jobs to scan petabytes of raw log data to extract inter-
esting features, but this paper explores the interesting possibility
of switching over to a multi-core, shared-memory system for effi-
cient execution on more refined datasets. With Hone, this can all
be accomplished without leaving the comforts of MapReduce: we
simply select the most appropriate execution environment based on
dataset size and other characteristics of the workload. This brings
us to the biggest limitation of our current work and the subject of
ongoing research—how to a priori determine the best Hone con-
figuration in terms of the data-shuffling approach, split size, thread
pool sizes, etc. In the future, we can imagine an optimizer that is
able to examine a Hadoop workload and automatically decide what
job to run where and the optimal parameter settings.

9. ACKNOWLEDGMENTS
This work has been supported by NSF under awards IIS-0916043,
CCF-1018625, IIS-1144034, and IIS-1218043. Any opinions, find-
ings, conclusions, or recommendations expressed are the authors’
and do not necessarily reflect those of the sponsor. The last author
is grateful to Esther for her loving support and dedicates this work
to Joshua and Jacob.

10. REFERENCES
[1] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson,

and A. Rowstron. Scale-up vs scale-out for Hadoop: Time to
rethink? SoCC, 2013.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research, 2003.

[3] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the
memory wall in MonetDB. CACM, 51(12):77–85, 2008.

[4] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop:
Efficient iterative data processing on large clusters. VLDB,
2010.

[5] R. Chen, H. Chen, and B. Zang. Tiled-MapReduce:
optimizing resource usages of data-parallel applications on
multicore with tiling. PACT, 2010.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. OSDI, 2004.

[7] B. Dong, J. Qiu, Q. Zheng, X. Zhong, J. Li, and Y. Li. A
novel approach to improving the efficiency of storing and
accessing small files on Hadoop: a case study by PowerPoint
files. SCC, 2010.

[8] W. Jiang, V. T. Ravi, and G. Agrawal. A Map-Reduce system

with an alternate API for multi-core environments. CCGRID,
2010.

[9] C. Kim, J. Park, N. Satish, H. Lee, P. Dubey, and
J. Chhugani. CloudRAMSort: fast and efficient large-scale
distributed RAM sort on shared-nothing cluster. SIGMOD,
2012.

[10] K. A. Kumar, J. Gluck, A. Deshpande, and J. Lin. Hone:
“scaling down” hadoop on shared-memory systems. VLDB
Demo, 2013.

[11] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. SkewTune:
Mitigating skew in MapReduce applications. SIGMOD,
2012.

[12] J. Lin. Brute force and indexed approaches to pairwise
document similarity comparisons with MapReduce. SIGIR,
2009.

[13] J. Lin. The curse of Zipf and limits to parallelization: A look
at the stragglers problem in MapReduce. LSDS-IR Workshop,
2009.

[14] J. Lin and C. Dyer. Data-Intensive Text Processing with
MapReduce. Morgan & Claypool Publishers, 2010.

[15] X. Liu, J. Han, Y. Zhong, C. Han, and X. He. Implementing
WebGIS on Hadoop: A case study of improving small file
I/O performance on HDFS. CLUSTER, 2009.

[16] Y. Mao, R. Morris, and M. F. Kaashoek. Optimizing
MapReduce for multicore architectures. Technical Report
CSAIL-TR-2010-020, MIT, 2010.

[17] McObject LLC. In-memory database systems: Myths and
facts, 2010.

[18] N. Mitchell and G. Sevitsky. Building memory-efficient Java
applications: Practices and challenges. PLDI Tutorial, 2009.

[19] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating MapReduce for multi-core and
multiprocessor systems. HPCA, 2007.

[20] A. Rowstron, D. Narayanan, A. Donnelly, G. O’Shea, and
A. Douglas. Nobody ever got fired for using Hadoop on a
cluster. HotCDP, 2012.

[21] A. Shinnar, D. Cunningham, V. Saraswat, and B. Herta.
M3R: increased performance for in-memory Hadoop jobs.
VLDB, 2012.

[22] J. A. Stuart and J. D. Owens. Multi-GPU MapReduce on
GPU clusters. IPDPS, 2011.

[23] J. Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++: modular
MapReduce for shared-memory systems. MAPREDUCE,
2011.

[24] R. M. Yoo, A. Romano, and C. Kozyrakis. Phoenix rebirth:
Scalable MapReduce on a large-scale shared-memory
system. IISWC, 2009.

[25] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: cluster computing with working sets.
HotCloud, 2010.

[26] K. Zhai, J. Boyd-Graber, N. Asadi, and M. Alkhouja. Mr.
LDA: A flexible large scale topic modeling package using
variational inference in MapReduce. WWW, 2012.

24

