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ABSTRACT
The join ordering problem is a fundamental challenge that has to be
solved by any query optimizer. Since the high-performance RDF
systems are often implemented as triple stores (i.e., they represent
RDF data as a single table with three attributes, at least conceptu-
ally), the query optimization strategies employed by such systems
are often adopted from relational query optimization. In this paper
we show that the techniques borrowed from traditional SQL query
optimization (such as Dynamic Programming algorithm or greedy
heuristics) are not immediately capable of handling large SPARQL
queries. We introduce a new join ordering algorithm that performs
a SPARQL-tailored query simplification. Furthermore, we present
a novel RDF statistical synopsis that accurately estimates cardinal-
ities in large SPARQL queries. Our experiments show that this
algorithm is highly superior to the state-of-the-art SPARQL opti-
mization approaches, including the RDF-3X’s original Dynamic
Programming strategy.

1. INTRODUCTION
The not-so-recent interest in the RDF data model and its query

language SPARQL has already led to the development of several
academic and commercial systems for storing and querying large
RDF datasets. The common way to store linked data – employed
by the triple stores – is to conceptually view RDF data as a sin-
gle table with three columns that correspond to Subject, Predicate,
Object. Starting with Hexastore [19] and RDF-3X [13], the triple
stores have become a de-facto research and industry standard in
RDF storage, with the state-of-the-art commercial triple stores be-
ing able to index up to 1 Trillion triples1 (e.g., Virtuoso[20], Al-
legroGraph [1], BigOWLIM [4] and others) At the same time, the
available RDF datasets are both increasing in size and in quality,
that is having better structure. As the quality of the data improves,
users tend to ask interactive queries of increasing complexity, just
like it is commonplace with SQL in modern RDBMS’s. For exam-
ple, the query log of the interactive DBpedia endpoint has SPARQL
queries with up to 10 joins [3], and analytical queries in the biomed-
ical domain can include more than 50 joins [15].

1http://www.w3.org/wiki/LargeTripleStores
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Finding the right join order is known to be a challenging task for
any relational optimizer. In RDF systems, additionally, the optimiz-
ers are faced with extremely large sizes of queries due to verbosity
of the data format, and with the lack of schema that challenges the
cardinality estimation process, an essential part of any cost-based
query optimizer. It is easy to construct a query with less than 20
triple patterns whose compilation time (dominated by finding the
optimal join order) in the high-performance RDF-3X system [13]
is one order of magnitude higher than the actual execution time
(see Appendix for an example of such query). On the other hand,
another popular high-performance triple store, Virtuoso 7, seems
to spend much less time finding the join order (probably employ-
ing some kind of greedy heuristics), but pays a high price for the
(apparently) suboptimal ordering. For that specific query we have
measured the following compile and runtimes in two systems:

System Compile Time Run Time
RDF-3X 78 s 2 s
Virtuoso 1.3 s 384 s

Ideally, we would like to have a hybrid of two approaches: a
heuristics that spends a reasonable amount of time optimizing the
query, and yet gets a decent join order.

This problem becomes even more pressing, as emerging applica-
tions require the execution of queries with 50+ triple patterns [15].
One of the popular alternatives for Dynamic Programming for such
queries – Greedy heuristics – faces a hard challenge of greedily
selecting even the first pair of triples to join due to structural corre-
lations between different triple patterns[11]. Indeed, a triple pattern
can be quite selective itself (e.g., people born in France), but not
within the considered group of triple patterns (that could describe,
e.g., French Physicists).

In this paper we propose a novel join ordering algorithm aimed at
large SPARQL queries. Essentially, it is a SPARQL-tailored query
simplification procedure, that decomposes the query’s join graph
into star-shaped subqueries and chain-shaped subqueries. For these
subqueries we introduce a novel linear-time heuristics that takes
into account the underlying data correlations to construct an execu-
tion plan. The simplified query graph typically has a much smaller
size compared to the original query, thus allowing to run Dynamic
Programming on it. In order to estimate the cardinalities in the sim-
plified query, we introduce new statistical synopsis coined Charac-
teristic Pairs. To validate the effectiveness and efficiency of our
join ordering strategy, we run our join ordering algorithms on thou-
sands of generated queries over real-world datasets, and compare
them with the state-of-the-art SPARQL query optimization algo-
rithms.

Note that, although we concentrate on triple stores in this paper,
the problem of join ordering is orthogonal to the underlying phys-
ical storage and is therefore common to all the RDF systems. The
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sources of this problem lie in verbosity of the RDF data model and
high irregularity of real-world datasets. Our solutions (join order-
ing algorithms and statistical data structures for cardinality estima-
tion) do not assume any particular organization of a triple store (i.e.,
specific indexes, data partitioning etc.) and are therefore applicable
to a wide range of systems.

The rest of the paper is organized as follows. Sec. 2 introduces
the concepts of cost-based SPARQL query optimization. Sec. 3
demonstrates the unique query optimization challenges caused by
the nature of RDF data. Sec. 4 describes our novel algorithm for
star-shaped SPARQL query optimization. Sec. 5 shows how this
algorithm can be incorporated into the general SPARQL query op-
timizer, as well as presents a novel statistical synopsis for accu-
rate cardinality estimations beyond star-shaped queries. Sec. 6 dis-
cusses related work. Sec. 7 evaluates the quality of our algorithms
and other approaches.

2. PRELIMINARIES
In this section we will introduce the basic concepts and the state-

of-the-art techniques of SPARQL query optimization.

2.1 Query Graph and SPARQL Graph
Given a SPARQL query, the query engine starts off with con-

structing its representation called a query graph. Specifically, ev-
ery triple pattern of the query is turned into a node of the query
graph, and two nodes are connected if the corresponding triple pat-
terns share a common variable (or, if there is a FILTER condition
relating variables of these two triple pattern). Conceptually, the
nodes of the query graph entail scans of the dataset with the cor-
responding variable bindings, and the edges correspond to the join
possibilities within the query. Thus defined, the query graph of
a SPARQL query corresponds to the traditional query graph from
relational query optimization, where nodes are relations and join
predicates form edges.

Another way to represent a SPARQL query is a graph structure
that we call a SPARQL graph. Its nodes denote variables of the
query, while the triple patterns form edges between the nodes. Intu-
itively, this structure describes the subgraph that has to be extracted
from the dataset.

Consider an example SPARQL query and its two representa-
tions (the SPARQL graph and the query graph) depicted in Fig-
ure 1. The query itself has 8 triple patterns (denoted p1 . . . p8).
The SPARQL graph (Figure 1b) describes the pattern that has to be
matched against the dataset: we are looking for two star-shaped
patterns (around variables ?p and ?city) that are connected via
the two-hop chain ?p−?book−?city. The equivalent query graph
(Figure 1c) consists of two four-node cliques (induced by variables
?p and ?city that appear in four triple patterns each), and a chain
between them.

2.2 Cost model
Given the query graph as input, the optimizer returns the query

plan, which is defined by the ordering of joins between triple pat-
terns, and the type of each join (merge or hash join). A cost-based
query optimizer explores the search space of different algebraically
equivalent query plans, and selects the optimal (cheapest) plan ac-
cording to some cost function. Traditionally, the cost function takes
into account the amount of intermediate results produced by joins
in the query plan. For example, the RDF-3X cost functions for
merge and hash joins (MJ and HJ, respectively) are defined as fol-
lows:

costMJ =
lc+ rc

100
, costHJ = 300, 000 +

lc

100
+
rc

10
, (1)

where lc and rc are the cardinalities of the left and right inputs
of the join operation (with lc < rc).

We note that even the exact join ordering algorithms (such as Dy-
namic Programming) yield the plan which is optimal only accord-
ing to the estimated cost function. It is possible, however, that the
actual cost function value is different from the estimated one (due
to errors in intermediate result size estimations), and this could turn
an estimated optimal plan into the de-facto suboptimal.

2.3 Cardinality estimation
In order to improve the cardinality estimates for star-shaped sub-

queries, Neumann and Moerkotte [11] suggested the data structure
coined characteristic set. The characteristic set for a subject s is
defined as Sc(s) = {p|∃(s, p, o) ∈ dataset R}. Essentially, the
characteristic set for s defines the properties (attributes) of an entity
s, thus defining its class (type) in a sense that the subjects that have
the same characteristic set tend to be similar. For example, the class
of Person in the knowledge base can be defined by the character-
istic set {bornIn, livesIn, hasName,marriedTo, hasChild}.
The authors of [11] note that in real-world datasets the number of
different characteristic sets is surprisingly small (in order of few
thousands), so it is possible to explicitly store all of them with their
number of occurrences in the RDF graph.

As an example, consider again the query in Figure 1a and sup-
pose that we are to estimate the cardinality of the join between the
triple patterns containing wrote and bornIn predicates. The natural
way to do it is to iterate over all characteristic sets, find those sets
that contain both predicates, and sum up their counts. Note that this
type of computation works for any number of joins within the same
star subquery and delivers accurate estimates [11].

2.4 Physical Plan
A common approach towards storing RDF data is to index sev-

eral (or even all possible) permutations of Subject, Predicate, Ob-
ject in separate B+-trees [16, 13, 18]. Since the data is available in
several orderings, it is often beneficial to use a merge join as a phys-
ical implementation of a join operation. For example, the star sub-
queries typically are executed using the merge join. If we denote
by σorder the table scan in the given order (e.g., Object-Predicate-
Subject) with the specified constants, the star-shaped subquery
around ?p from Figure 1b can be transformed into the following
sequence of merge joins:((
σOPS(O = Nobel_prize, P = wonPrize)

1MJ σOPS(O = German_novellist, P = type)
)

1MJ σPSO(P = wrote)
)

1MJ σPSO(P = bornIn)

Runtime techniques like sideways information passing stress the
importance of merge joins even further [12]. Namely, the values of
variable ?p encountered during the index scans can be propagated
to other (less selective) index scans participating in the subquery
with merge joins, such that the latter could skip most of their pages
on disk. Propagation is possible since the merge join keeps the
ordering of its input data intact.
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Figure 1: Query graphs of a SPARQL query

(a) SPARQL query
select *
where {

?p type German_novellist.
?p hasWonPrize Nobel_prize.
?p bornIn ?place.
?p created ?book.
?book linksTo ?city.
?city isLocatedIn Italy.
?city hasLongitude ?long.
?city hasLatitude ?lat. }

(b) SPARQL graph (nodes are variables)
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(c) Query graph (nodes are triples)
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While some systems explicitly maximize the number of merge
joins during the plan generation [18], others do so by tuning the
cost function (note, for example, the 300,000 cost unit penalty for
a hash join in (1)).

3. CHALLENGES
Finding the optimal join order of a SPARQL query is very chal-

lenging due to the nature of RDF data. First, the RDF triple format
is very verbose. Thus, for example, the TPC-H Query 2 written
in SPARQL contains joins between 26 index scans (as opposed to
joins between 5 tables in the SQL formulation!). The number of
possible query plans is in the order of factorial of the table number,
i.e. 5! = 120 plans in SQL vs 26! = 4 · 1026 plans in SPARQL. In
real applications it is not uncommon to see SPARQL queries with
joins involving a hundred index scans (see Appendix of [15] for
an example from the biomedical domain). This is a price that the
engine has to pay for the flexibility of the data schema. Second,
the lack of schema leaves the optimizer without essential informa-
tion that is readily available to any relational optimizer, such as the
set of tables, their attributes, primary and foreign keys. For exam-
ple, a relational system would have information that an entity of
a type Person has attributes Name, Birthday, Birthplace etc., and
foreign key relationships to other entities (Places, Companies etc).
The relational optimizer can therefore keep the statistics on these
attributes and foreign keys (e.g., an average person has lived in 3
different places) and use it for result size estimation. All this in-
formation is only implicitly present in RDF data, where attributes
and foreign keys become structural correlations in the RDF graph.
In other words, some of the predicates tend to occur together as
labels of outgoing edges of the same node (e.g., bornIn, hasName
and created), and some subgraphs tend to occur together in RDF
graphs (e.g.,writers and books).

The simplest of these correlations – corresponding to the at-
tributes of the same entity – are captured by Characteristic Sets
(CS) [11]. However, the DP algorithm requires computing the CS-
based estimates for every non-empty subgraph of the query. It sig-
nificantly increases the (already high) runtime of the DP algorithm,
as we will demonstrate in the evaluation section. Moreover, CS do
not capture correlations between different subgraphs in the RDF
graph.

Together, these characteristics of RDF data create the follow-
ing challenges for the query optimizer. First, the sheer size of the
search space for large SPARQL queries does not allow the standard
Dynamic Programming exploration, since it has to look at all the
valid plans in order to find the cheapest one. Second, even for the
mid-sized query graphs, the Dynamic Programming algorithm ig-
nores the structure of the query, and therefore considers a lot of a
priori suboptimal subplans during the plan construction. Third, the
optimizer under the independence assumption fails to estimate the

result sizes of most of the partial plans.
For instance, for the query in Figure 1a, the following entries are

added to the DP table:

Partial Plan Est. Result Size
(?p, wrote, ?book) 1 (?book, linksTo, ?city) 1.5 Mln

(?book, linksTo, ?city) 1 (?city, hasLatitude, ?lat) 1.3 Mln

Here, the independence assumption leads to a significant under-
estimation of the cost function, since the optimizer merely multi-
plies the frequencies of two predicates, thus getting a rather small
join selectivity. In reality, however, books tend to link to multiple
entities mentioned in them, so the selectivities of both joins are way
higher than 1. The real cost of the partial plans is therefore much
worse than what the optimizer expects. Indeed, the first subplan
returns all the people that have written any book that links to any
entity, and the second subplan yields all the entities linked to each
other, such that one of them has a latitude as an attribute. Clearly,
performing these chain-shaped joins earlier during query execu-
tion would produce enormous intermediate results. However, com-
pletely avoiding chain joins can not be made the ’rule of a thumb’,
since some of the chains yield extremely small results. The (nearly
optimal) join ordering strategy is to split the query into star- and
chain-subqueries while still keeping the correlations between dif-
ferent subqueries.

The contribution of this work, the Dynamic Programming-based
heuristics overcomes these challenges as follows. It decomposes
the SPARQL graph into the disjoint star-shaped subqueries and the
chains connecting them. Having done that, we no longer need to
consider joins between individual triple patterns of star- and chain-
shaped subqueries (like in the table above) and thus drastically re-
duce the search space while keeping the plans very close to optimal.
Furthermore, the plans for the star-shaped subqueries are found us-
ing the novel linear-time join ordering algorithm. This way, only
the join possibilities between different subqueries contribute to the
problem’s exponential complexity, therefore reducing the search
space size to the SQL level (e.g., down to 5! plans instead of 26!
plans for the TPC-H query 2). To capture the correlations between
different star subqueries, we introduce a generalization of charac-
teristic sets (coined the characteristic pairs). This statistics helps
estimating the cardinalities of joins between different stars, which
in turn are used to order subqueries in the overall query plan.

4. STAR QUERIES OPTIMIZATION
In this section we describe our first contribution, a join ordering

algorithm for star-shaped SPARQL queries. We start by introduc-
ing a statistical data structure coined the hierarchical characteri-
sation of the RDF graph, and then describe the algorithm that em-
ploys it to find an (almost optimal) ordering of joins in star queries.
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4.1 Hierarchical Characterisation
A characteristic set, defined in [11] as a set of outgoing edge la-

bels for the given subject, tend to capture the semantic similarity
between entities described in the RDF dataset. Thus, entities with
the characteristic set {hasTitle, hasAuthor} usually describe books.
While the lack of fixed schema prevents us from assigning these
entities a type "Books" (e.g., we are not going to store such enti-
ties in a separate table), the characteristic sets allow us to predict
selectivities for given sets of query triple patterns.

In real-world RDF datasets, set inclusion between different char-
acteristic sets also bears some semantic information. Consider the
following CS that describes a type Writer: S1 = {hasName, bornIn,
wroteBook}, and another CS that characterizes entities of type Per-
son: S2 = {hasName, bornIn}. Note that S2 ⊆ S1, and at the
same time Writer is a subtype of Person. We find this situation to
be extremely frequent in knowledge bases. For instance, the major-
ity of characteristic sets in the Yago knowledge base [8] are subsets
of each other, reflecting the class hierarchy of Yago entities.

Along with the set of predicates, the Characteristic Set (CS)
keeps the number of occurrences of this predicate set in the dataset
[11] (denoted as count(CS)). Here we introduce a generaliza-
tion of this measure, namely the aggregate characteristic of CS
cost(CS). It is defined as the sum of occurrences of all the su-
persets of the given CS:

cost(CS) =
∑

S is a char.set & CS⊆S

count(S)

The difference between cost(CS) and count(CS) is two-fold.
First, count(S) merely reflects the number of the star-shaped sub-
graphs of R that have those and only those edge labels mentioned
in S. At the same time, cost(S) is the number of subgraphs that
have all the labels from S plus some other labels. In other words,
cost(S) for S = {p1, . . . , pk} provides an estimate for the result
size of the query

select distinct ?s
where {?s p1 ?o1. . . . ?s pk ?ok}

Second, cost can be applied to any set of predicates that does not
form the Characteristic Set. For example, the set of two predicates
S = {hasName,wroteBook} is not characteristic, since these two
predicates are always accompanied by bornIn. However, cost(S)
still can be used to estimate the size of the join of two correspond-
ing triple patterns, namely (?s, hasName, ?name) with
(?s, wroteBook, ?book).

The following obvious property holds for two sets S1, S2 such
that S2 ⊆ S1: count(S2) ≥ count(S1). For instance, the num-
ber of entities of type Person is clearly not smaller than the num-
ber of Writers. Same holds for the costs of sets in this situation:
cost(S2) ≥ cost(S1).

At the same time, some subsets of the predicate set S may be
cheaper than others. Consider again S = {hasName, bornIn,
wroteBook} and all its two-element subsets along with their costs
listed in the table below:

Subset is CS? cost(Subset)
{hasName, bornIn} yes 74K
{hasName,wroteBook} no 43K
{bornIn,wroteBook} no 39K

Notice that the last subset is the rarest occurring in the dataset
(i.e., with the minimal cost), and it does not form the characteristic
set. From the query optimizer’s perspective, this means that, when

given a query joining triples with these three predicates, the best
strategy is to first join bornIn and wroteBook triple patterns, since
the amount of intermediate results (i.e., cost of that two-element
set) is the smallest. In order to make such kind of decisions possi-
ble, every characteristic set should have a pointer to its cheapest (in
terms of cost) subset.

We capture these observations in the following formal defini-
tion. A Hierarchical Characterisation of the dataset R is the set
{H0, . . . , Hk}, such that

1. H0 is the set of all characteristic sets of R

2. Hi = { argmin
∀C⊂S∧|C|=|S|−1

cost(C) | ∀S ∈ Hi−1}, that is Hi

consists of the subsets C of sets from Hi−1 that minimize
cost(C).

3. ∀S ∈ Hk: |S| = 2

4. every S ∈ Hi−1 stores a pointer to its cheapest subset C ∈
Hi.

Informally, the Hierarchical Characterisation of the dataset is a
forest-like data structure of sets, where there is a link from S1 to
S2, if S2 is the cheapest subset of S1 among all the subsets of S1

that are just one element smaller than |S1|.
An example of the part of the Hierarchical Characterisation for

the Yago dataset [8] is given in Figure 2a. There, two characteristic
sets in H0 (IDs 195 and 154) point to the same cheapest subset
from H1.

As we have noted, in real RDF datasets most of characteristic
sets are subsets of each other. This leads to the same sets appearing
in different levels of the HC: both as leaves in the H0 level, and
as subsets of other sets in some Hi level. Naturally, we do not
need to store the same set twice, so this ambiguity stays only on
conceptual level. In theory, if H0 level has m different sets drawn
from n distinct elements, we can get up to m · n distinct subsets
in HC. In practice, however, due to the fact that the same sets are
shared between different levels, and different sets can get the same
cheapest subsets, this number is quite close to m.

4.2 Computing Hierarchical Characterisation
A straightforward computation of Hierarchical Characterisation

could be organized as follows: starting with Characteristic Sets,
at each iteration for every set we find all its subsets (that are one
element smaller), get the cheapest one, pass all the cheapest subsets
for each set to the next iteration. The iterations should repeat until
all the newly generated sets are of size 2. This however, generates
the same set many times, since (a) the sets may appear in multiple
levels of HC, (b) two different sets may have the same cheapest
subset, as it is the case with sets 195 and 154 in Figure 2. An
accurate theoretical analysis of this observation is out of scope of
this paper.

The computation works as follows. First, the Characteristic Sets
are computed [11]. They are ordered by increasing size, starting
with one element sets. Then, the iterations computing subsets run
until no new subsets appears (lines 3-5 in Algorithm 1). At each
iteration, we run two iterators S1 and S2 over the sets under con-
sideration. For every pair of S1, S2 we check if S2 ⊂ S1 and
|S2| = |S1| − 1, and keep the cheapest Sbest of all such subsets
(lines 10-16). Additionally, the Banker’s enumeration of sets [9]
is performed. The Banker’s enumeration iterates over subsets of
the set of all predicates in graph R. Its main purpose is to gener-
ate the subsets of characteristic sets that are not characteristic sets
themselves.
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Figure 2: Hierarchical Characterisation
(a) HC
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(b) Triple patterns and their optimal ordering
1ID: 154

1ID: 27
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(?p, created, ?o1) (?p, livedIn, ?o3)

(?p, bornIn, ?o2)
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(?p, type, ?o4)

Algorithm 1: Compute Hierarchical Characterisation
Input: RDF graph R
Result: H – Hierarchical Characterisation of R

1 begin
2 Sets← computeCharSets()
3 while Sets 6= ∅ do
4 H = H ∪ Sets
5 Sets← computeSubsets(H)

6 return H

7 COMPUTESUBSETS(SETS)
8 SubsetIterator si← init Banker’s iteration
9 res← ∅

10 foreach S1 ∈ Sets do
. iterate in increasing size

11 Sbest ← ∅
12 foreach S2 ∈ Sets : |S2| < |S1| do
13 if |S2| = |S1| − 1 ∧ S2 ⊂ S1 then
14 update Sbest to S2 if its cost is the smallest
15 while si.next() 6= S2 do

. get all subsets of S1 that are missing from Sets
16 update Sbest to si.next() if its cost is the

smallest

17 store the pointer to Sbest in S1

18 if Sbest /∈ Sets then
19 res.insert(Sbest)

20 return res

Consider the following fragment of computation, where sets are
listed in order of increasing size; sets printed in bold are charac-
teristic, italic sets are the "missing" sets generated by the Banker’s
iterator si. Suppose that the current position of si is set {1, 2, 3}.
Then, iterating until si reaches S2 (line 15 of Algorithm 1), we en-
counter the set {1, 3, 5} which is not characteristic (i.e., does not
belong to the input Sets), but is a subset of S1. If it is cheaper
than the previously considered S2, we update the Sbest variable
(line 16).

....
1 3 5
1 3 6
1 3 7

....

1 3 5 6
....

1 2 3

Although the Banker’s iteration potentially enumerates all the

subsets of all predicates in the dataset, in reality it stops relatively
early, since it is always bounded by the largest set in Sets (see
condition in line 14). This largest set gets smaller with every itera-
tion, since every iteration considers subsets of sets generated in the
previous iteration. Additionally, the biggest portion of the HC is
identified during the first iteration, and the process converges really
quickly. We also note that the set inclusion check in the inner-
most for loop (lines 12-16) is implemented extremely efficiently
using Bloom filters. In our experiments, computing the Hierarchi-
cal Characterisation of the Uniprot dataset (with over 850 million
tripes stored on disk) is done within 6 iterations and takes ca.700
ms.

4.3 Join Ordering for Star Queries
We first focus on finding the optimal join order in (sub)queries

of the form
select *
where {?s p1 ?o1. . . . ?s pk ?ok}

Let S = {p1, . . . , pk} be the corresponding set of predicates.
Our main idea is to extract the part of the Hierarchical Character-
isation of the dataset starting with the set S. Namely, we find the
set S1 ∈ H0 such that S1 = S, get its cheapest subset S2 (re-
member that S1 has a pointer to S2) and find out the predicate p in
S1 \ S2. This predicate p corresponds to one of the triple patterns
of the query (?s, p, ?o); we put this triple pattern to be the last in
the join order. The procedure repeats with S2: follow the pointer
to its cheapest subset S3, put the triple pattern with the predicate
from S2 \ S3 to be the last but one predicate in the join order. The
process terminates when the current set Sk has only two elements:
these predicates correspond to triple patterns that will be joined
first. The pseudo-code of the algorithm is depicted in lines 1-9 of
Algorithm 2. We note that if there is no set in H0 that contains
all the predicates from P (i.e., the lookup in line 3 fails), then the
corresponding query yields an empty result.

The intuition behind this approach is the following: starting from
the set of triple patterns, we find out what is the most expensive
triple pattern, and schedule it to be the last in the join order. This
expensive triple pattern is exactly the one that does not appear in
the cheapest subset (w.r.t. our cost function) of the predicate set.
Following this logic at each step, we construct the join tree top-
down. An illustration of this algorithm is given in Figure 2b. The
set with ID 154 (see Figure 2a) has the predicates from all four
given triple patterns. Its cheapest subset in the HC is the set 27.
Therefore, the triple pattern with the predicate type will be the last
one in the join order (the upper-most triple pattern in the join tree).
Similarly, the cheapest subset of the set 27 is the set with ID 6,
and the missing predicate in it is bornIn. Since the last set has two
predicate, they form the first join in the join ordering (lower-most
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Algorithm 2: Join Ordering for Star Queries

Input: SPARQL star-shaped graph QR

Result: Ordering of joins
1 begin
2 P ← {p1, . . . , pk} . set of predicates in QR

3 S ← getHierarchicalCharSet(P)
4 O ←empty list . join ordering
5 while S.size() > 2 do
6 Subset← S.Subset . cheapest subset
7 p← S \ Subset . next predicate in ordering
8 O.push_front(p)
9 S ← Subset

. the two elements left in S = {p1, p2}
10 O.push_front(p1); O.push_front(p2)
11 if QR has constants then
12 if one of the constants is a key then
13 push it to the first level of the tree
14 return;

15 else
16 push down constants until

cost(IndexScan) > cost(1)

level in the tree).
We note that this strategy yields the optimal join ordering for

star-shaped queries in linear time. Besides, it does not assume in-
dependence between predicates in different triple patterns (unlike
Dynamic Programming and the bottom-up greedy heuristics). It is
therefore best suited for dealing with structural correlations that are
so common in RDF data.

Unfortunately, this no longer holds if the query has constant ob-
jects, i.e. when some of ?o1, . . . , ?ok are replaced with literals or
URIs. We have to, therefore, rely on a heuristics. It seems impos-
sible to precompute all the correlations between constant objects
and predicates in all sets of Hierarchical Characterisation. How-
ever, in real datasets we observed that some predicates in the sets of
HC are extremely selective (like keys in relational world), and then
all other predicates nearly functionally follow the selective ones.
In our example with books and people, the name of the author is
nearly the key (same with the title of a book). This can be cap-
tured while constructing the HC, if we track the multiplicity of each
predicate in the sets. Then, the ’key’ predicates are those with the
multiplicity of 1. Note that we only need to store this multiplicity
information for the sets from H0, i.e. the characteristic sets.

Now, to construct the join ordering for triples with bounded ob-
jects, we first order the joins as if all objects were unbound. Then,
we distinguish between two cases:

1. one of the bounded objects is in the triple with the ’key’ pred-
icate (lines 12-14). The entire star query is therefore a lookup
of properties of a specific entity. We push down this triple
pattern (basically by appending it at the front of our join or-
dering), and stop.

2. otherwise, we keep pushing down the constants in the join
tree and stop when the cost of the corresponding index scan
is bigger than the cost of the join on that level of the tree
(lines 15-16).

We do not want to simply push down all constants, since some
of the object constants (especially for the type predicate) are quite
unselective and it is possible that the lowest join in the tree produces

less tuples than the index scan on such unselective constant alone.
So far we have considered star queries centered around sub-

ject. Such patterns are extremely common in RDF datasets and
are prevalent among the queries. However, the same techniques
work for stars around objects (i.e., based on the object-object join).
Since these queries are still valid SPARQL, the system derives and
stores Hierarchical Characterisations for object-centered stars, too.

5. QUERY OPTIMIZATION OF ARBITRARY
QUERIES

In this section we describe the algorithm for join ordering in gen-
eral SPARQL queries. Our main idea is to decompose the query
into star-shaped subqueries connected by chains, and to collapse
the subqueries into meta-nodes. The star-shaped subqueries are op-
timized by the algorithm from Section 4. Then, the Dynamic Pro-
gramming algorithm is run on top of the simplified query. In order
to enable accurate cardinality estimations in the simplified query,
we introduce a novel synopsis (Characteristic Pairs) that captures
structural correlations in the RDF graph beyond star subqueries.

5.1 Characteristic Pairs
While some of the correlations between triples are captured by

Characteristic Sets (define types in the RDF dataset) and conse-
quently Hierarchical Characterisation (inheritance between differ-
ent types, subject to a specific cost function), we are still missing
other relationships between different types.

Let us illustrate it with an example. Consider the triples describ-
ing the person and its birthplace:

(s1, hasName, "Marie Curie"), (s1, bornIn, s2),
(s2, label, "Warsaw"), (s2, locatedIn, "Poland")

There, the object id s2 in the triples describing the person is used
to link it to the city. In a way, this correspond to the "foreign key"
concept in relational databases, except that of course RDF does
not require to declare any schema. Mining these foreign keys thus
becomes a challenge for the system. Knowledge of such dependen-
cies is, on the other hand, extremely useful for the query optimizer:
without it, the optimizer has to assume independence between two
entities linked via bornIn predicate, thus almost inevitably underes-
timating the selectivity of the join of corresponding triple patterns.
In reality, almost every person has information about the place of
birth, so the selectivity of the join is close to 1.

In order to capture these "foreign key"-like relationships between
nodes in the RDF graph, we will store pairs of characteristic sets
that occur together (i.e., are connected by an edge) in the RDF
graph, along with the number of occurrences. More formally, for
the subject s let Sc(s) denote the characteristic set of edges emit-
ting from s (in other words, Sc(s) is a type of s). We define a
Characteristic Pair as

PC(Sc(s), Sc(o)) =
{(Sc(s), Sc(o), p) | Sc(o) 6= ∅ ∧ ∃p : (s, p, o) ∈ R}

The condition Sc(o) 6= ∅ includes only those objects that appear
as subjects in other triples, and therefore have non-empty charac-
teristic sets. The set of all characteristic pairs is then defined as

PC(R) = {PC(Sc(s), Sc(o)) | Sc(o) 6= ∅ ∧ ∃(s, p, o) ∈ R}

Additionally, we define the number of occurrence of a character-
istic pairP ∈ PC(R) to be count(P ) = |{(s, o)|PC(Sc(s), Sc(o)) =
P}|. Using this aggregate we can distinguish between "one-to-one"
and "one-to-many" relationships. Namely, the proportion
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count(PC(Sc(s), Sc(o)))

count(Sc(s))

tells us, to how many objects of the same type does the subject s
connect.

Although in theory, with n distinct characteristic sets we can get
up to n2 characteristic pairs, in real datasets only few pairs appear
frequently enough to be stored. For YAGO-Facts dataset, out of
ca.250000 existing pairs, only 5292 pairs appear more than 100
times in the dataset. This way, the frequent characteristic pairs for
the YAGO-Facts consume less than 16 KB. We do not store the
pairs with count being smaller than 100. For such pairs, the in-
dependence assumption provides a "close enough" estimate of the
result size. The optimizer will, most likely, underestimate the size
to be just 1 tuple, but we found that misestimation in 100 tuples
does not lead to a plan whose performance would differ from the
optimal one.

5.2 Estimating Cardinalities using Character-
istic Pairs

We start with considering the simplest example of a query that
joins two star-shaped subqueries:

select distinct ?s ?o
where { ?s p1 ?x1.

?s p2 ?x2.
?s p3 ?o.
?o p4 ?y1. }

In order to estimate the result size of the query, we simply need
to find all the characteristic pairs consisting of sets that contain the
predicates p1, p2, p3 and p4:

cardinality =
∑

{{p1,p2,p3}⊂C1,{p4}⊂C2}

count(PC(C1, C2)),

whereC1 andC2 are the characteristic sets that contain p1, p2, p3
and p4, respectively.

Note that this computation does not assume independence be-
tween any predicates, and works for stars of arbitrary size. How-
ever, this simple estimation is only possible due to the distinct
keyword: in general, the query can produce duplicate results for ?s
and ?o for two reasons: first, there may be multiple bindings for
?x1, ?x2 and ?y1; second, there may exist multiple bindings of ?o
for the same ?s.

In order to cope with the first issue (multiple bindings for ob-
jects), predicates in characteristic sets are annotated with their num-
ber of occurrences in entities belonging to this set [11]. Similarly,
we annotate the predicate that connects two entities in the charac-
teristic pairs with its number of occurrences. Formally, for P =
(Sc(s), Sc(o), p) we compute count(p) = |{(s, p, o) | (s, p, o) ∈
R ∧ PC(Sc(s), Sc(o)) = P}|. In other words, based on count(p)
we can derive whether the "foreign key" relationship between s
and o is a "one-to-one" or "one-to-many". Namely, if count(p) =
count(PC(Sc(s), Sc(o))), it is one-to-one, and with count(p) >
count(PC(Sc(s), Sc(o))) it is one-to-many.

Consider again the query above but without the distinctmod-
ifier, and suppose that characteristic sets for s and o, and the char-
acteristic pair are as depicted in Figure 3:

distinct p1 p2 p3
1000 1000 3000 2000

(a) CS for ?s

distinct p4
5000 5100
(b) CS for ?s

distinct p3
1000 2000

(c) PC(?s, ?o)
Figure 3: Representation of two char.sets and a char.pair

The first column of each table gives us the number of distinct
stars and pairs of stars This means that, on average, one entity of
type Sc(s) has 1000

1000
= 1 predicate p1, 3000

1000
= 3 predicates p2

and 2000
1000

= 2 predicates p3, and on average for every s there are
2000
1000

occurances of o connected to it via p3 (see Table in Figure 3c).
We can therefore estimate the cardinality of the query without the
distinct as:

1000︸︷︷︸
distinct

· 1000
1000

· 3000
1000

· 2000
1000︸ ︷︷ ︸

?s

· 5100
5000︸ ︷︷ ︸

?o

· 2000
1000︸ ︷︷ ︸

count(p3)

= 12240

This computation has to be corrected in case some of xi or yi are
bounded. Specifically, for every constant xi (yi, respectively), we
multiply our estimate by the selectivity of an object given the fixed
predicate sel(?o = xi|?p = pi), i.e. the probability of the object
restriction given the adjacent predicate restriction.

5.3 Join Ordering in Arbitrary Queries
Our join ordering strategy for general SPARQL queries is given

in Algorithm 3. The algorithm starts with clustering the query into
disjoint star-shaped subqueries (lines 11-24). In order to do it, we
order the triple patterns in the query by subject (line 13), and group
triple patterns with identical subjects (line 15). These groups poten-
tially form star-shaped subqueries. Then, for every group of triple
patterns we estimate its cardinality using characteristic sets. If its
small enough (in our experiments we used a cutoff of 100K tuples),
the group is turned into star subquery and the corresponding edges
are removed from the query graph (lines 17-19).

Consider the query from Figure 1a as an illustration. Its triple
patterns after grouping look as follows:

star1


?p type German_novellist.

?p hasWonPrize Nobel_prize.

?p bornIn ?place.

?p created ?book.

?book linksTo ?city.

star2


?city isLocatedIn Italy.

?city hasLongitude ?long.

?city hasLatitude ?lat.

The corresponding subgraphs of the SPARQL query graph are
denoted as P1 and P2 in FIgure 4a. Note that we don’t form a
star query around the variable ?book, although syntactically it is a
star with one edge. The reason is, based on our characteristic set
estimation, we see that this star would return a lot of intermediate
results (in fact, all the triples with the linksTo predicate). The al-
gorithm stays conservative and does not "oversimplify" the query,
leaving more choices to the later Dynamic Programming stage.
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Figure 4: Query Graph Decomposition
(a) SPARQL graph

?p

German_novellist

Nobel_Prize ?place

?book ?city

Italy

?long ?lat

type

wo
nP

riz
e bornIn

wrote linksTo
locatedIn

ha
sL

on
g hasLat

P1 P2

(b) Simplified SPARQL
graph

P1 ?book P2
wrote linksTo

(c) Entries of the DP table (predicate names denote the cor-
responding triple patterns)

Entities Partial Plan Cost
{P1} (wonPrize 1 type) 1 bornIn 3000
{P2} (locatedIn 1 hasLong) 1 hasLat 5000
{book} IndexScan(P = linksTo, S =?book) 0
{P1, book} ((wonPrize 1 type) 1 bornIn) 1 wrote 3500

. . . . . . . . .

After the stars around subjects have been formed, we attempt to
form star around objects on remaining edges. We give preference
to subject-centered stars since in our experience they are more fre-
quent in queries, and it is often more beneficial to execute them
before object-centered stars.

The algorithm then considers all the stars formed by the
GetStars subroutine; for every star it adds the new meta-node
to the query graph and removes the intra-star edges (lines 4-5). The
plan for the star subquery is computed using the Hierarchical Char-
acterisation (see Algorithm 2) and added to the DP table along with
the meta-node (lines 6-7).

After all the star subqueries have been optimized, we add the
edges between meta-nodes to the query graph, if the original graph
had edges between the corresponding star sub-queries (line 8). The
selectivities associated with these edges are computed using the
Characteristic Pairs synopsis, and the regular Dynamic Program-
ming algorithm starts working on this simplified graph (line 10).

An example of the simplified query graph is given in Figure 4b.
There, two meta-nodes P1 and P2 are connected with the chain.
Although the ?book variable did not form the star subquery, we
can still use its emitting predicate linksTo to estimate the cardi-
nality of the remaining joins in the query. For instance, in order to
estimate the size of the join of P1 and book, we look up all Char-
acteristic Pairs such that the first set in the pair has predicates from
P1 (type, wonPrize, bornIn and wrote), and the second contains the
linksTo predicate.

Finally, the first four entries of the DP table are depicted in Fig-
ure 4c. The optimal plan for the book entity is an index scan, at
the same time for P1 and P2 we have plans for the correspond-
ing star queries. Since the complexity of DP grows exponentially,
even a small reduction of the query graph can greatly improve the
performance of the overall join ordering strategy. In our case, sim-
plifying the query graph from 8 nodes to 3 nodes gives a reduction
from 8!=40320 plans to 3!=6 plans.

6. RELATED WORK
While query optimization in general (and join ordering in par-

ticular) is an old and well-established field, the SPARQL-specific
issues have not yet attracted a lot of attention.

The RDF-3X [13] employs the exact Dynamic Programming al-
gorithm, which faces computational problems when the query size
grows. Its variant, DP with Characteristic Sets, uses more accurate
selectivity estimations at the expense of even slower query compile
time. The Jena optimizer [17] relies on the greedy join ordering
heuristical algorithm, but it tends to underestimate intermediate re-
sult sizes [11], which can degrade the query execution time by or-
ders of magnitude. A variant of the greedy algorithm that operates

Algorithm 3: General SPARQL join ordering algorithm

Input: SPARQL graph QR

Result: Join ordering for QR

1 begin
2 stars← getStars(QR)
3 foreach s ∈ stars do
4 add meta-node for s to QR

5 remove joins of s from QR

6 p← GetStarJoinOrder(s)
7 DPTable.push_back(s, p, cost(p))

8 add edges between adjacent meta-nodes
9 estimate selectivities using Char.Pairs

10 run DP algorithm on DPTable

11 GETSTARS(QR)
12 stars← ∅
13 order triple patterns from QR by subject
14 foreach distinct subject s ∈ QR do
15 star ← triples with subject s

. using CharSets
16 card← getCardinality(star)
17 if card ≤ budget then
18 stars.add(star)
19 remove edges within star from QR

20 order triple patterns QR by object
21 foreach distinct object o ∈ QR do
22 star ← triples with object o
23 . . . . similar to lines 14-16

24 return stars

on the data flow graph of the query and takes into account different
SPARQL constructs (like OPTIONAL and UNION) is proposed in
[5].

Our work differs from the original Characteristic Set approach
[11] in three main points: first, we extend the CS to the hierar-
chy and propose a linear-time join ordering heuristics based on the
Hierarchical Characterisation; second, we introduce a novel sta-
tistical structure to capture the "foreign-key"-like relationships in
RDF graph; finally, we suggest the query simplification algorithm
for general SPARQL queries. Apart from the cardinality estimation
problem, the Characteristic Sets can be used as a foundation for the
physical layout of the RDF store [14].

The recently proposed Heuristical SPARQL Planner [18] intro-
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duces several heuristical rules of ordering the joins based merely on
the structure of the SPARQL query. However, completely ignoring
the data statistics leads to unpredictably bad query plans.

Another approach towards SPARQL optimization is to translate
the SPARQL query to its SQL equivalent, and then optimize this
intermediate SQL query [6]. This, however, prevents the optimizer
from using RDF-specific information about correlations between
predicates in star subqueries and chains. Besides, straighforward
translation of all SPARQL joins to SQL joins leaves the relational
optimizer with the search space of enormous size.

Our query simplification techniques are similar to ones in [10].
They also reduce the search space size by making some simplifica-
tion before the DP algorithm starts. However, our simplification is
driven by different priciples: namely, we are using the SPARQL-
specific star-subqueries as building blocks for the DP algorithm.

7. EXPERIMENTS
In this section we evaluate the quality of our algorithm, both in

terms of its own runtime and the runtime of the produced query
plans. We use three large real-world RDF datasets, and generate a
large number of random queries (star-queries and queries of arbi-
trary shape) against them.

7.1 Algorithms and the runtime system
To study the performance of our algorithm, we implemented it in

the RDF-3X system [13], and compared it with original RDF-3X
optimizer (which in turn we studied in two variants: with and with-
out Characteristic Sets [11], denoted DP and DP-CS). In addition,
we implemented in RDF-3X the greedy heuristics of [7] (Greedy),
and the heuristical SPARQL planner (denoted HSP) [18]. All join
ordering algorithms have access to full stack of RDF-3X indexes
(including all six permutations of S, P and O, and aggregated in-
dexes). All produced plans are run with the same runtime settings
(including the Sideways Information Passing [12]), so the differ-
ence between different running times is solely due to the quality of
different optimizers. For all the plans, we disable the dictionary ID
mapping, since its runtime depends only on the result size (and is
the same across all algorithms).

The RDF-3X system is run on a server with two quad-core In-
tel Xeon CPUs (2.93GHz) and with 64GB of main memory using
Redhat Enterprise Linux 5.4.

7.2 Datasets and Workload generator
We used three large real-world datasets from different domains:

the knowledge base Yago[8] with over 110 million triples, the
book-cataloging social network dataset LibraryThing [13] with 36
million triples and the biological dataset Uniprot [2] consisting of
around 850 million triples.

In order to test the scalability and robustness of the query op-
timization algorithms, we generate the query workload for these
three datasets. The generated queries are of two kinds, the star-
shaped queries, and the arbitrary (complex) queries.

To generate the star-shaped queries, we first extracted a set of
"central" nodes. In graph theory, the centrality of the node is typ-
ically defined based on its distance to all other nodes. Since our
graphs are simply too large to compute centrality exactly according
to any of the definitions from literature, we rely on a very sim-
ple heuristical node selection. Namely, we collect all the pairs of
nodes (ls, ro) as a result of the join operation (ls, lp, lo) 1lo=rs

(rs, rp, ro) over the entire triple store. Since we are only inter-
ested in ls and ro, the join is actually performed on the aggregated
indexes and is quite efficient. These pairs (ls, ro) define all the
two-hop chains in the graph. We then select all the nodes n that

appear as ls in one pair and as ro in some other pair. Intuitively,
these are the nodes that participate in long chains, and are some-
where in the middle of these chains. The intuition behind such
selection is that the nodes participating in long chains allow us to
form complex queries around them, by combining star-shaped sub-
queries with chains connecting them.

As a result of the node selection procedure we are left with the
handful of "central" nodes (from few hundreds in Yago to tens of
thousands in LibraryThing). We then form the star-shaped queries
around a subset of these nodes by randomly choosing the attributes
of these nodes (i.e., the objects connected to it) and replacing some
of them with variables. At the end we also replace the central node
with the variable itself, so the query gets a form of a natural ques-
tion "find all the entities with given attribute values, and extract
some of their attributes".

In order to form arbitrary queries from the star-shaped queries,
we expand some of variables (that replaced attributes of a central
node) with either a chain, or another star. For example, if ?s is
a central node in the star query and ?x is one of its attributes (so
that there is a triple pattern ?sp?x in the query), we either attach
a chain starting with ?x, or another star centered around ?x. The
actual decision between a star and a chain is made at random; it
also depends on whether ?x can actually form a chain or a star.

At the end, we group the star and arbitrary queries based on their
size. The star queries have sizes from 5 to 10 triples (we filter out
the smaller queries, since they are typically trivial to optimize), and
the arbitrary queries contain from 10 to 50 triple patterns. For every
group we collect 100 distinct queries.

Clearly, such strategy could choose some very unselective queries
(e.g., find the names and addresses of all the people in the US). In
order to prevent these queries in the workload, we run the candidate
queries against the RDF-3X store and rule out those that take more
than 30 seconds to finish. The plans for this candidate selection
run are compiled using the DP and the greedy heuristics for large
queries.

7.3 Methodology
For every query and every optimization strategy we run the op-

timizer 11 times, and record an average of all runs except the first
one (this way we bring the system to the warm cache state). We
call this number a planning time of the query; we excluded from it
the (common for all optimizers) parsing, string-to-ID mapping and
code generation time for SPARQL queries.

In theory, the Dynamic Programming strategy is supposed to
yield the optimal plan, so we could just record how much slower
the other techniques are (including ours, which is also a heuristics
for arbitrary queries). But in reality the DP strategy often fails to
find the best solution, because of cardinality misestimations during
the cost function computation. Besides, sometimes the plan with
the best cost function value does not yield the best runtime (al-
though we do record the Pearson correlation between the runtime
and the cost function (1) of 88%, so the cost function is not entirely
misleading).

Therefore, to measure the quality of output plans for different
query optimizers, we define the rank of the algorithm Ai for the
given query q as a proportion of the runtime of its output plan(Ai, q)
to the best runtime for that query among all algorithms Ai:

rank(Ai, q) =
runtime(plan(Ai, q))

mini runtime(plan(Ai, q))
,

where runtime(plan(Ai, q)) is in turn the minimum among 10
warm cache runs of the plan(Ai, q) in the system. For the group
of queries (e.g., all star queries of size 8), we report the geometric
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Table 1: Total Execution Time for Star Queries, Average over 300 Random Queries per Dataset, ms
Query Size (number of joins)

Yago Uniprot LibraryThing
Total Execution Time (out of this: Optimization Time)

Algo [5, 6] [7, 8] [9, 10] [5, 6] [7, 8] [9, 10] [5, 6] [7, 8] [9, 10]
DP 92 (2) 129 (2) 241 (45) 94 (2) 142 (8) 257 (45) 95 (2) 140 (8) 266 (44)

DP-CS 103 (17) 170 (57) 393 (215) 110 (18) 186 (58) 421 (220) 105 (16) 188 (61) 404 (208)
Greedy 98 (1) 142 (4) 186 (8) 94 (1) 151 (4) 239 (9) 95 (1) 140 (4) 230 (8)

HSP 90 (0.2) 130 (0.2) 345 (0.3) 95 (0.2) 157 (0.2) 703 (0.3) 93 (0.2) 134 (0.2) 499 (0.3)
Our 87 (1) 120 (2) 184 (4) 93 (1) 132 (3) 207 (4) 91 (1) 135 (3) 222 (4)

Table 2: Ranking of Runtime of Star Queries, Average over 300 Random Queries per Dataset
Query Size (number of joins)

Yago Uniprot LibraryThing
Algo [5, 6] [7, 8] [9, 10] [5, 6] [7, 8] [9, 10] [5, 6] [7, 8] [9, 10]
DP 1.2 1.2 1.31 1.19 1.21 1.24 1.18 1.17 1.20

DP-CS 1.15 1.13 1.19 1.18 1.16 1.18 1.13 1.13 1.15
Greedy 1.3 1.38 1.31 1.21 1.33 1.35 1.19 1.21 1.20

HSP 1.2 1.3 2.3 1.22 1.39 3.8 1.18 1.19 2.7
Our 1.15 1.18 1.20 1.18 1.17 1.19 1.15 1.17 1.18

mean of rank(Ai, q) taken across all queries qi in that group for
each algorithm separately. This will indicate the ’average ranking’
of the query optimization strategy for the given group of queries
(ranging from 1 to infinity, lower values are better).

7.4 Computing statistics
First we measure the time and space needed to store our hierar-

chical characterisation – the data structure used for the star queries
optimization (and subsequently for optimizing arbitrary queries).
Table 5 presents the numbers observed while loading the three
datasets in RDF-3X. As we see, the Hierarchical Characterisation
has the smallest footprint in Uniprot dataset. The reason for this
small size is probably the well-structured nature of Uniprot which
basically has a regular schema. This is the ideal case from the in-
dexing standpoint, and the HC works very well in such a setting.
The other two datasets are less regular, with more different entities
types, but still the overall impact on the database size and loading
time is rather small.

Table 5: Hierarchical Characterisation: Indexing Space and Time
Space Time

Dataset Mb % of Total Size s % of Total
Loading Time

Yago 5 0.1% 91 3%
Uniprot 0.6 0.0001% 10 0.001%

LibraryThing 15 0.5% 62 4%

Similarly, the time and space needed to index and store all the
frequent Characteristic Pairs is very modest comparing to the over-
all loading time and the database size. As Table 6 shows, the ex-
treme case here is again represented by Uniprot, which is a very
structured RDF dataset. Yago and Librarything are somehow less
structured, but still the amount of additional information is less than
0.01% of the overall database size, and the indexing time is practi-
cally negligible.

7.5 Query Optimization: Star Queries
In this section we summarize our experiments with star query

optimization. First of all, Table 1 reports the total running time (i.e.,
optimization and plan execution time) for 300 randomly generated
star queries per dataset. The queries are grouped by size, from

Table 6: Characteristic Pairs: Indexing Space and Time
Space Time

Dataset Mb % of Total seconds % of Total
Size Loading Time

Yago 0.6 0.01% 1.2 0.008%
Uniprot 0.01 0.00001% 0.7 0.004%

LibraryThing 0.18 0.0003% 1.5 0.03%

small (5-6 joins) to large (9-10 joins). The reported time is the
sum of the join ordering time and plan execution time, with join
ordering time also being reported separately in the brackets. We
see that, in terms of the overall runtime, our algorithm outperforms
even the exact DP and DP-CS strategies. When it comes to just the
query optimization time, the clear winner is the HSP planner with
all compile times being much less than 1 ms. However, it pays a
high price for that, since most of the time the generated plans are far
from optimal. The Greedy strategy and our query decomposition
take comparable amount of time, while the DP and DP-CS are the
slowest, as expected. Note that the significant difference between
planning times of DP and DP-CS is due to usage of Characteristic
Sets for cardinality estimations. Indeed, for any particular query
the CS-based cardinality estimation is rather fast, but it has to be
performed for every subquery of the query graph. This renders the
technique unfeasible for large query graphs.

The rankings of runtimes for different algorithms are given in Ta-
ble 2. Somewhat surprisingly, our algorithm actually outperforms
the Dynamic Programming strategy even without considering the
join ordering time. This should be attributed to misestimations of
cardinalities (and therefore the cost function) that the DP strategy
makes during the join order construction. We also found that while
for small queries (5 and 6 triple patterns), especially if they have
constants, the performance of HSP is comparable with the rest of
the algorithms, the large queries can get unpredictably bad plans
from the HSP planner. The reason lies in the fact that HSP ignores
all the available statistics and makes ’blind’ decisions that could
lead to extremely suboptimal plans.

To conclude, our query simplification approach yields the plans
that are very close to the best ones, and it does so in a very reason-
able amount of time.
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Table 3: Ranking of Runtime of General Queries
Query Size (number of joins)

Yago Uniprot LibraryThing
Algo [10, 20) [20, 30) [30, 40) [40, 50] [10, 20) [20, 30) [30, 40) [40, 50] [10, 20) [20, 30) [30, 40) [40, 50]
DP 1.81 - - - 1.43 - - - 1.93 - - -

DP-CS 1.60 - - - 1.31 - - - 1.65 - - -
Greedy 2.13 1.83 1.98 3.17 1.67 1.90 2.01 2.05 1.88 1.96 2.15 2.44

HSP 3.01 7.08 5.94 11.51 3.31 4.98 3.36 8.91 5.33 6.28 11.72 8.15
Our 1.50 1.45 1.25 1.38 1.18 1.21 1.13 1.15 1.45 1.31 1.19 1.24

Table 4: Total Execution Time of General Queries, Average over 400 Random Queries per Dataset, ms
Query Size (number of joins)

Yago Uniprot LibraryThing
Algo [10, 20) [20, 30) [30, 40) [40, 50] [10, 20) [20, 30) [30, 40) [40, 50] [10, 20) [20, 30) [30, 40) [40, 50]

Total Execution Time (out of this: Optimization Time)
DP 7745 (7130) - - - 9823(9323) - - - 8603(7809) - - -

DP-CS 65.7s(65.5s) - - - 82.6s(82.1s) - - - 69.5s(68.8s) - - -
Greedy 857 (133) 1236 (413) 2204 (838) 4145 (1194) 739 (155) 1220 (422) 2092 (927) 2840 (1180) 912 (142) 1615 (414) 2644 (918) 3885 (1201)

HSP 1025 (2) 3189 (3) 4102 (4) 10720 (5) 1160 (2) 2094 (3) 1952 (4) 7228(5) 2187 (2) 3852 (3) 9415 (4) 8970 (5)
Our 660 (150) 967 (315) 1211 (348) 2174 (890) 566 (153) 838 (330) 1356 (701) 1755 (820) 742 (148) 1105 (302) 1656 (697) 2177 (813)

7.6 Query Optimization: Arbitrary Queries
In Table 4 we present the total execution times for general queries

over three datasets. As for star queries, we report the average
execution time over 400 randomly generated queries per dataset;
the queries (and corresponding runtimes) are grouped by the query
size: from small (10 to 20 joins) to large (40 to 50 joins). Again,
the given time is a sum of both optimization and execution time; the
optimization time is also given separately in brackets after the total
time. The exact algorithms, DP and DP-CS did not scale for the
queries with more than 20 triple patterns (DP-CS takes more than
60 s on average for the queries with 10 to 20 joins), so we excluded
them from the comparison for the rest of the queries.

The total execution time of our algorithm is consistently the best
among all the competitors: it outperforms the exact DP and DP-CS
for small queries due to more efficient search space enumeration,
and gives better approximate solution to the join ordering problem
than any other heuristics (Greedy and HSP). We see that the pro-
posed algorithm scales linearly in the size of the query. Note that
here again the HSP is the fastest algorithm to get the query plan,
although the quality of its output is frequently the worst among
all competitors, so the total execution time for HSP planner is the
largest among all the heuristics and quickly gets worse as the query
grows.

In order to study the quality of output plans in more detail, we
present the ranking of execution time for general queries in Table 3.
The plans produced by our algorithm outperform the competitors
almost for all queries. For smaller queries (less than 20 triple pat-
terns) it approaches the quality of the DP-based algorithms, and fre-
quently outperforms them, since our Characteristic Pairs data struc-
ture captures correlations that are not available to the DP-based al-
gorithms. For larger queries, it is up to 11 times better than the
HSP algorithm. Note that using Characteristic Pairs with DP or
DP-CS is not really feasible, since it would increase the compile
time of this algorithms even more: the Pairs would have to be used
to estimate the cardinality for every subplan under consideration, as
opposed to our strategy to use it only between certain star-shaped
’blocks’ of the query.

7.7 Effect of individual techniques
Finally, we quantify the effect of two techniques presented in the

paper when used individually. Namely, we consider a query opti-
mizer that (i) uses only Hierarchical Characterisation (Only HC);

(ii) uses only Characteristic Pairs (Only CP); and (iii) uses both
of them (HC + CP). Table 7 reports the total execution time of
400 random queries of arbitrary shape over YAGO dataset for these
three setups.

We see that using the Characteristic Pairs in isolation from the
query simplification and Hierarchical Characterisation is infeasi-
ble: indeed, without simplification the CP structure has to be used
to estimate the cardinality of all the partial subplans during the
query optimization (and their number grows exponentially). Us-
ing Hierarchical Characterisation alone seems more promising, as
the query optimization time goes down a bit. However, without
Characteristic Pairs the optimizer sometimes misses the optimal or-
dering of the star-shaped subqueries, resulting in suboptimal query
plans. Finally, the combination of both techniques yields the best
performance of the resulting plans.

Table 7: Evaluation of Individual Techniques: Total Runtime of
400 Random Queries, ms

Query Size (number of joins)
Yago

Algo [10, 20) [20, 30) [30, 40) [40, 50]
Total Execution Time (Optimization Time)

Only CP 95876 (95332) - - -
Only HC 715 (120) 1102(300) 1503 (332) 2309 (875)
HC +CP 660(150) 967 (315) 1211 (348) 2174 (890)

8. CONCLUSIONS
We introduced a novel join ordering strategy for SPARQL queries

and showed that it outperforms the state-of-the-art solution in terms
of quality of produced plans and the planning time. More specif-
ically, the experiments have shown that it is possible to keep the
planning time very low while obtaining the query plans close to
optimal.

Our join ordering algorithm in its present form does not cover the
OPTIONAL clauses of SPARQL, which are equivalent to the left
outer joins and can not be freely reordered with other joins. Similar
issue arises when considering SPARQL’s property paths, which can
be viewed as non-equi joins.
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In this paper we consider static datasets. Since our data struc-
tures are merely statistical synopses for the query optimizer, the
support for dynamic RDF datasets should include background bulk
updates. These bulk updates include locating the characteristic sets
touched by the updates, changing their counts and potentially re-
iterating over their subsets. The detailed procedures for such bulk
updates are subject of future work.
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APPENDIX
The query with 18 triple patterns for the Yago dataset. It returns the
information about the German writer, novels he created, and further
art works linked to them:

select * where {
?s a yago:wikicategory_German_people_of_Brazilian_descent.
?s a yago:wikicategory_Nobel_laureates_in_Literature.
?s a yago:wikicategory_Technical_University_Munich_alumni.
?s yago:diedIn ?place. ?place yago:isLocatedIn ?country.
?s yago:created ?piece. ?piece yago:linksTo ?movie.
?movie a yago:wikicategory_1970s_drama_films.
?director yago:directed ?movie. ?director yago:hasWonPrize ?prize.
?piece yago:linksTo ?city. ?city yago:isLocatedIn yago:Italy. ?piece
yago:linksTo ?opera. ?opera a yago:wikicategory_Operas.
?s yago:influences ?person2.
?person2 a yago:wikicategory_Animal_rights_advocates.
?s yago:created ?piece3. ?piece3 yago:linksTo yago:New_York_City.
}
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