
Spatial Partitioning of Large Urban Road Networks

Tarique Anwar* Chengfei Liu* Hai L. Vu* Christopher Leckie†
*Swinburne University of Technology, Melbourne, Australia

{tanwar,cliu,hvu}@swin.edu.au
†University of Melbourne, Melbourne, Australia

caleckie@unimelb.edu.au

ABSTRACT
The rapid global migration of people towards urban areas
is multiplying the traffic volume on urban road networks.
As a result these networks are rapidly growing in size, in
which different sub-networks exhibit distinctive traffic flow
patterns. In this paper, we propose a scalable framework for
traffic congestion-based spatial partitioning of large urban
road networks. It aims to identify different sub-networks
or partitions that exhibit homogeneous traffic congestion
patterns internally, but heterogenous to others externally.
To this end, we develop a two-stage procedure within our
framework that first transforms the large road graph into
a well-structured and condensed supergraph via clustering
and link aggregation based on traffic density and adjacency
connectivity, respectively. We then devise a spectral theory
based novel graph cut (referred as �-Cut) to partition the
supergraph and compare its performance with that of an ex-
isting method for partitioning urban networks. Our results
show that the proposed method outperforms the normalized
cut based existing method in all the performance evaluation
metrics for small road networks and provides good results for
much larger networks where other methods may face serious
problems of time and space complexities.

Keywords
Graph partitioning; Road networks; Spectral clustering

1. INTRODUCTION
Traffic flow patterns in urban road networks have been

found to vary significantly in different sub-networks depend-
ing on two critical factors– i) spatial importance, and ii)
temporal importance. Usually roads of each locality, say
inside a suburb or part of a suburb in a city, experience
a specific traffic flow pattern regardless of the global flow.
For example, roads inside the city centre or any area having
popular venues like a monument or hospital, usually remain
more congested than others without any such significance.
Additionally, the congestion on roads connecting important

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

places of human gathering like airports, train stations, hos-
pitals, bus stops, etc., remains comparatively higher than
others. Similarly in the temporal perspective, roads usu-
ally remain busier and more congested in peak hours than
off-peak hours. As the sub-networks exhibit distinctive traf-
fic flow patterns, the traffic management decisions for each
sub-network need to reflect these differences.

These days the urban road networks are rapidly growing
in size and the congestion on them is significantly increas-
ing. Solutions are being explored to make the management
of these large networks easier by identifying the distinctively
congested areas and considering them as multiple small sub-
networks. Their identification further aids in studying and
analyzing the congestion and its evolving nature with re-
spect to time. Therefore, the congestion-based spatial parti-
tioning of urban road networks from a large data perspective
is becoming a problem of growing importance. Although
there exist many other kinds of information networks and
the application of graph partitioning on such networks has
been studied in the past [15, 8], the geospatial properties of
a road network associated with traffic flow patterns make a
unique kind of network [5]. The problem was recently raised
in the intelligent transportation systems (ITS) community
[5]. They contend that transportation networks have unique
dynamic features and an arbitrary clustering algorithm may
not produce the desired kind of partitions. In this paper we
present a framework for congestion-based spatial partition-
ing of large urban road networks. Same as [5], we consider
partitioning the network repeatedly at regular intervals of
time using static congestion measures. As we focus on large
road networks, scalability of the method for real-world ap-
plicability is also a major concern.

The partitioning framework is based on traffic congestion
measures on a road network defined by the vehicle density
per unit distance on each road segment. Its objective is
to identify the different heterogeneous regions of an urban
network which internally exhibit homogeneous traffic con-
gestion patterns. The method starts with transforming the
actual road network into a road graph, which is followed
by mining the road supergraph. Finally the supergraph is
subjected to a spectral theory based novel graph cut called
�-Cut to obtain the set of road segments partitioned into
several subsets called road network partitions. As the par-
titioning algorithm is applied on a supergraph with much
reduced order(number of supernodes), the framework be-
comes more scalable by managing the computational and
space complexity. In summary, we make the following con-
tributions in this paper.

– We mine a well-structured and condensed road super-

343 10.5441/002/edbt.2014.32

graph from the road graph. Its main advantage is in
making the partitioning method applicable on large
road networks where the number of road segments is
very large.

– To identify the optimal number of clusters for k-means
while forming the condensed supergraph, we devise a
measure to help find the optimal clustering.

– We devise a spectral theory based novel graph cut
called �-Cut to partition the road supergraph, which
outperforms normalized cut in our empirical study.

– Extensive experiments are performed on both small
and large road networks to establish its efficacy.

The rest of the paper is organized as follows. Section 2
presents some preliminary theories followed by the problem
definition. Section 3 presents the framework briefly. The
complete methodology is described in Sections 4 and 5. Ex-
perimental results are shown in Section 6, followed by related
work in Section 7. The paper is concluded in Section 8.

2. PRELIMINARIES
In this section, we present some preliminary theories on

road networks and then formulate the problem.

2.1 Road Networks and their Mathematical
Representation

Urban roads exist in the form of a physical network spa-
tially spread over a large urban area. To make it a machine-
interpretable network, we need to give it a mathematical
representation in the form of a graph, which we name as road
graph. The unique features associated with this kind of net-
work, like varying spatial importance of different roads and
the traffic flow being unidirectional on some roads whereas
bidirectional on others, make it a challenging task to give a
realistic mathematical representation. Previous works have
represented it in different graph-based structures that suited
the application area [7, 4]. Unlike the previously attempted
problems, the focus of spatial partitioning of road networks
is on the road segments and not the intersection points. A
trivial representation in the form of a graph by considering
roads as links and their intersection points as nodes makes
no sense as its partitioning results in subsets of intersection
points, which is not the objective. To make the represen-
tation applicable to spatial partitioning, we transform the
actual road network into its dual, which forms an undirected
road graph. A similar idea has been applied in [5].

Definition 1: (Road Network) A real urban road net-
work is defined as N = (ℐ,ℛ) comprising a set of inter-
section points ℐ = {�1, �2, . . . , �n�} as nodes that are con-
nected among themselves by the set of directed road seg-
ments ℛ = {r1, r2, . . . , rnr} as its links, where each road
segment ri associates the traffic density ri.d with itself. ■

Definition 2: (Road Graph) Given a road network N ,
the corresponding road graph G = (V, ℰ) is constructed as
the dual of N by adding each road segment ri as a node vi,
and establishing an undirected link ei between each possi-
ble node pair (vj , vk) if there exist at least one intersection
point �l which is a common intersection for the roads rj
and rk. Thus the links stand for the adjacency relationships
among the road segments. In this manner, the road net-
work components in a star topology form cliques in the road
graph, whereas the linear components remain in the same
topology. Each node vi (node(ri)) ∈ V associates with it a
feature value vi.f which is the road traffic density ri.d. ■

Most urban roads exist as two-way roads which are parti-
tioned into two parts from the middle for traffic of the two
opposite directions. Each of the two parts undergo differ-
ent kinds of traffic flow patterns. For example, on a road
that connects outskirts with the city center, the morning of-
fice hours would find more traffic heading towards the city
center whereas the evening office closing hours would find
more traffic in the opposite direction. To accommodate this
feature of the urban network, the two traffic directions are
considered as separate road segments that share common
intersection points and thus are adjacent. Figure 1 shows
an example of road network representation in which Figure
1(a) is a sample road map, Figure 1(b) is the corresponding
road network of those colored yellow in the map, and Figure
1(c) is the final representation called the road graph. To
keep it simple and easy to understand, the traffic direction
has not been taken into consideration and all the roads have
been considered as one-way roads. The road graph is stored
in the form of its n × n binary adjacency matrix AG using
sparse matrix representation.

2.2 Problem Definition
The problem of spatial partitioning of large urban road

networks is defined as splitting up a given large urban
road network based on traffic congestion measures into sev-
eral disjoint partitions, keeping intact the associated spatial
properties. The different partitions exhibit the property of
intra-partition congestion homogeneity and inter-partition
congestion heterogeneity. Let us suppose we have a real ur-
ban directed road network N , which is transformed into a
road graph G by following the method described in Section
2.1. This graph is then subjected to congestion-based spa-
tial partitioning. Before formally stating the problem on G,
we present three definitions.
Definition 3: (Cost of Partitioning) While partition-

ing the set of nodes V in a road graph G into different par-
titions P = {P1,P2, . . . ,Pk}, the cost of partitioning is de-
fined as the aggregation of affinity values of all possible node
pairs (vi, vj) for which vi and vj lie in different partitions in
the final result, where the affinity values are a measure of
congestion similarity between the pair of nodes. ■

Definition 4: (Partition Volume) Given a set of road
graph partitions P = {P1,P2, . . . ,Pk}, partition volume is
defined as the aggregation of affinity values of all possible
pairs (vi, vj) for which vi and vj lie in the same partition,
where the affinity values are a measure of congestion simi-
larity between the pair of nodes. ■

Definition 5: (Partition Connectivity) A partition Pl
is said to be connected if for any given node pairs (vi, vj) ∈
Pl there exists a path from vi to vj or vice versa. ■

The problem of congestion-based spatial partitioning of
a road graph G is to split its node set V into k partitions
(or subsets) P = {P1,P2, . . . ,Pk} such that the following
conditions hold.

C.1
∪k
i=1 Pi = V and Pi

∩
Pj = � for all i ∕= j;

C.2 each Pi is connected and all adjacency relations, except
the cross-partition relations, are maintained as in G;

C.3 the cost of partitioning of G is the minimum; and

C.4 the partition volume of G is the maximum.

In the above conditions, C.1 is a general condition of
grouping the set of nodes (or road segments) into k non-
overlapping subsets, C.2 introduces the spatial connectivity

344

Mary St

Chrystobel Cres

Lynch St

Burwood Rd

Manningtree Rd Oxley Rd

Burwood Rd

Liddiard St

W
ill

ia
m

 S
t

H
en

ry
 S

t

G
le

n
fe

rr
ie

 R
o

ad

(B1)

(B2) (B3)

(Ly1)

(My1)

(C1) (Ld1) (Ld2)

(G
1

)

(G
2

)
(G

3
)

(G
4

)

(Mn1) (O1)

(H
1

)

(W
1

)

(My1)

(C1)

(G1)

(G2)

(Ld1) (Ld2)

(H1)(W1)
(Ly1)

(G3)

(B1)

(G4)

(B2)

(Mn1) (O1)

(B3)

(a) Actual road map
(My1)

(C1)

(G1)

(G2)

(Ld1) (Ld2)

(H1)(W1)
(Ly1) (G3)

(B1)

(G4)

(B2)

(Mn1) (O1)

(B3)

Mary St

Chrystobel Cres

Lynch St

Burwood Rd

Manningtree Rd Oxley Rd

Burwood Rd

Liddiard St

W
ill

ia
m

 S
t

H
en

ry
 S

t

G
le

n
fe

rr
ie

 R
o

ad

(B1) (B2) (B3)

(Ly1)

(My1)

(C1) (Ld1) (Ld2)(G
1

)

(G
2

)
(G

3
)

(G
4

)

(Mn1)

(O1)

(H
1

)

(W
1

)

(b) Road network

(My1)

(C1)

(G1)

(G2)

(Ld1) (Ld2)

(H1)(W1)
(Ly1) (G3)

(B1)

(G4)

(B2)

(Mn1) (O1)

(B3)

Mary St

Chrystobel Cres

Lynch St

Burwood Rd

Manningtree Rd Oxley Rd

Burwood Rd

Liddiard St

W
ill

ia
m

 S
t

H
en

ry
 S

t

G
le

n
fe

rr
ie

 R
o

ad

(B1) (B2) (B3)

(Ly1)

(My1)

(C1) (Ld1) (Ld2)(G
1

)

(G
2

)
(G

3
)

(G
4

)

(Mn1)

(O1)

(H
1

)

(W
1

)

(c) Road graph

Figure 1: Mathematical representation of road networks

(or linkage) of nodes, C.3 enforces the condition of inter-
partition traffic congestion heterogeneity, and C.4 enforces
intra-partition traffic congestion homogeneity. A partition-
ing may not satisfy C.3 and C.4 together simultaneously,
and therefore the best possible trade-off has to be found.

3. FRAMEWORK
The task of road network partitioning can also be viewed

as similar to that of clustering road segments based on their
traffic density values. However, the main drawback of this
approach is that traditional clustering algorithms do not
take care of the associated spatial connectivities (connec-
tivity of road segments). Consequently we treat it as a 2-
level partitioning problem, in which the first level follows a
bottom-up approach considering only data in the form of
density values, whereas the second level follows a top-down
approach considering both the density data along with the
road segment connectivities.

The complete framework for spatial partitioning of road
networks, shown in Figure 2, comprises three different
modules– i) road graph construction, ii) road supergraph
mining, and iii) supergraph partitioning. The first module
deals with transforming the real road network N into a road
graph G to give it a mathematical representation, which is
explained as a preliminary step in Section 2.1. Due to the
large and rapidly expanding urban area, the size of an ur-
ban road network ∣ℛ∣ and the order of the corresponding
road graph ∣V∣ may become extremely large, which heavily
affects the computational and space complexity for parti-
tioning G. To address this problem, the framework follows
a 2-level partitioning.

The first level (which is the second module described in
Section 4) mines a road supergraph Gs from the road graph G
with a much reduced order following a bottom-up approach.
It goes through the steps of clustering feature values vi.f
using k-means in Section 4.1 and constructing the road su-
pergraph in Section 4.3.

Furthermore, an extended version of this module intro-
duces the concept of stable supernodes. A supernode is con-
sidered to be stable if its stability measure, defined later, is
above a predefined threshold. To have a stable supergraph,
all the supernodes that are found unstable are further split
up, which is repeated until they become stable. We can have
the supergraph of different structures as per the application
environment by varying the stability threshold. The sta-
bility threshold scale is also a trade-off between complexity
and accuracy. A lower threshold value reduces the complex-

Road segment densities

Supergraph Partitioning

Supernode partition set

α -Cut

Road segment partition set

Partition ExtractionRoad Graph Construction

Road Supergraph Mining

Optimal cluster set Supernodes Supergraph

Supergraph

construction

Supernode

creation
K-Means

Road map Road graph

Figure 2: Proposed spatial partitioning framework

ity by reducing the supergraph order while sacrificing some
level of accuracy by presuming all nodes inside a supernode
to belong to the same final partition. On the other hand a
higher value can give more accurate results at the cost of
computational and space complexity.

The last module of supergraph partitioning, described in
Section 5, is the second level partitioning that follows a top-
down approach to split up the supergraph into multiple het-
erogeneous partitions that are homogeneous within. It is
achieved by approximately optimizing a measure called �-
Cut, by following a spectral clustering based solution. It
produces supernode partitions, from which the road segment
partitions are extracted.

4. ROAD SUPERGRAPH MINING
A naive approach to obtain road network partitions is to

apply the partitioning algorithm on the road graph directly.
However, we reduce the load of partitioning by following a
2-level partitioning. The first level mines a condensed road
supergraph, before partitioning it in the second level.

The road segments inside a road sub-network or partition
are linked together. Any vehicle entering into a partition
through a road segment needs to go through the following
segments to cross the partition or reach the destination. It
makes the congestion pattern of a segment more likely to be
similar to (or dependent on) other (following or preceding)
segments inside the partition. Thus the similar spatial im-
portance of road segments within a partition leads them to
exhibit similar congestion patterns. That means if they are
grouped based on their traffic density measures, most of the
time, they could be expected to be grouped together. To
capture this aspect, before applying the partitioning algo-

345

rithm we group the segments based on their traffic density
measures to find their clustering pattern, and use them to
construct a condensed road supergraph. The following defi-
nitions present the idea of a supergraph used in this paper.

Definition 6: (Supernode) Given a road graph G =
(V, ℰ), a supernode &i having a feature value &i.f , is defined
as a set of nodes {vj} that exhibit the properties of being
similar in terms of their feature values {vj .f} (density mea-
sures), and interlinked together. ■

Definition 7: (Superlink) Given a road graph G =
(V, ℰ), a superlink "i is defined as a link between a pair
of supernodes (&p, &q), which exists only if there is at least
one link link(vx, vy) ∈ ℰ such that vx ∈ &p and vy ∈ &p. ■

Definition 8: (Road Supergraph) Given a road graph
G = (V, ℰ), a road supergraph Gs is defined as an or-
dered 3-tuple (Vs, ℰs,Ws), where Vs = {&1, &2, . . . , &n&} is
the set of supernodes comprising the set of road segments,
ℰs = {"1, "2, . . . , "n"} is the set of superlinks, and Ws =
{!1, !2, . . . , !n"} is the set of weights associated with each
of the corresponding superlinks, which is defined as a mea-
sure of congestion similarity between the pair of supernodes
connected by the superlink. ■

The task of mining the supergraph Gs = (Vs, ℰs,Ws) is
done in two steps. The first step deals with the feature val-
ues vi.f associated with each node in G to group them into
different clusters, whereas the second step uses these clus-
ters to construct the supergraph. The complete algorithm
is shown in Algorithm 1. The popular clustering algorithm
k-means is used to cluster the feature values associated with
the node set. A major problem with k-means is its require-
ment for a pre-determined number of clusters. We overcome
this problem by designing a novel optimality measure called
moderated clustering gain (MCG) to determine the optimal
number1 of clusters � for a dataset (line 6). Instead of con-
sidering the optimal value of �, we consider all those � for
which the MCG value lies above a threshold (lines 3–9), and
the one that produces the least number of supernodes is fi-
nally selected as optimal (lines 10–16). After creating the su-
pernodes and assigning their feature values as cluster means
from the optimal cluster set (lines 17–20), the superlinks in
between the supernodes are established and weighted (lines
21–25) to construct the supergraph (line 26).

4.1 Feature Value Clustering
This step looks into the feature values vi.f associated with

the nodes in G without considering its adjacency relation-
ships or connectivities with the intent to get a rough idea of
the partitions, which are refined in subsequent steps to find
the actual partitions. Let ℱ = {v1.f, v2.f, . . . , vnr .f} be the
set of feature values associated with the set of nodes V in G.
The objective is to extract information about grouping pat-
terns of the feature values, and therefore ℱ is treated with
the k-means clustering algorithm. It results in an organiza-
tion of feature values in the form of clusters. There are a
few limitations of k-means, and one of them is that it may
result in a clustering configuration having a local maxima
that may not be the global maxima. The outcome depends
on the initialization of cluster means. As we have the feature
values in a single dimension, we overcome this limitation by

1We use the Greek lowercase letter kappa (�) to refer the
number of clusters produced by k-means in Section 4.1, and
the English lowercase letter k to refer the number of parti-
tions produced by the framework.

Algorithm 1: Road supergraph mining (Road graph G,
optimality threshold ��)

1 AG ← adjacency matrix of G;
2 ℱ ← {v1.f, v2.f, . . . , vnr .f};

// shortlist cluster sets based on MCG threshold ��
3 %← �;
4 for �← 2 to (nr − 1) do
5 (C�, �(C�))← k-means(ℱ, �);
6 Θ(C�)← MCG of C�;
7 if Θ(C�) ≥ �� then
8 %� ← cluster indicator vector of C�;
9 %← % ∪ %�;

// select the optimal cluster set

10 %� ← �, C� ← �;

11 min← number of connected components in (%1, AG);
12 forall the %� ∈ % do
13 comp← number of connected components in (%�, AG);
14 if min > comp then
15 min← comp;

16 %� ← %�, C� ← C�;

// create supernodes and assign their feature values

17 Vs ← createSupernodes(%�, AG);

18 forall the C�i ∈ C
� do

19 forall the &j ∈ C�i do

20 &j .f ← �(C�i);

// establish superlinks and assign their weights
21 ℰs ← �, Ws ← �;
22 forall the link(vx, vy) ∈ ℰ do
23 if vx ∈ &p and vy ∈ &q and p ∕= q then
24 ℰs ← ℰs ∪ establisℎLink(&p, &q);
25 Ws ←Ws ∪ assignWeigℎt(&p, &q);

26 Gs ← (Vs, ℰs,Ws);
27 return Gs

firstly sorting the feature values vi.f ∈ ℱ and then initializ-
ing the cluster means with feature values at equal intervals.
That means, when we have nr number of sorted feature val-
ues, the mean of the jth cluster is initialized by vi.f , where
i = nr

�
× j, and the following steps remain the same as the

standard k-means algorithm.
As stated earlier, k-means needs to have a predetermined

number of clusters that has to be provided as input to the
algorithm. We address this problem by applying k-means
repeatedly with different values of � producing the set of
clusters as C� = {C�1 , C�2 , . . . , C��}. It starts with � = 2
incrementally and at each value an optimality test is per-
formed. The optimality test compares the MCG measure,
described in Section 4.2, with that computed in the preced-
ing iteration at �−1 and the following iteration at �+1. The
point where the value found is higher than both its preced-
ing and following points, represents a local optimality max-
ima. However there is no guarantee that it will serve as the
global optimality maxima. Applying k-means repeatedly on
a large dataset just to learn the optimal number of clusters
makes the method computationally very expensive, partic-
ularly in situations when the dataset is extremely large. To
overcome this problem, repetitive clustering is applied on a
randomly generated sample dataset, much smaller than the
actual dataset. Let � be the value of � that produces the
clustering configuration having the global optimality max-
ima. Instead of considering only the clustering configuration
at �, we consider all values of � for whom MCG lies above
a predefined threshold ��, which are passed on to the next
step to create supernodes in Section 4.3.

The computational complexity of k-means is O(tnd�),

346

where t is the number of iterations needed to converge, n
is the number of data items, d is the data dimension, and �
is the number of required clusters. In our case, d = 1, which
makes it O(tn�). Also � is usually very small.

4.2 Optimality Measure
In this section, we design an optimality measure to learn

the optimal number of clusters � suitable for a data set.
Let D = {d1, d2, . . . , d(nd)} be the dataset consisting of nd
data items, where each di has md feature values forming
an md-dimensional vector ⟨f1, f2, . . . , f(md)⟩. The global

mean �0 is a vector given by ⟨�0
1, �

0
2, . . . , �

0
(md)
⟩ where

�0
p = 1

nd

∑nd
i=1 di.fp corresponding to each feature fp. Let

C = {C1, C2, . . . , C�} be the set of clusters generated by
k-means, then the mean �q of each cluster Cq is a vec-
tor of feature means given by ⟨�q1, �

q
2, . . . , �

q
(md)
⟩ where

�qp = 1

∣Cq∣
∑
di∈Cq di.fp corresponding to each feature fp.

A measure called clustering balance ℰ(C), defined in [6], has
been found to be a good indicator for the optimal number of
clusters, outperforming previous measures. Another compa-
rable and computationally efficient measure called clustering
gain Δ(C) is defined in the same work. The optimal clus-
tering configuration is achieved at that value of � where the
clustering balance reaches its minimum, whereas clustering
gain reaches its maximum. Although these measures were
proposed for identifying optimality in hierarchical cluster-
ing, they were shown to be suitable for k-means too. In
our analysis we found that when these measures are applied
with k-means they produce a smaller number of sparse clus-
ters. In this work we extend and improve clustering gain to
make the clusters compact and far apart from others, named
as moderated clustering gain, denoted by Θ(C). Shown in
Equation 1, it is the summation of a value over all clus-
ters Cq, in which the value consists of two parts multiplied
by each other. The first part Θ1(Cq) is the clustering gain,
whereas the second part Θ2(Cq) is a function of the ratio of
intra-cluster and inter-cluster error sums. For each q ∈ [1, �],
the value of Θ2(Cq) lies in the range [0, 1] and it moderates
the value of Θ1(Cq) by reducing its effect accordingly.

MCG, Θ(C) =

�∑
q=1

(Θ1(Cq)×Θ2(Cq)) (1)

where, Θ1(Cq) = (∣Cq∣ − 1)
∥∥∥�q − �0

∥∥∥2
2

Θ2(Cq) =

⎛⎜⎜⎜⎝1− log2

⎛⎜⎜⎜⎝1 +

∑
di∈Cq

∥∥di − �q∥∥22
∣Cq∣ × ∥�q − �0∥22

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

The optimal number of clusters � is that value of � where
Θ(C) attains the maxima.

4.3 Supergraph Construction
Supergraph construction starts with creating supernodes,

then establishing weighted superlinks between them.

4.3.1 Supernode creation
Once the MCG measure for all values of � are computed

for the sample data, all those � for which the value lies
above a predefined threshold value ��, are considered for su-
pernode creation. The k-means algorithm is now applied on
the complete dataset with the shortlisted values of �. Let
% = {%� : Θ(C�) ≥ ��} be the set of clustering configura-
tion indicator vectors, where each %� is of length nr, and
the value of %�(i) indicates the cluster to which the node

vi belongs. These vectors along with the adjacency ma-
trix AG give the connectivity information of nodes. Nodes
vi and vj are considered as directly connected if they are
grouped in the same cluster by k-means and are adjacent
as well in the actual road network. Using this information
the total number of connected components is computed for
each %� and the clustering configuration having the mini-
mum number of connected components is finally selected as
the optimal %�. These components form the supernodes. A
lesser number of supernodes makes the framework more scal-
able for large networks. Therefore in order to get fewer but
informative supernodes, the method of supernode creation
selects that clustering configuration among the short-listed
ones as optimal, which leads to the lowest number of con-
nected components. We apply the standard FIFO based
connected components identification algorithm. Its compu-
tational complexity is O(max(nr, ne)), where nr and ne are
the total number of nodes (road segments) and edges (adja-
cency relationships) in the road graph respectively.

All the connected components corresponding to %� are
then considered as supernodes to form the set Vs =
{&1, &2, . . . , &n&}. Thus each cluster of nodes which is con-
nected as well in G is accepted as a supernode. Feature value
of each supernode is set as the mean of the cluster (given by
k-means) to which they belong, i.e., ∀&i ∈ C�j , &i.f = �(C�j).

Setting an appropriate optimality threshold value is cru-
cial to the complexity of the overall algorithm. A lower
value would lead to a large number of � for which the MCG
measure would be above the threshold, and would require
computing and storing a large number of clustering config-
uration indicator vectors. It may sometimes lead to have
fewer supernodes, but the cost of complexity for so many
clustering indicator vectors has to be borne. On the other
hand, a higher threshold would lead to fewer clustering indi-
cator vectors but may result in producing more supernodes,
which increases the complexity of the partitioning algorithm.

19

17

11

20

12

{10, 11} {16, 17, 18, 19}

{20} {15} {12}

Sim(10.5, 17.5)

Sim(10.5, 17.5)

Sim(10.5, 17.5)

Sim(10.5, 20)

Sim(20, 15) Sim(15, 12)

µ = 12.5

Unstable Supernode (Stability < threshold)

11 12 13 14

11 12 13 14 15

10 15

10

17

Stable Stable

11 12 13 14

Stable

Unstable

2018 19

13

1418

(a) Sample graph

17

Stable Stable

11 12 13 14
Stable

Unstable

2018 19

(b) Supernodes

Figure 3: Supernode stability check

4.3.2 An extension for supernode stability check
Sometimes the clustering and adjacency patterns of the

road graph G may lead to form supernodes that do not
guarantee the compactness and tightness of bonding that
we want to impose. Figure 3 shows such an example, in
which supernodes are formed from a sample graph after ap-
plying k-means with � = 2 (which is optimal as per our
MCG). The {11, 14} set is loosely bonded. Considering it as
a supernode will bind them together to belong to the same
final partition. However, as it is connected to both 17 and 18
of the other cluster, it may suit 14 more to be with them in
the final partition. Taking this matter into concern, here we
present an extended method that determines the stability of
created supernodes and splits them to make them reach a
desired stability. We define a measure called stability that
determines how much the nodes inside a supernode deserve
to be together by looking into the tightness of bonding. The

347

closer the nodes in a supernode are, the higher will be its
stability measure.

Algorithm 2: Supernode stability check(Supernode set
Vs, stability threshold ��)

1 stack ← initialize a stack;
// push all the supernodes to check their stability

2 forall the &i ∈ Vs do
3 push &i into stack;

// split the unstable supernodes until made stable
4 while stack is not empty do
5 &i ← pop from stack;
6 if �(&i) < �� then
7 &pre ← instantiate an empty supernode;
8 &post ← instantiate an empty supernode;
9 forall the vj ∈ &i do

10 if vj .f ≤ �(&i) then
11 add vj to &pre ;

12 else
13 add vj to &post ;

14 Vs ← Vs ∖ &i,Vs ← Vs ∪ &pre ∪ &post;
15 push &pre into stack, push &post into stack;

16 return Vs;

Definition 9: (Supernode Stability) The stability
measure �(&i) ∈ [0, 1] of a supernode is defined in Equa-
tion 2, where ∣&i∣ denotes the number of nodes vj in &i and
�(&i) denotes the mean of feature values vj .f of all nodes
in &i. The supernode &i is said to be stable if its stability
measure is greater than or equal to a pre-defined stability
threshold ��, else it is said to be unstable. ■

�(&i) =
1

∣&i∣
×
∑
vj∈&i

exp

(
−abs

(
vj .f + 1

�(&i) + 1
− 1

))
(2)

The above formulation looks into the distance of all nodes
from the supernode centroid by the ratio of their feature val-
ues to their supernode mean values, and then takes their av-
erage value. The 1s are added in the numerator and denom-
inator to avoid the zero values. It would yield its value as 1
when all the nodes inside the supernode have their feature
values same as the supernode mean, and lower as much as
the node feature values go far from the supernode mean up
to 0. The LIFO based stability check algorithm is shown in
Algorithm 2. All stable supernodes are accepted right away
retaining their existing feature value &i.f (lines 5–6). How-
ever the unstable supernodes are further processed to split
up into two parts from its centroid (lines 7–13). They are
created as two independent supernodes and again checked to
confirm their stability (lines 14–15). The interleaved steps of
stability checking (lines 5–6) and their splitting into two su-
pernodes from the centroid (lines 7–15) goes on indefinitely
until all of them are made stable. The supernodes that were
unstable earlier and made stable this way, their means be-
come their new feature values, i.e. &i.f = �(&i). Thus the

newly formed set of supernodes is Vs =
{
&1, &2, . . . , &n′&

}
,

where n′& ∈ [n& , nr]. The exact gaps between n& and n′& , and
n′& and nr, depend on the imposed stability threshold ��. It
has two extremes. When it is set to 1, the set of all nodes in
the road graph G that have the same feature value vi.f as
well as are linked directly by an edge, is accepted as a com-
plete supernode. In extreme case n′& could be equal to nr
if no two nodes have the same feature value. On the other
hand when it is set to 0, all connected components obtained
using the optimal clustering configuration indicator vector
%� are considered as supernodes as if without any stability

check where n′& = n& . Setting the stability threshold is based
on the trade-off between quality and complexity. The worst
case complexity of this task is O(2nr − n&) when all the su-
pernodes are split up repeatedly until only single nodes are
left in each supernode, whereas the best case complexity is
O(n&) when no supernode needs to be split.

4.3.3 Superlink establishment
For the obtained set of supernodes Vs and the available

road graph G, let ℒpq be the set of links {ej = link(vx, vy)}
existing between all vx ∈ &p and all vy ∈ &q. A su-
perlink "i is established between each pair of supernodes
(&p, &q), for which the condition ℒpq ∕= � is fulfilled (Al-
gorithm 1, lines 21–25). The set of superlinks is denoted
by ℰs = {"1, "2, . . . , "n"}. At the same time, each super-
link "i is weighted by a value !i ∈ [0, 1] in Equation 3,
where ∣ℒpq∣ denotes the number of links in ℒpq, &p.f and
&q.f are the feature values of &p and &q respectively, and

�2(&) = 1
n&
×
∑n&
i=1

(
&i.f − �0

)2
is the variance of supernode

features with respect to the global mean �0.

!i =

√√√√⎷ 1

∣ℒpq∣
×

∑
ej∈ℒpq

(
exp

(
− (&p.f − &q.f)2

2× �2(&)

))2

(3)

The above formulation is in the form of a Gaussian func-
tion that assigns a similarity measure between the two su-
pernodes of each linked pair, and takes their average value.
The effect of individual links on the weight is high if the
supernodes connected by the link have closer feature values,
and low otherwise. The normalization by ∣ℒpq∣ normalizes
the bias towards the supernode pairs having large number of
links but highly dissimilar feature values. Thus the overall
weight considers both the number of individual links be-
tween the participating supernodes and their feature values,
where larger number of links and closer supernode feature
values together lead to higher superlink weight. The set of
computed weights associated with each superlink is denoted
by Ws = {!1, !2, . . . , !n"}. Hence the supergraph mining
step becomes complete producing Gs = (Vs, ℰs,Ws) (Algo-
rithm 1, lines 26–27).

5. ROAD SUPERGRAPH PARTITIONING
Although a preliminary level of grouping of road segments

has already happened in the form of supernodes, the number
of supernodes still can be very large. Moreover, the linkages
that represent the spatial associations have remained under-
utilized, as they have just directly been employed in supern-
ode creation until this stage. This step aims to group the set
of supernodes into different partitions in a top-down man-
ner by using the superlinks by which they are connected.
These different supernode partitions are obtained as con-
nected within, and this in turn achieves the ultimate objec-
tive of getting partitions as node partitions where spatial
adjacencies are maintained.

5.1 Spectral Clustering for Partitioning
Spectral clustering treats clustering as a graph partition-

ing problem. In our case, we already have a graph that we
want to partition. Among the existing graph cuts, normal-
ized cut has been found to be comparatively effective for
graph partitioning, due to the reason that it optimizes both
the intra-partition homogeneity and inter-partition hetero-
geneity at the same point [11, 5]. Its optimization function

348

minP
∑k
i=0

W (Pi,Pi)
W (Pi,P)

is a normalized summation of the cross-

partition weighted links, where the normalization is done by
all the weighted links having at least one end in the cor-
responding partition. In this function, both the numerator
and denominator take into account just the weighted links,
and no consideration is made for the node groupings (or
node counts) in the resulting partitions. The links in our
road graph are established only if they are adjacent in the
road network, and thus the superlinks too are based on ad-
jacency relationships. To partition the graph based on both
weighted links and node counts in resulting partitions, in the
next section we propose a novel k-way graph cut. Instead
of repeated bipartitioning of the whole graph, it produces
k′(> k) partitions in just a single iteration, and then ap-
plies recursive bipartitioning to produce k partitions, which
significantly improves its efficiency.

5.2 The k-way �-Cut
For a given weighted graph, which in our case is the super-

graph Gs, let us suppose its supernode set is partitioned into
k disjoint subsets or clusters as P = {P1,P2, . . . ,Pk}. The
adjacency matrix of Gs is denoted by A, the degree matrix is
denoted by D, which is a diagonal matrix having row sums
of A at the diagonal, and the Laplacian matrix (D − A) is
denoted by L. A function W (Pi,Pj) is defined in Equation
4 as the sum of weights associated with all the superlinks
having its supernode at one end in Pi and the supernode at
the other end in Pj .

W (Pi,Pj) =
∑

"r∈{SLinks(Pi,Pj)}
!r =

∑
&p∈Pi,&q∈Pj

A(p, q) (4)

Definition 10: (Cut) For a given partition set P =
{P1,P2, . . . ,Pk} the cut of a partition Pi is defined as the
summation of weights associated with all the superlinks hav-
ing their supernodes at one end in Pi and supernodes at
other end in any partition other than Pi, i.e., W (Pi,Pi). ■

Definition 11: (Association) For a given partition set
P = {P1,P2, . . . ,Pk} the association of a partition Pi is
defined as the summation of weights associated with all
the superlinks having supernodes at both ends in Pi, i.e.
W (Pi,Pi). ■

The cut value of a partition Pi gives a measure of con-
nectivity strength between Pi and the rest of the partitions,
and thus quantifies the loss incurred in cutting those super-
link connections while partitioning the graph. When this
value is divided by the number of supernodes in Pi, it gives
the average contribution of each supernode in the overall cut
of Pi. It represents the inter-partition similarity. Similarly,
the association value of a partition Pi gives a measure of
connectivity strength within Pi that binds it as a unit, and
thus quantifies the retained association of Pi after partition-
ing the graph. When this value is divided by the number of
supernodes in Pi, it gives the average contribution of each
supernode in the overall association of Pi. It represents the
intra-partition similarity. A good partitioning is achieved by
minimizing the summation of average cut values and simul-
taneously maximizing the summation of average association
values of each partition [11]. However, optimizing any one of
these objectives does not guarantee the other. One possible
approach is that of normalized cut [11]. It minimizes inter-
partition similarity and maximizes intra-partition similarity
simultaneously. But that optimization is based on normal-
ized values of cut and association, where the normalization

considers the link connectivities between nodes, instead of
the nodes directly, and it does not guarantee the optimiza-
tion of their average cut and association.

To achieve a well balanced optimization of both average
cut and average association, in this paper we design a novel
k-way graph cut called �-Cut. It aims to achieve a par-
titioning configuration optimized by the objective function
minP �-Cut(P), where �-Cut(P) is shown in Equation 5.

�-Cut(P) =
k∑
i=1

(
�×

W (Pi,Pi)
∣Pi∣

− (1− �)×
W (Pi,Pi)
∣Pi∣

)
(5)

It minimizes a combination of two components, which can be
separated as minimization of average cut representing inter-
partition similarity, and maximization of average association
representing intra-partition similarity. The factor � ∈ [0, 1]
acts as a balance between the two parts, and its value is
crucial to obtain the best possible optimized partitions.

5.3 Determining � in �-Cut
Instead of considering � as a single constant value

for all the partitions, we consider it as a vector � =
⟨�1, �2, . . . , �k⟩, where each �i corresponds to the partition
Pi. The advantage in considering it as a vector over a single
constant value is its dynamic adjustment depending on the
nature of the concerned partition. We consider this factor
�i as the portion of connectivity weight contributed by Pi
in the whole supergraph (including intra-connections as well
as inter-connections), and define it as the ratio of the sum-
mation of its superlink connection weights to the summation
of all superlink connection weights in the supergraph, i.e.,

�i = W (Pi,Vs)
W (Vs,Vs) . Its value ranges from 0 to 1. On the other

hand, (1 − �i) gives the portion of the connectivity weight
contributed by all partitions other than Pi. Putting this
value of �i in Equation 5, �-Cut simplifies as below.

�-Cut(P) =
k∑
i=1

(
W (Pi,Vs)
W (Vs,Vs)

×
W (Pi,Pi)
∣Pi∣

−
W (Pi,Pi)
∣Pi∣

+
W (Pi,Vs)
W (Vs,Vs)

×
W (Pi,Pi)
∣Pi∣

)

=
k∑
i=1

(
W (Pi,Vs)
W (Vs,Vs)

×
W (Pi,Vs)
∣Pi∣

−
W (Pi,Pi)
∣Pi∣

)
Like normalized cut [11], the problem to achieve a par-

titioning configuration which minimizes this cost is an NP-
complete problem. To solve it in a time-bound and compu-
tationally efficient manner, we follow a spectral clustering
approach described in the following subsection.

5.4 Spectral Clustering Approach to �-Cut
If P = {P1,P2, . . . ,Pk} is the set of k disjoint partitions

of Gs, let 1 ∈ ℝn& be a vector with each of its values as 1,
and ci ∈ ℝn& be the cluster indicator vector of Pi such that
its jth value ci(j) = 1, if &j ∈ Pi, and ci(j) = 0 otherwise.

The spectral clustering approach to minimize the cost
of �-Cut partitioning follows a relaxed approach based on
eigenvectors and eigenvalues. The relaxation lies in the clus-
ter indicator vectors, which are allowed to take on any real
value, instead of restricting them only to discrete values.
Using the cluster indicator vectors, the �-Cut formulation
can be simplified as follows.

�-Cut(P)=
k∑
i=1

1

cTi ci
×

⎛⎜⎝
(
1TDci

)2

1TD1
− cTi Aci

⎞⎟⎠

=

k∑
i=1

cTi Mci

cTi ci
,where M =

⎛⎜⎝
(
1TD

)T (
1TD

)
1TD1

− A

⎞⎟⎠ (6)

349

Algorithm 3: �-Cut Partitioning(Supergraph Gs, num-
ber of desired partitions k)

1 A← adjacency matrix of Gs;
2 D ← degree matrix of Gs;

3 M ←
((

1TD
)T (

1TD
)

1TD1
− A

)
; // get the �-Cut matrix

4
∪n&
i=1 {(yi, �i)} ← get eigenvector and eigenvalue pairs of M ;

5 sort eigenvalues �i to have �n& ≤ �n&−1 ≤ ⋅ ⋅ ⋅ ≤ �1;

6 select {�n& , �n&−1, . . . , �n&−k+1} eigenvalues and

corresponding eigenvectors {yn& , yn&−1, . . . , yn&−k+1};
7 generate matrix Yn&×k =

(
y1 y2 . . . yk

)
;

8 Z ← row normalize Y ;

9
{
z1, z2, . . . , zn&

}
← get row vectors of Z;

10 C = {C1, C2, . . . , Ck} ← k-means
({
z1, z2, . . . , zn&

}
, k
)
;

11 P = {P1,P2, . . . ,Pk′} ← get disjoint partitions from C;
// global recursive bipartitioning to obtain k partitions

12 A′
k′×k′ ← compute partition connectivity matrix of P;

13 queue← initialize a queue;

14 partition set P ← initialize with a single partition of A′;

15 enqueue A′ into queue;
16 repeat
17 A′ ← dequeue from queue;

18 (P1,P2)← bipartition A′ using �-Cut;

19 A′1 ← create adjacency matrix for P1;

20 A′2 ← create adjacency matrix for P2;

21 enqueue A′1 into queue, enqueue A′2 into queue;

22 P ← P∖ partition of A′;
23 P ← P ∪ P1 ∪ P2;

24 until number of partitions in P equals to k;
25 return P;

The derived matrix M is called the �-Cut matrix for �i =
W (Pi,Vs)
W (Vs,Vs) , and the spectral clustering algorithm works on this

matrix. Equation 6 is further simplified as
∑k
i=1

cTi Mci
∥ci∥2

=∑k
i=1

(
ci
∣ci∣

)T
M
(
ci
∣ci∣

)
=
∑k
i=1 y

T
i Myi, where yi is a unit

vector in the direction of ci, such that yTi yi = 1. Hence the
optimization function becomes

min
P

k∑
i=1

y
T
i Myi subject to y

T
i yi = 1 (7)

This can be solved by setting its derivative with respect to
yi to zero and introducing a Lagrange multiplier �i for each
Pi to incorporate the associated constraint [14]. Following
the method in [14], the objective is achieved by selecting
the k smallest eigenvalues from the total of n& eigenvalues
as �n& ≤ �n&−1 ≤ ⋅ ⋅ ⋅ ≤ �n&−k+1 and corresponding eigen-
vectors yn& , yn&−1, . . . , yn&−k+1 which represent the relaxed
cluster indicator vectors.

Algorithm 3 presents the complete partitioning method,
where the �-Cut matrix is computed in line 3 and eigen-
decomposed in line 4. Lines 5–6 select the k smallest eigen-
values and corresponding eigenvectors. Ideally the indicator
vectors should have only binary values, but the actually ob-
tained indicator vectors are in fact the relaxed vectors and
do not follow the binary pattern. Due to the lack of concrete
information about clusters, it becomes another problem to
separate the k clusters. Here we assume that the clusters
are well-separated in the k-dimensional eigenspace, which is
a general assumption in spectral clustering [14], and use the
eigenvectors (or indicator vectors) to generate a matrix Y
of n& × k dimensions (line 7). It is then row-normalized us-
ing Equation 8 to have row-vectors zi of unit length giving
the final matrix Z (line 8). Each row-vector zi represents
a supernode &i. The set of row-vectors are used to cluster

the supernodes by applying k-means to find a set of k clus-
ters C = {C1, C2, . . . , Ck} (lines 9–10), where each cluster Ci
comprises one or more row vectors (supernodes) in Z. The
supernodes inside each cluster are linked together as they ex-
ist in the supergraph. Upon linking them, sometimes even
more than one connected components may be found inside
a single cluster. These connected components are extracted
from each cluster to form disjoint partitions (line 11).

Y =

⎛⎜⎝y11 y21 . . . yk1
y12 y22 . . . yk2
∣ ∣ ∣
y1n y2n . . . ymn

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎝
— zT1 —

— zT2 —

.

.

.

— zTn —

⎞⎟⎟⎟⎟⎠ = Z (8)

where, zi =
1√√√⎷ k∑

j=1

y2ji

(y1i, y2i, . . . , ymi)
T

Depending on data, the number of disjoint partitions may
sometimes be large, which would yield the partition set from
C as P = {P1,P2, . . . ,Pk′}, where k′ ≥ k. These k′ parti-
tions may be accepted as the final result. However, if the
requirement to have exactly k partitions is strict, there are
two approaches as described in [11]– i) greedy pruning, and
ii) global recursive bipartitioning. The greedy pruning ap-
proach iteratively merges the two nearest partitions opti-
mizing the defined graph cut, until it results in a total of
k partitions. In contrast, the global recursive bipartition-
ing approach generates a condensed graph where each parti-
tion forms a node and adjacent partitions are connected by
weighted links with W (Pi,Pj) as the weight, and is recur-
sively bipartitioned until it results in a total of k partitions.
For large k′ values, the greedy pruning approach is compu-
tationally intensive. Therefore we follow the global recursive
bipartitioning approach.

It begins with computing a partition connectivity ma-
trix A′ of dimension k′ × k′ (line 12). Its values are
computed as connectivity strengths between the partitions

A′(i, j) =
√

1
numadj(Pi,Pj)

×
∑
&p∈Pi,&q∈Pj (A (p, q))2, where

numadj(Pi,Pj) gives the number of supernode adjacency re-
lationships between the supernodes of Pi and Pj . This value
automatically becomes zero for the pair of partitions that
do not share any adjacency relationship. We use a queue to
recursively apply the bipartitioning (lines 13–24). The �-
Cut algorithm is applied on A′ to have two partitions (line
18). Nodes of A′ (old partitions) belonging to each parti-
tion (new partition) are separated, and two new matrices are
created by separating the corresponding rows and columns
of A′, such that the sum of dimensions of the two new ma-
trices equals to the dimension of A′ (lines 19–20). Each
matrix now represents one partition. The bipartitioning is
again applied on each matrix individually to yield more than
two partitions. These interleaved steps of bipartitioning and
matrix creation are repeated until the total number of final
partitions equals k (lines 16–24).

The computational complexity of eigen-decomposition is
O(n3) in general and O(n2) for sparse matrices. The appli-
cation of k-means on row-vectors to find the clusters costs
O(tnk2). In these costs, n = n& when the spectral clustering
is applied on the supergraph, and n = nr when it is applied
directly on the road graph.

6. EXPERIMENTAL EVALUATION

350

In this section, we evaluate the proposed framework in
terms of different evaluation metrics. Although there exist
many works on general graph partitioning, we compare our
results to a recent work [5], which is on the same problem,
for a close and specific comparison.

6.1 Datasets
We perform experiments on two kinds of datasets, small

(D1) and large (M1, M2, and M3) road networks. Table 1 shows
the statistics of all these datasets. The traffic on the small
network, shared by the authors of [5], is based on a micro-
simulation performed for 4 hours at 120 time intervals of 2
minutes. At each time point t, the traffic density on each
road segment is computed in terms of vehicle/metre. In
this work we perform experiments at t = 71 to compare our
results with [5] which used the same dataset.

Table 1: Dataset statistics
D1 M1 M2 M3

Place Downtown
San Francisco

CBD Mel-
bourne

CBD(+)
Melbourne

Melbourne

Area (sq. ml.) 2.5 6.6 31.5 42.03
Road seg 420 17,206 53,494 79,487
Intersection pt 237 10,096 28,465 42,321

The traffic data for the large networks is generated by a
web-based2 random road traffic generator MNTG [10]. We
populate M1, M2, and M3 by 25,246, 62,300, and 84,999 vehi-
cles respectively, and obtain their trajectories for 100 contin-
uous timestamps. A self-designed program is used to map
their positions to corresponding road segments, and com-
pute the traffic density of road segments (in terms of vehi-
cles/metre) at each point of time.

6.2 Evaluation Metrics
The partitioning framework is evaluated using metrics

that quantify the quality of results from different perspec-
tives. The problem defined in Section 2.2 intends to achieve
four different conditions. As we obtain results in the form
of disjoint and connected road network partitions, C.1 and
C.2 are automatically fulfilled. C.3 which enforces inter-
partition heterogeneity is evaluated by the inter metric3. It
is the average of inter-partition distances between each pair
of spatially adjacent partitions, where the inter-partition dis-
tance is the average absolute distance between nodes from
the respective pair of adjacent partitions. C.4 which en-
forces intra-partition homogeneity is evaluated by the intra
metric4. For each partition, it computes the intra-partition
distance as the average absolute distance between the pair
of nodes, and then takes the average of that computed for
all the partitions.

Additionally, we also evaluate the overall partitioning.
The standard metrics of cluster evaluation do not take
the associated spatial adjacencies into account. For its
proper evaluation, we use two metrics derived from the
standard cluster evaluation metrics to make them suitable
for the graph partitioning problem. They are the graph

2It can be accessed through http://mntg.cs.umn.edu/tg/

3
Inter(P) = 1

count(adj)
×

∑
Pi,Pj∈P

Pi
adj
←−−→Pj

∑
vp∈Pi

∑
vq∈Pj

abs(vp.f − vq.f)

∣∣Pi∣∣ ⋅ ∣∣∣Pj ∣∣∣

4
Intra(P) = 1

∣P∣ ×
∑
Pi∈P

∑
vp,vq∈Pi
p ∕=q

abs(vp.f − vq.f)

∣∣Pi∣∣ ⋅ (∣∣Pi∣∣ − 1
)

Davies-Bouldin index (GDBI)5 based on Davis-Bouldin in-
dex (DBI), and the average NcutSilhouette (ANS) measure
defined in [5] especially for partition evaluation. In both
these measures, smaller values indicate better partitioning.

6.3 Experimental Results on Small Networks
We perform experiments on the small road network D1 to

compare the partitioning quality of our �-Cut based par-
titioning framework with other state-of-the-art techniques
using performance evaluation metrics listed in Section 6.2,
and demonstrate its effectiveness. For an exhaustive analysis
from different perspectives we present the results obtained
on several different schemes. Here we introduce the nota-
tions used for those schemes. AG and NG are the schemes
when �-Cut and normalized cut are applied directly on the
road graph respectively, and ASG and NSG are the schemes
when �-Cut and normalized cut are applied on the road su-
pergraph with no stability check respectively.

Results in this section are the median values of evalua-
tion metrics obtained from 100 execution of the algorithm.
The reason is that k-means (used to cluster eigenvectors)
may sometimes produce slightly different results in different
executions because of randomized cluster initialization.

We consider NG as the baseline, and comparatively show
our results. Figure 4 shows the complete results of AG and
ASG in comparison to NG in terms of evaluation metrics for
the number of partitions k ranging from 2 to 20. GDBI and
ANS measures quantify the overall partitioning quality. In
terms of both these measures, both AG and ASG schemes of
our framework outperform NG at all values of k. Also in
terms of intra, that quantifies intra-partition homogeneity,
we outperform NG. In terms of inter, that quantifies inter-
partition heterogeneity, AG outperforms NG at all values ex-
cept k = 2, whereas ASG outperforms at all values.

The overall partitioning quality is evaluated by GDBI and
ANS, which consider both the inter-partition heterogeneity
and intra-partition homogeneity simultaneously. As stated
earlier, lower values indicate better partitioning for both
these measures. In both the Figures 4(c) and 4(d), AG is
much lower than NG at all values of k. The GDBI measure
increases with increasing k, but this is not the case with
ANS. In [5], the authors used the ANS measure to learn the
number of optimal partitions. They accept the value of k
that leads to the ANS minima as the optimal number of
partitions, which in this case is 6 for AG and 8 for NG. The
minima of AG being much lower than that of NG, is found as
the better performer. As the schemes AG and NG applies �-
Cut and normalized cut respectively directly on the graph,
the obtained results shows the superiority of �-Cut.

The supergraph technique, as said earlier, is to make the
framework applicable for large road networks, in which we
may need to compromise the quality to some extent. Here
we show the effects of the supergraph on the partitioning
quality. Figure 6(a) shows the stability measures �(&) of the
105 supernodes. When the stability threshold �� = 0, the
partitioning scheme behaves as ASG, whereas �� = 1 makes
it behave as AG. The figure, which also presents the results

5
GDBI(P) =

∑
Pi∈P

∑
Pj∈neigh(Pi)

⎧⎨⎩ S(Pi) + S(Pj)

S(Pi,Pj)

⎫⎬⎭
∣P∣ , where neigh(Pi)

returns the partitions that are spatially adjacent to Pi, S(Pi)
returns the average distance of nodes in Pi from its mean,
and S(Pi,Pj) returns the distance between their means.

351

0

10

20

30

40

50

60

70

80

2 4 6 8 10 12 14 16 18 20

In
te

r

k

AG ASG NG

(a) Inter

0

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18 20
In

tr
a

k

AG ASG NG

(b) Intra

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16 18 20

G
D

B
I (

in
 h

u
n

d
re

d
s)

k

AG ASG NG

(c) GDBI

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2 4 6 8 10 12 14 16 18 20

A
N

S

k

AG ASG NG

(d) ANS

Figure 4: Road graph and supergraph partitioning
results in small networks

obtained by ASG, shows how the inclusion of the supergraph
technique affects the partitioning. The GDBI and ANS plots
show that partitioning a network by ASG is qualitatively al-
most the same as that by AG. However, AG generally lies
below ASG in the ANS plot indicating its superiority. At few
points (k = 4, 5) in Figure 4(d), ASG is better than AG.
The reason is that those values do not suit the dataset for
partitioning and therefore sometimes it takes place arbitrar-
ily. Applying the stability check on the supergraph with any
value between 0 to 1 as its threshold results in a partitioning
that is qualitatively between AG and ASG.

To summarize the overall results, like Ji and Geroliminis
[5], we consider the ANS measure as the deciding factor for
the optimal number of partitions. We now compare the best
(lowest) ANS measures (which gives the optimal partition-
ing) of all the schemes along with [5]. Table 2 shows that
both of our schemes AG and ASG are much lower (better)
than NG and [5]. As Ji and Geroliminis perform additional
adjustments after partitioning by normalized cut, their par-
titions are somewhat improved in quality than NG, but even
then our method outperforms theirs.

Table 2: Overall quality of partitioning
Scheme ANS k Scheme ANS k

AG 0.3392 6 NG 0.9362 8
ASG 0.3526 6 Ji and Geroliminis [5] 0.6210 3

We can also look into the partitioning quality more closely
in Figures 4(a) and 4(b), which show the inter-partition and
intra-partition distances separately. As we want to obtain a
partition set having the highest possible inter-partition dis-
tances, higher values of inter indicate better partitioning.
Except k = 2, at all values of k in the range, AG has higher
values than NG. Thus if the optimal number of partitions for
this data comes out to be 2, which is not true (found as
6 in previous paragraphs), NG outperforms AG in terms of
this measure. The value of AG increases rapidly until k = 6,
which is the maxima. After that point it decreases rapidly

again, and gradually comes to relatively stable values. The
maxima of AG for inter lies at k = 6 which coincides with
the minima of ANS. Another perspective to evaluate the
partitioning is to look into the intra-partition distances us-
ing intra. As our objective is to minimize intra-partition
distances, lower values are an indicator of better partition-
ing. In the figure we can see that at all values of k in the
range, AG has lower values than NG.

In the curve of ASG of inter, there is a sudden rise at k = 2,
but then it comes down in between AG and NG. Similarly intra
fluctuates over the initial values of k, after which it comes
in between the other two, whereas at higher values its trend
becomes similar to NG. The reason for the abnormal behavior
at the initial values is that they do not suit the dataset
for partitioning by the �-Cut. When the partitioning is
applied at those values, it takes place arbitrarily for some
instances, which makes it behave abnormally. As is evident
from the ANS plot, the initial values of k are not so good
for partitioning.

6.4 Experimental Results on Large Networks
We perform experiments on large road networks M1, M2 and

M3 to validate the scalability of our framework. Additionally,
we also show that the quality of partitioning large networks
is comparable to that of partitioning small networks.

Figure 5 shows the MCG measures and the number of
supernodes obtained from the cluster sets produced by k-
means at different values of � on M1 and M2. At the initial
values, the MCG measure rises steeply up to some point, be-
yond which there is little change. In case of M1, the maxima
2326.88 is attained at � = 18, after which it starts declining
gradually, but the major rise is only up to � = 5. As higher
MCG measures indicate better clustering, the best quality
cluster set of M1 is obtained at � = 18, but those obtained at
lower values, up to � = 5 with an MCG measure of 2075.16,
do not differ much in quality. If we look into the number
of obtained supernodes, it increases monotonically with the
increasing value of �. As having larger number of supern-
odes adds on complexity to the remaining partitioning task,
it is worth choosing the value of � after which there is little
increase in MCG. We get this value by fixing the optimality
threshold �� to 2000 for M1 and 5000 for M2. It leads to an
optimal � of 5 for both datasets, and the obtained number
of supernodes are 2,081 and 5,391 respectively. Thus our
supergraph technique reduces the adjacency matrix dimen-
sion from 17,206 and 53,494 to 2,081 and 5,391 for M1 and
M2 respectively. Similarly, the optimal � for M3 is found as
5, which produces 9179 supernodes. This significantly re-
duces both the space and time complexity, and if required
the complexity can further be reduced by selecting a lower
�, in which the partitioning quality may degrade to some ex-
tent. Figure 6(b) shows the supernode stability measures of
5391 supernodes of the M2 dataset. We can see that most su-
pernodes are highly stable. Therefore we proceed with these
supernodes for supergraph construction and its partitioning
by �-Cut.

Figure 7 shows the final partitioning results obtained for
all the three large datasets. The plots show the measures
of respective metrics in Y-axis at different values of k. As
shown in Figures 7(b), 7(d), and 7(f), we get the best (low-
est) ANS measures of 0.423 at k = 4, 0.511 at k = 5, and
0.512 at k = 5 on M1, M2, and M3, respectively. These values
are not as good as we found on small networks (AG- 0.3392

352

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19

(i
n

 t
h

o
u

sa
n

d
s)

κ

MCG Supernodes

(a) M1

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19
(i

n
 t

h
o

u
sa

n
d

s)

κ

MCG Supernodes

(b) M2

Figure 5: MCG measure and number of supernodes
in large networks

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

St
ab

ili
ty

Supernode ID

(a) D1

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000

St
ab

ili
ty

Supernode ID

(b) M2

Figure 6: Stability measure of supernodes

and ASG- 0.3526) in Section 6.3, but still they are much bet-
ter than the small network baseline results (NG- 0.9362, [5]-
0.6210). Moreover, results indicate that the partitioning of
M1 is qualitatively better than that of M2 and M3, but worse
than that of D1. It shows that as the size of the road network
increases, the partitioning quality decreases.

As we get the lowest ANS measure for M1 at k = 4, the best
possible way to partition this network is to divide it into 4
segments as produced by our framework, each of which ex-
hibit distinctive traffic congestion inside. However, if the
congestion pattern has to be analyzed more closely, we can
also have more partitions, and k = 7, 9, 13, . . . being the lo-
cal minima serve as good candidates for the number of par-
titions. Similarly, some other suitable candidates for having
a good congestion-based partitioning are k = 7, 9, 12, 14, . . .
for M2, and k = 9, 11, 14, 17, . . . for M3.

At lower values of k, a small change makes a big effect in
the partitioning quality, as can be seen from the fluctuations
in Figures 7(b), 7(d) and 7(f). However, as k becomes large,
the fluctuations diminish. The reason behind this is that at
smaller values of k, say 2, when it is increased to 3, a large
re-arrangement takes place inside the partitions. It would
be much larger than the re-arrangement that takes place
at higher values of k, say when it increases from 22 to 23.
Unlike the results of the small network, the intra and inter
measures here are very small. The reason is that the road
segment densities in M1 and M2 are much lower than those in
D1, and those in M3 is even lower than all.

For large road networks, the most time-taking task in the
framework is the eigen-decomposition (Algorithm 3, line 4).
This becomes a major overhead when dimension of the ma-
trix M becomes large. We overcome this issue (up to some
extent) in our study by applying a high performance algo-
rithm developed and used in Matlab [3]. It reduces of the
original matrix to a condensed form by orthogonal trans-
formations, decomposes the matrix, and then transforms it
back. Table 3 shows the running time of our framework
in number of seconds consumed in its complete execution.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16 18 20
k

Intra Inter

(a) Inter and Intra in M1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2 4 6 8 10 12 14 16 18 20
k

(b) ANS in M1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16 18 20
k

Intra Inter

(c) Inter and Intra in M2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16 18 20
k

(d) ANS in M2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16 18 20
k

Intra Inter

(e) Inter and Intra in M3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16 18 20
k

(f) ANS in M3

Figure 7: Road supergraph partitioning results in
large networks

The total time has been broken down to show the individ-
ual times consumed int the different modules, where the
different modules are those described in Section 3. For the
small dataset D1, it takes just fractions of a second to com-
plete, whereas for large datasets M1, M2, and M3 it takes 2.15
minutes, 31.75 minutes, and 1.64 hours, respectively. Mod-
ule 1 takes the lowest amount of time, whereas module 3,
which includes the eigen-decomposition task, takes the high-
est amount of time. The total time taken for M3 is certainly
very high, and therefore while applying repeated partition-
ing on an urban road network, at the beginning it can be
started by partitioning the whole network. But after hav-
ing its relatively small partitions, they can be repeatedly
subjected to partitioning distributively with the changing
congestion measures with respect to time. In this way it
helps in reducing the running time, and can even be applied
in real-time if the network becomes as small as M1.

Table 3: Running Time (in seconds)

Module D1 M1 M2 M3

1 less than 1 9 24 137

2 less than 1 54 848 2044
3 less than 1 66 1033 3726

Total less than 1 129 1905 5907

353

7. RELATED WORK
In recent years, the growth in multidimensional geospa-

tial datasets has attracted the attention of spatial database
researchers to address the problems of transportation sys-
tems [4, 1]. However, little work has been done on spatial
partitioning of urban road networks. In a recent work [5], Ji
and Geroliminis proposed a normalized cut based method
for spatial partitioning of transportation networks. They
tried to achieve three predefined criteria of small variance of
within-partition traffic density values, small number of par-
titions, and spatially near compact partitions. Their method
works in three steps, starting with excessive partitioning of
the road network using normalized cut, followed by merging
smaller partitions up to a certain level, and then locally ad-
justing the road segments lying on partition boundaries by
replacing them into the neighboring partitions, if doing so
increases the segment uniformity. Their method can suffer
from time and space complexity for large road networks.

This problem is very much related to general graph parti-
tioning, which is a well studied problem. It has applications
to a wide variety of areas, and many solutions have been pro-
posed in the past. Spectral clustering algorithms like min-
imum cut and normalized cut have remained quite popular
[11, 13]. In [2], the authors proposed a spectral cut based
on the min-max clustering principle for graph partitioning
in a data clustering point of view.

The modularity of a set of graph partitions is defined as
the difference between the observed and expected fraction of
links within a partition. Larger modularity values are corre-
lated with better graph partitioning. To maximize modular-
ity while partitioning a graph, in [13] the authors presented a
spectral clustering solution. They showed that the partition-
ing can be obtained using the k largest eigenvalues and cor-
responding eigenvectors obtained after eigen-decomposition
of the modularity matrix. This matrix actually equals to
the negative of our �-Cut matrix derived in Equation 6. As
we obtain the partitioning by selecting the k smallest eigen-
values and corresponding eigenvectors, both the techniques
result in the same set of eigenvalues and eigenvectors, and
thus the same partitioning. It means that the minimization
of �-Cut approximately maximizes the modularity.

As it is an NP-complete problem, multilevel and heuristic
algorithms have also been studied [8]. Zhou et al. [15] aimed
to obtain graph partitions in which the nodes inside a par-
tition are structurally close to each other and have similar
feature values, and followed a random walk based approach.
Sun et al. [12] integrated the problems of ranking and clus-
tering in heterogeneous information networks and proposed
the algorithm RankClus that produces clusters with rank in-
formation of the objects in the network. There is also a wide
application of graph partitioning for network community de-
tection. In [9], the authors explored some community de-
tection methods and evaluated their relative performances.
However, most the works on graph partitioning face time
and space complexity issues with large networks.

8. CONCLUSION
In this paper, we presented a spectral clustering based

framework for traffic congestion-based spatial partitioning
of large urban road networks. We first formally gave a math-
ematical representation of actual road networks and trans-
formed the road network into a road graph, and then to a
road supergraph by clustering the node feature values. The

novel k-way �-Cut partitioning algorithm is applied on the
supergraph to obtain k partitions. The mining of the super-
graph leads to a preliminary grouping of road segments in
the form of supernodes, which significantly reduces the par-
titioning load. This technique makes the framework scalable
and suitable to handle the rapidly growing urban road net-
works. The �-Cut algorithm, proposed in this paper, aims
to achieve a good balance of average cut and average asso-
ciation through spectral clustering. This algorithm also ap-
proximately maximizes the network modularity. In our ex-
periments, we found that it produces partitions qualitatively
better than normalized cut. We performed experiments on
a small road network of Downtown San Francisco to demon-
strate the framework effectiveness, and on three large road
networks of Melbourne of different sizes to demonstrate its
scalability along with effectiveness. In all the four networks,
we outperform the existing techniques in terms of different
performance evaluation metrics.

Acknowledgment
The authors would like to thank the anonymous review-
ers for their valuable comments and suggestions to im-
prove the quality of the paper. This research was sup-
ported by the Australian Research Council (ARC) Discovery
Project DP120102627 and the ARC Future Fellowship grant
FT120100723.

9. REFERENCES
[1] Z. Chen, H. T. Shen, and X. Zhou. Discovering popular routes

from trajectories. In Proc. of the ICDE, pages 900–911, 2011.

[2] C. Ding, X. He, H. Zha, M. Gu, and H. Simon. A min-max cult
algorithm for graph partitioning and data clustering. In Proc.
of the ICDM, pages 107–114, 2001.

[3] J. J. Dongarra, D. C. Sorensen, and S. J. Hammarling. Block
reduction of matrices to condensed forms for eigenvalue
computations. Journal of Computational and Applied
Mathematics, 27(1–2):215–227, Sept. 1989.

[4] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. P. Sondag.
Adaptive fastest path computation on a road network: a traffic
mining approach. In Proc. of the VLDB, pages 794–805, 2007.

[5] Y. Ji and N. Geroliminis. On the spatial partitioning of urban
transportation networks. Transportation Research Part B:
Methodological, 46(10):1639–1656, 2012.

[6] Y. Jung, H. Park, D.-Z. Du, and B. L. Drake. A decision
criterion for the optimal number of clusters in hierarchical
clustering. J. of Global Optimization, 25(1):91–111, Jan. 2003.

[7] E. Kanoulas, Y. Du, T. Xia, and D. Zhang. Finding fastest
paths on a road network with speed patterns. In Proc. of the
ICDE, 2006.

[8] M. Kim and K. S. Candan. Sbv-cut: Vertex-cut based graph
partitioning using structural balance vertices. Data Knowl.
Eng., 72:285–303, Feb. 2012.

[9] J. Leskovec, K. J. Lang, and M. Mahoney. Empirical
comparison of algorithms for network community detection. In
Proc. of the WWW, pages 631–640, 2010.

[10] M. F. Mokbel, L. Alarabi, J. Bao, A. Eldawy, A. Magdy,
M. Sarwat, E. Waytas, and S. Yackel. Mntg: an extensible
web-based traffic generator. In Proc. of the SSTD, pages
38–55, 2013.

[11] J. Shi and J. Malik. Normalized cuts and image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell., 22(8):888–905, Aug.
2000.

[12] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu.
Rankclus: Integrating clustering with ranking for heterogeneous
information network analysis. In Proc. of the EDBT, pages
565–576, 2009.

[13] S. White and P. Smyth. A spectral clustering approach to
finding communities in graph. In Proc. of the SDM, 2005.

[14] M. J. Zaki and W. Meira Jr. Data Mining and Analysis:
Fundamental Concepts and Algorithms, pages 421–435.
Cambridge University Press, 2014 (to appear).

[15] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on
structural/attribute similarities. Proc. VLDB Endow.,
2(1):718–729, Aug. 2009.

354

