
Tractability in Probabilistic Databases

Dan Suciu
Department of Computer Science and Engineering

University of Washington
Seattle, WA

suciu@cs.washington.edu

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Processing; F.4.1
[Mathematical Logic and Formal Languages]: Mathematical Logic

General Terms
Algorithms, Theory

Keywords
Probabilistic database, query evaluation

Probabilistic databases are motivated by a large and diverse set of
applications that need to query and process uncertain data. Uncer-
tain and probabilistic data arises in RFID systems [22], information
extraction [12], data cleaning [1], scientific data management [17],
biomedical data integration [9], business intelligence [14], approx-
imate schema mappings [10], data deduplication [13]. All these
applications have large collections of data, where some, or most
individual data items are uncertain.

In the simplest model, a probabilistic database is a database where
each record is a random variable: it may either be present in the
database, or absent from the database. More complex models al-
low individual attribute values [2], or individual XML elements to
be random variables [15]. These random variables may be inde-
pendent [6], disjoint and independent [3], may form a graphical
model [24] or a Bayesian network [26]. The goal of a probabilis-
tic database system is to allow probabilistic data to be stored na-
tively, then processed with a general-purpose query language, like
SQL [8]. Each answer to the query will be annotated with a proba-
bility, which represents the confidence in that answer based on the
probabilities of the input tuples, and the system will rank the an-
swers in decreasing order of this probability [21], or according to
some combination of the probability score and a user-defined rank-
ing function [27, 16].

Despite the intense recent research on probabilistic databases and
its huge demand from applications, to date there are no usable sys-
tems available, besides a few still brittle research prototypes. At

Copyright is held by the author/owner(s).
ICDT 2011, March 21–23, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0529-7/11/0003 ...$10.00

blame for this state of affair is that we do not have techniques
that can deliver predictable performance for all queries on prob-
abilistic databases, in the same way in which standard SQL en-
gines can deliver predictable performance on traditional databases.
The fundamental reason is that many relational queries have an
intractable data complexity over probabilistic databases: they are
hard for FP#P . Each such query can only be answered either by
approximate probabilistic inference tools, which do not scale to
volumes of data encountered in typical applications, or by heuris-
tics (such as junction trees that exploit bounded tree widths), which
often lead to exponential running times on real databases.

In this talk I will discuss tractable queries, and will describe some
of the recent approaches in identifying queries with provably tractable
complexity. It is important for us to identify the exact border be-
tween tractability and intractability, for two reasons. First, a database
engine needs to identify whenever a query is tractable, in order to
avoid a much more expensive computation; and, second, because
of the interesting possibility of approximating intractable queries
by tractable queries, which was suggested recently [11]. Several
theoretical results characterize the class of tractable queries over
probabilistic databases consisting of independent tuples, or of dis-
joint and independent tuples. This talk will present some of these
results.

I will start by considering a simple case, when the query language
is restricted to conjunctive queries without self-joins. In this simple
case, the hierarchical queries have been shown to capture precisely
the tractable queries [6, 8] and to also capture precisely the queries
whose lineage is always a read-once Boolean expression [18]. Here
we have a dichotomy into PTIME/#P based on the query’s syntax:
hierarchical queries are in PTIME and non-hierarchical queries are
hard for FP#P . The former can be evaluated by a standard re-
lational query plan, consisting of selection, projection, and join
operators, where the projection and join operators are modified to
compute the tuple probabilities. Various extensions and implemen-
tations exist for the tractable conjunctive queries without self-joins:
extensions to functional dependencies [7, 20], improved in-engine
query evaluation [20], extensions to queries with inequalities [19],
to disjoint and independent tuples [4, 8], and to queries with a
having-clause [23].

Next, I will discuss a richer query language, unions of conjunc-

tive queries, and will present the class of tractable queries over
this class, following [5]. Each tractable query in this case can be
evaluated by an almost equally simple, but more surprising algo-
rithm. The key new step in this algorithm consists of the inclu-
sion/exclusion formula, which has to be applied not to the usual

1

union of conjunctive queries, but to a dual representation, conjunc-

tion of disjunctive queries. Another surprising feature of the algo-
rithm is its key usage of Möbius’ function on a lattice [25], whose
role is indispensable in ensuring that the algorithm is complete:
when the Möbious function of a sub-query is zero, then that sub-
query does not contribute to the inclusion/exclusion formula, and
therfore its evaluation can be omitted. Here, too, we have a di-
chotomy into PTIME/#P based on the query’s syntax, but where
the notion of “syntax” includes the Möbius function over a certain
lattice of sub-queries, derived from the query’s syntax.

Finally, I will conclude the talk with a list of open research ques-
tions in probabilistic databases.

Acknowledgment The author was partially supported by NSF IIS-
0713576.

1. REFERENCES
[1] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers

over dirty databases. In ICDE, 2006.

[2] D. Barbara, H. Garcia-Molina, and D. Porter. The
management of probabilistic data. IEEE Trans. Knowl. Data

Eng., 4(5):487–502, 1992.

[3] O. Benjelloun, A. D. Sarma, A. Halevy, M. Theobald, and
J. Widom. Databases with uncertainty and lineage. VLDBJ,
17(2):243–264, 2008.

[4] N. Dalvi, C. Re, and D. Suciu. Query evaluation on
probabilistic databases. IEEE Data Engineering Bulletin,
29(1):25–31, 2006.

[5] N. Dalvi, K. Schnaitter, and D. Suciu. Computing query
probability with incidence algebras. In PODS, pages
203–214, 2010.

[6] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, 2004.

[7] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. VLDBJ, 16(4):523–544, 2007.

[8] N. Dalvi and D. Suciu. Management of probabilistic data:
Foundations and challenges. In PODS, pages 1–12, Beijing,
China, 2007. (invited talk).

[9] L. Detwiler, W. Gatterbauer, B. Louie, D. Suciu, and
P. Tarczy-Hornoch. Integrating and ranking uncertain
scientific data. In ICDE, pages 1235–1238, 2009.

[10] X. Dong, A. Halevy, and C. Yu. Data integration with
uncertainty. In VLDB, 2007.

[11] W. Gatterbauer, A. Jha, and D. Suciu. Dissociation and
propagation for efficient query evaluation over probabilistic
databases constraints. In MUD, 2010.

[12] R. Gupta and S. Sarawagi. Creating probabilistic databases
from information extraction models. In VLDB, pages
965–976, 2006.

[13] O. Hassanzadeh and R. J. Miller. Creating probabilistic
databases from duplicated data. VLDB J., 18(5):1141–1166,
2009.

[14] R. Jampani, F. Xu, M. Wu, L. Perez, C. Jermaine, and
P. Haas. MCDB: a Monte Carlo approach to managing
uncertain data. In SIGMOD, pages 687–700, 2008.

[15] B. Kimelfeld, Y. Kosharovsky, and Y. Sagiv. Query
evaluation over probabilistic XML. VLDB J.,
18(5):1117–1140, 2009.

[16] J. Li, B. Saha, and A. Deshpande. A unified approach to
ranking in probabilistic databases. PVLDB, 2(1):502–513,

2009.

[17] A. Nierman and H. Jagadish. ProTDB: Probabilistic data in
XML. In VLDB, pages 646–657, 2002.

[18] D. Olteanu and J. Huang. Using OBDDs for efficient query
evaluation on probabilistic databases. In SUM, pages
326–340, 2008.

[19] D. Olteanu and J. Huang. Secondary-storage confidence
computation for conjunctive queries with inequalities. In
SIGMOD, pages 389–402, 2009.

[20] D. Olteanu, J. Huang, and C. Koch. Sprout: Lazy vs. eager
query plans for tuple-independent probabilistic databases. In
ICDE, pages 640–651, 2009.

[21] C. Re, N. Dalvi, and D. Suciu. Efficient Top-k query
evaluation on probabilistic data. In ICDE, 2007.

[22] C. Re, J. Letchner, M. Balazinska, and D. Suciu. Event
queries on correlated probabilistic streams. In SIGMOD,
Vancouver, Canada, 2008.

[23] C. Re and D. Suciu. The trichotomy of HAVING queries on
a probabilistic database. VLDB J., 18(5):1091–1116, 2009.

[24] P. Sen and A. Deshpande. Representing and querying
correlated tuples in probabilistic databases. In ICDE, 2007.

[25] R. P. Stanley. Enumerative Combinatorics. Cambridge
University Press, 1997.

[26] D. Wang, E. .Michelakis, M. Garofalakis, and J. Hellerstein.
BayesStore: managing large, uncertain data repositories with
probabilistic graphical models. PVLDB, 1(1):340–351, 2008.

[27] X. Zhang and J. Chomicki. On the semantics and evaluation
of top-k queries in probabilistic databases. In International

Workshop on Database Ranking (DBRank), pages 556–563,
2008.

2

