
Tractability in Probabilistic Databases

Dan Suciu
Department of Computer Science and Engineering

University of Washington
Seattle, WA

suciu@cs.washington.edu

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Processing; F.4.1
[Mathematical Logic and Formal Languages]: Mathematical Logic

General Terms
Algorithms, Theory

Keywords
Probabilistic database, query evaluation

Probabilistic databases are motivated by a large and diverse set of
applications that need to query and process uncertain data. Uncer-
tain and probabilistic data arises in RFID systems [22], information
extraction [12], data cleaning [1], scientific data management [17],
biomedical data integration [9], business intelligence [14], approx-
imate schema mappings [10], data deduplication [13]. All these
applications have large collections of data, where some, or most
individual data items are uncertain.

In the simplest model, a probabilistic database is a database where
each record is a random variable: it may either be present in the
database, or absent from the database. More complex models al-
low individual attribute values [2], or individual XML elements to
be random variables [15]. These random variables may be inde-
pendent [6], disjoint and independent [3], may form a graphical
model [24] or a Bayesian network [26]. The goal of a probabilis-
tic database system is to allow probabilistic data to be stored na-
tively, then processed with a general-purpose query language, like
SQL [8]. Each answer to the query will be annotated with a proba-
bility, which represents the confidence in that answer based on the
probabilities of the input tuples, and the system will rank the an-
swers in decreasing order of this probability [21], or according to
some combination of the probability score and a user-defined rank-
ing function [27, 16].

Despite the intense recent research on probabilistic databases and
its huge demand from applications, to date there are no usable sys-
tems available, besides a few still brittle research prototypes. At

Copyright is held by the author/owner(s).
ICDT 2011, March 21–23, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0529-7/11/0003 ...$10.00

blame for this state of affair is that we do not have techniques
that can deliver predictable performance for all queries on prob-
abilistic databases, in the same way in which standard SQL en-
gines can deliver predictable performance on traditional databases.
The fundamental reason is that many relational queries have an
intractable data complexity over probabilistic databases: they are
hard for FP#P . Each such query can only be answered either by
approximate probabilistic inference tools, which do not scale to
volumes of data encountered in typical applications, or by heuris-
tics (such as junction trees that exploit bounded tree widths), which
often lead to exponential running times on real databases.

In this talk I will discuss tractable queries, and will describe some
of the recent approaches in identifying queries with provably tractable
complexity. It is important for us to identify the exact border be-
tween tractability and intractability, for two reasons. First, a database
engine needs to identify whenever a query is tractable, in order to
avoid a much more expensive computation; and, second, because
of the interesting possibility of approximating intractable queries
by tractable queries, which was suggested recently [11]. Several
theoretical results characterize the class of tractable queries over
probabilistic databases consisting of independent tuples, or of dis-
joint and independent tuples. This talk will present some of these
results.

I will start by considering a simple case, when the query language
is restricted to conjunctive queries without self-joins. In this simple
case, the hierarchical queries have been shown to capture precisely
the tractable queries [6, 8] and to also capture precisely the queries
whose lineage is always a read-once Boolean expression [18]. Here
we have a dichotomy into PTIME/#P based on the query’s syntax:
hierarchical queries are in PTIME and non-hierarchical queries are
hard for FP#P . The former can be evaluated by a standard re-
lational query plan, consisting of selection, projection, and join
operators, where the projection and join operators are modified to
compute the tuple probabilities. Various extensions and implemen-
tations exist for the tractable conjunctive queries without self-joins:
extensions to functional dependencies [7, 20], improved in-engine
query evaluation [20], extensions to queries with inequalities [19],
to disjoint and independent tuples [4, 8], and to queries with a
having-clause [23].

Next, I will discuss a richer query language, unions of conjunc-

tive queries, and will present the class of tractable queries over
this class, following [5]. Each tractable query in this case can be
evaluated by an almost equally simple, but more surprising algo-
rithm. The key new step in this algorithm consists of the inclu-
sion/exclusion formula, which has to be applied not to the usual
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union of conjunctive queries, but to a dual representation, conjunc-

tion of disjunctive queries. Another surprising feature of the algo-
rithm is its key usage of Möbius’ function on a lattice [25], whose
role is indispensable in ensuring that the algorithm is complete:
when the Möbious function of a sub-query is zero, then that sub-
query does not contribute to the inclusion/exclusion formula, and
therfore its evaluation can be omitted. Here, too, we have a di-
chotomy into PTIME/#P based on the query’s syntax, but where
the notion of “syntax” includes the Möbius function over a certain
lattice of sub-queries, derived from the query’s syntax.

Finally, I will conclude the talk with a list of open research ques-
tions in probabilistic databases.
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