
Answering Non-Monotonic Queries
in Relational Data Exchange

André Hernich
Goethe-Universität, Frankfurt am Main, Germany

hernich@informatik.uni-frankfurt.de

ABSTRACT

Relational data exchange deals with translating a relational
database instance over some source schema into a relational
database instance over some target schema, according to
a schema mapping that specifies the relationship between
the source data and the target data. Various semantics for
answering queries against the target schema exist, each of
them suitable for a certain class of queries, and with respect
to certain schema mappings. However, for each of these
semantics, there are examples that show that it leads to
counter-intuitive answers, or that it does not respect logical
equivalence of schema mappings.

In this article, we study query answering semantics for de-
ductive databases in the context of relational data exchange.
Furthermore, we propose a new semantics, called GCWA∗-
answers semantics, which seems to be well-suited with re-
spect to a number of schema mappings, including schema
mappings defined by st-tgds and egds. We show that the
GCWA∗-answers semantics coincides with the classical cer-
tain answers semantics on monotonic queries, and we fur-
ther explore the data complexity of computing the GCWA∗-
answers to non-monotonic queries. In particular, we identify
a class of schema mappings for which the GCWA∗-answers
to universal queries can be computed from the core of the
universal solutions in polynomial time (data complexity).

Categories and Subject Descriptors

H.2.5 [Heterogeneous Databases]: Data translation;
H.2.4 [Systems]: Relational databases, Rule-based data-
bases, Query processing; D.2.12 [Interoperability]: Data
mapping

General Terms

Algorithms, Languages, Theory

Keywords

closed world assumption, deductive database, certain an-
swers, core

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2010, March 22–25, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-947-3/10/0003 ...$10.00.

1. INTRODUCTION
Data exchange deals with translating data structured in

some “old” format into data structured in some “new” for-
mat, according to a specification of the relationship between
the source data and the target data. Here we consider the
case of relational data, that is, the source data and the tar-
get data are relational. Formally, we are given a schema
mapping M = (σ, τ,Σ) (where σ and τ are schemas, called
the source schema and the target schema, respectively, and
Σ is a finite set of logical constraints over σ and τ) and an
instance S over σ (called source instance for M), and the
task is to compute a solution for S under M , that is, an
instance over τ such that all the constraints in Σ are satis-
fied. If a solution exists at all, one would like to compute a
solution that reflects the source instance as good as possible.

The theoretical foundations of data exchange were laid in
two seminal articles by Fagin, Kolaitis, Miller, and Popa [10,
11]. These articles introduced the notion of universal solu-
tions (solutions, that are at most as general as any other
solution) that possess properties that make them desirable
for data exchange, and in particular the core of the universal
solutions which, for schema mappings specified by tgds and
egds, is the smallest universal solution (up to isomorphism).
The complexity of computing solutions, and the core of the
universal solutions have been investigated [10, 11, 22, 16],
and extensions of the “classical” data exchange framework
to XML data [5], peer data exchange [13], and model man-
agement [12, 9] have been considered. See also the survey
articles [21, 6, 18].

An important issue in data exchange is how to answer
queries against the target schema (see, e.g., [10, 11, 21, 6,
2]). In [10], the certain answers have been proposed to an-
swer queries over the target schema. Given a schema map-
ping M = (σ, τ,Σ), a source instance S for M , and a query
q over τ , the set of the certain answers to q on M and S
consists of all tuples t̄ such that t̄ is an answer to q on every
solution T for S under M . While the certain answers se-
mantics has been widely adopted as the “right” semantics to
answer queries preserved under homomorphisms like unions
of conjunctive queries, Datalog queries, or the DatalogC(6=)

queries in [4], it was noted that it may lead to counter-
intuitive answers for queries with negations [10, 3, 23]. It
was also noted in [3, 23] that the same problems occur for
the universal solution-based semantics of [11]. Some of these
problems were solved by the CWA-solution-based semantics
in [23, 19], and the mixed world-based semantics in [24].
These semantics are defined in terms of new solution con-
cepts (CWA-solutions in [23, 19], and mixed world solutions

143

in [24]) based on certain conditions that restrict the way how
nulls can enter solutions, and using techniques from [20] (see
also [28]) to answer queries on individual solutions. Each
of these semantics is good for a particular fragment of FO
queries with respect to certain schema mappings. However,
there are queries on which both semantics lead to answers
that intuitively do not seem to be “right”. Furthermore,
they do not respect logical equivalence of schema mappings.
Here, schema mappings M1 = (σ, τ,Σ1) and M2 = (σ, τ,Σ2)
are logically equivalent if and only if Σ1 and Σ2 are logically
equivalent, that is, each model of Σ1 is a model of Σ2 and
vice versa. Since schema mappings are defined by logical
formulas, it is desirable that the answer to a query is the
same on logically equivalent schema mappings.

The concept of CWA-solutions from [23, 19] is based on
the closed world assumption (CWA), originally introduced
by Reiter [27] for answering non-monotonic queries on de-
ductive databases. A deductive database is a set of clauses,
where each clause is a universally quantified disjunction of
relational atomic formulas and negated relational atomic for-
mulas [14]. A model of a deductive databaseD is an instance
without nulls that satisfies all clauses in D, and a query q
is usually answered by determining all tuples that are an-
swers to q on each model in a particular subset of the set
of all models of D (the subset depends on the semantics).
Reiter’s CWA defines a particular subset of the set of all
models of D, and the corresponding query answering se-
mantics takes only the models in this subset into account.
There is a rich literature on semantics for answering non-
monotonic queries on deductive databases. The definitions
of many of these semantics apply as well, or can be extended,
to more general sets of logical sentences, such as sets Σ ∪
{R(t̄) |R ∈ σ, t̄ ∈RS}∪{¬R(t̄) |R ∈ σ, t̄ ∈ Constar(R)\RS},
where Σ is the set of constraints of a schema mapping M =
(σ, τ,Σ), and S is a source instance for M . This makes the
area of deductive databases attractive for data exchange.

In this article, we translate various semantics for answer-
ing non-monotonic queries that originally have been devel-
oped for deductive databases, such as the semantics based on
Reiter’s CWA [27], on the generalized CWA (GCWA) [26]
or on the extended GCWA (EGCWA) [29], and the possi-
ble worlds semantics (PWS) [7], into the framework of data
exchange. Furthermore, we study these semantics with re-
spect to the following question: which of these semantics
is appropriate for answering non-monotonic queries in data
exchange? Unfortunately, none of these semantics seems to
be appropriate. The semantics based on Reiter’s CWA leads
to inconsistent answers already on very simple schema map-
pings, the GCWA-based semantics seems to be too weak, the
EGCWA-based semantics seems to be too strong, and the
PWS does not respect logical equivalence of schema map-
pings.

Inspired by the GCWA-based semantics, we develop the
GCWA∗-answers semantics, which is based on a new con-
cept of solutions, called GCWA∗-solutions, and which seems
to be well-suited for answering non-monotonic queries with
respect to a number of schema mappings, including schema
mappings defined by st-tgds and egds. GCWA∗-solutions
are solutions that are unions of inclusion-minimal solutions
without nulls. This property makes it particularly easy to
work with GCWA∗-solutions. The GCWA∗-answers to a
query are defined as the certain answers with respect to
GCWA∗-solutions. For a number of schema mappings, in-

cluding schema mappings defined by st-tgds and egds, we
argue that, intuitively, the set of all GCWA∗-solutions for a
source instance S under such a schema mapping M precisely
reflects the information contained in M and S.

It should be emphasized that GCWA∗-solutions are solu-
tions without nulls, so that the GCWA∗-answers semantics
takes into account only solutions without nulls. This is no
loss of generality, since, actually, solutions with nulls serve
as representations for sets of solutions without nulls [20], so
that a query answering semantics should not depend on so-
lutions with nulls. In fact, it can be verified that most of
the known certain answers-based query answering semantics
in data exchange can be defined without referring to solu-
tions with nulls. One of the advantages of this approach is
that we do not run into any trouble that might result from
dealing with nulls (they can quickly lead to anomalies, cf.,
[23]). However, solutions with nulls are still important since,
as mentioned above, they serve as finite representations of
possibly infinite sets of solutions without nulls.

We study the data complexity of computing the GCWA∗-
answers to a query. Here, data complexity means that the
schema mapping and the query are fixed (i.e., they are not
part of the input). The main result, and the technically most
challenging contribution, of this article is Theorem 6.6. This
theorem states that for certain schema mappings M defined
by st-tgds, and for all universal queries q (FO queries of the
form ∀x̄ϕ, where ϕ is quantifier-free), there is a polynomial
time algorithm that, given the core of the universal solutions
for some source instance S under M , computes the GCWA∗-
answers to q on M and S. This also implies that there is
a polynomial time algorithm that, given a source instance
S for M , outputs the GCWA∗-answers to q on M and S.
For arbitrary schema mappings defined by st-tgds, the data
complexity of computing the GCWA∗-answers to universal
queries is in co-NP.

Finally, we show that the GCWA∗-answers semantics co-
incides with the certain answers semantics on monotonic
queries (Proposition 6.1). Therefore, all tools and tech-
niques developed for computing the certain answers to a
query (see, e.g., [10, 25, 3, 21, 23, 8, 4, 6]) can be used to
compute the GCWA∗-answers to monotonic queries. Fur-
thermore, we show that there is a schema mapping M de-
fined by two LAV tgds, and an existential query q of the
form ∃x̄ϕ, where ϕ is a conjunction of relational atomic for-
mulas and a single negated relational atomic formula, such
that the problem Eval(M, q) (given a source instance S for
M and a tuple t̄, is t̄ a GCWA∗-answer to q on M and S) is
co-NP-complete (Proposition 6.2). On the other hand, if we
allow existential quantifiers and just one universal quantifier,
then Eval(M, q) may be undecidable (Proposition 6.3).

This article is organized as follows. In Section 2, we fix
basic definitions and mention basic results that are used
throughout this article. Section 3 explains the problems
with known query answering semantics in data exchange in
more detail. In Section 4, we then study the query answering
semantics for deductive databases in the context of data ex-
change. The new GCWA∗-answers semantics is introduced
and illustrated in Section 5, and the data complexity of an-
swering queries using the GCWA∗-answers semantics is in-
vestigated in Section 6. Most of the proofs are deferred to
the full version of this article.

144

2. PRELIMINARIES
A schema σ is a finite set of relation symbols R, each

with an associated arity ar(R). An instance I over σ assigns
to each R ∈ σ a finite relation RI of arity ar(R). dom(I)
denotes the set of all elements that occur in the tuples of the
relations RI , for each R ∈ σ. We assume a fixed infinite set
Dom, whose elements are called values, such that dom(I) ⊆
Dom for all instances I . An atom is an expression of the
form R(t̄), where R is a relation symbol, and t̄ ∈ Domar(R).
We often identify an instance I with the set of all atoms
R(t̄) with t̄ ∈ RI , that is, I = {R(t̄) | R ∈ σ, t̄ ∈ RI}. An
instance I is ⊆-minimal in a set I of instances if I ∈ I, and
there is no I ′ ∈ I with I ′ (I .

As usual in data exchange, Dom is the union of two dis-
joint infinite sets Const and Null, where the elements in
Const are called constants, and the elements in Null are
called (labelled) nulls. Nulls are just placeholders, or vari-
ables, for constants. Throughout this article, lower case let-
ters a, b, c, . . . from the start of the alphabet denote con-
stants, and the symbol ⊥, possibly with sub/superscripts,
denotes nulls. For an instance I , let const(I) := dom(I) ∩
Const and nulls(I) := dom(I) ∩ Null. An instance is called
ground if it contains no nulls, and an atom R(t̄) is called
ground if t̄ contains no nulls.

Let f : X → Y , where X and Y are arbitrary sets. For a
tuple t̄ = (t1, . . . , tn) ∈ Xn, we let f(t̄) := (f(t1), . . . , f(tn));
for an atom A = R(t̄), we let f(A) := R(f(t̄)); and for an
instance I , we let f(I) := {f(A) | A ∈ I}. f is called legal
for an instance I if and only if dom(I) ⊆ X, and f(c) = c
for all c ∈ const(I). The set of all functions that are legal
for I is denoted by legal(I). For a tuple t̄ = (t1, . . . , tk), we
sloppily write f : t̄→ Y for a function f : X → Y with X =
{t1, . . . , tk}. Given t̄ = (t1, . . . , tk), ū = (u1, . . . , ul), and an
element v, we also write v ∈ t̄ if v ∈ {t1, . . . , tk}, and we let
t̄ ∩ ū be the intersection of {t1, . . . , tk} and {u1, . . . , ul}.

Let I and J be instances. A homomorphism from I to J
is a function h : dom(I) → dom(J) such that h ∈ legal(I)
and h(I) ⊆ J . If h(I) = J , then J is called a homomorphic
image of I . I and J are homomorphically equivalent if and
only if there is a homomorphism from I to J , and a homo-
morphism from J to I . An isomorphism from I to J is a
homomorphism h from I to J such that h is bijective, and
h−1 is a homomorphism from J to I . We say that I and J
are isomorphic, and write I ∼= J , if and only if there is an
isomorphism from I to J . A core of I is a subinstance C of
I such that there is a homomorphism from I to C, but there
is no homomorphism from I to any proper subinstance of C.
It is known [17] that if I and J are homomorphically equiv-
alent, C is a core of I , and C′ is a core of J , then C ∼= C′.
In particular, any two cores of I are isomorphic, so that we
can speak of the core of I , which is denoted by Core(I).

2.1 Queries
As usual [1], a k-ary query over a schema σ is a mapping

from instances over σ to Domk that is C-generic for some
finite set C ⊆ Const (i.e., the query is invariant under re-
namings of values in Dom \ C). In the context of queries
defined by logical formulas, we will often use the words for-
mula and query as synonyms. Whenever we speak of a first-
order (FO) formula over a schema σ, we mean a FO formula
over the vocabulary that consists of all relation symbols in
σ, and all constants in Const. Each constant in Const is
interpreted by itself. A L∞ω formula over a schema σ is

built from atomic FO formulas over σ, negations, existential
quantifications, universal quantifications, infinitary disjunc-
tions

W

Φ, where Φ is an arbitrary set of L∞ω formulas over
σ, and infinitary conjunctions

V

Φ, where Φ is an arbitrary
set of L∞ω formulas over σ. The semantics of infinitary dis-
junctions and infinitary conjunctions is the obvious one: for
an assignment α of the variables that occur in the formulas
in Φ we have I |=

W

Φ(α) if and only if there is some ϕ ∈ Φ
with I |= ϕ(α), and I |=

V

Φ(α) if and only if for all ϕ ∈ Φ,
I |= ϕ(α).

Queries are evaluated on an instance using the active do-
main semantics [1] (i.e., when evaluating a query q on I , then
the quantifiers in q range over the constants in I and q). A
query q(x̄) over a schema σ is monotonic if q(I) ⊆ q(J)
for all instances I, J over σ with I ⊆ J . It is easy to see
that all queries preserved under homomorphisms are mono-
tonic. Here, a query q(x̄) over σ is preserved under homo-
morphisms if and only if for all instances I, J over σ, all
homomorphisms h from I to J , and all tuples t̄ ∈ q(I), we
have h(t̄) ∈ q(J). For example, conjunctive queries, unions

of conjunctive queries, Datalog queries, and the DatalogC(6=)

queries of [4] are preserved under homomorphisms. Unions
of conjunctive queries with inequalities (see, e.g., [10] for a
definition) are an example of monotonic queries that are not
preserved under homomorphisms.

2.2 Data exchange
A schema mapping is a tripleM = (σ, τ,Σ), where σ and τ

are disjoint schemas, called the source schema and the target
schema, and Σ is a finite set of constraints in some logical
formalism over σ ∪ τ [10]. To introduce and to study query
answering semantics in a general setting, we assume that for
all schema mappings M = (σ, τ,Σ) considered in this article,
Σ consists of L∞ω sentences over σ∪τ (that are C-generic for
some finite C ⊆ Const). For algorithmic results, however, we
restrict attention to schema mappings M = (σ, τ,Σ), where
Σ consists of source-to-target tuple generating dependencies
(st-tgds) and equality generating dependencies (egds), which
have been prominently considered in data exchange. Here,
an st-tgd is a FO sentence of the form

∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)),

where ϕ is a conjunction of relational atomic FO formu-
las over σ with free variables x̄ȳ, and ψ is a conjunction
of relational atomic FO formulas over τ with free variables
x̄z̄. A full st-tgd is a st-tgd without existentially quantified
variables z̄, and a LAV tgd is a st-tgd with a single atomic
formula in ϕ. An egd is a FO sentence of the form

∀x̄
`

ϕ(x̄) → xi = xj

´

,

where ϕ is a conjunction of relational atomic FO formulas
over τ with free variables x̄, and xi, xj are variables in x̄.

Let M = (σ, τ,Σ) be a schema mapping. A source in-
stance for M is a ground instance over σ, and a target in-
stance for M is an instance over τ . Given a source instance
S for M , a solution for S under M is a target instance T
for M such that S ∪ T |= Σ, that is, S ∪ T satisfies all the
constraints in Σ.

A universal solution for S under M is a solution T for S
under M such that for all solutions T ′ for S under M there
is a homomorphism from T to T ′. Note that all universal
solutions for S under M are homomorphically equivalent.
In particular, there is a target instance C that is isomorphic

145

to the cores of all universal solutions for S under M . We
denote this instance by Core(M,S). In a number of cases,
Core(M,S) is a solution for S under M . For example, if Σ
contains only st-tgds, then Core(M,S) is a solution for S
under M [11], which can be computed in polynomial time:

Theorem 2.1 ([11]). Let M = (σ, τ,Σ) be a schema
mapping, where Σ consists of st-tgds. Then there is a poly-
nomial time algorithm that, given a source instance S for
M , outputs Core(M,S).

Besides Core(M,S), the canonical universal solution for
S under M , denoted by CanSol(M,S), plays an important
role in data exchange. In the following, we give the definition
of CanSol(M,S) from [3] for the case that Σ contains only
st-tgds. Let J be the set of all triples (θ, ā, b̄) such that
θ is a st-tgd in Σ of the form ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)),
and S |= ϕ(ā, b̄). Starting from an empty target instance
for M , CanSol(M,S) is created by adding atoms for each
element in J as follows. For each j = (θ, ā, b̄) ∈ J , where
θ = ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)), let ⊥̄j be a |z̄|-tuple of
pairwise distinct nulls such that for all j′ ∈ J with j′ 6= j,
the set of nulls in ⊥̄j is disjoint from the set of nulls in ⊥̄j′ ,
and add the atoms in ψ(ā, ⊥̄j) to the target instance.

2.3 Instances with incomplete information
Instances that may contain nulls are also called naive ta-

bles [1], or V-tables [20]. We call an instance naive table to
emphasize that it may contain nulls. Naive tables serve as
finite representations of certain incomplete instances, where
an incomplete instance I over a schema σ is a set of ground
instances over σ [1]. The instances in I are called the pos-
sible worlds of I.

A naive table T contains incomplete information in the
sense that each null ⊥ in T represents an unknown (rather
than nonexistent) constant. The possible worlds of (the in-
complete instance represented by) T are all instances ob-
tained from T by replacing each null by a constant. For-
mally, let a valuation of T be a function v : dom(T) → Const
with v ∈ legal(T). Then the set of all possible worlds of T is

poss(T) := {v(T) | v is a valuation of T}.

Given an incomplete instance I over a schema σ and a
query q(x̄) over σ, there are several ways to evaluate q on
I. A common way is to take the certain answers to q on I,
which are defined by

cert(q, I) :=
\

{q(I) | I ∈ I}.

3. QUERY ANSWERING SEMANTICS

IN DATA EXCHANGE
As already mentioned in the introduction, the certain an-

swers semantics from [10] has been widely adopted as the
“right” semantics for answering queries preserved under ho-
momorphisms in data exchange. We also mentioned that
it can lead to counter-intuitive answers on non-monotonic
queries, and that the same problems occur for the univer-
sal solution-based semantics from [11] (see, e.g., [10, 3, 23,
19]). For example, consider the schema mapping M∗ =
({E}, {E′},Σ), where Σ consists of the st-tgd

∀x1∀x2(E(x1, x2) → E′(x1, x2))

that just tells us to “copy”E to E′. Thus, given the source
instance S∗ for M∗ with ES∗

= {(a, a)}, we intuitively ex-

pect that the set of answers to the query

q∗(x) := ∀y(E′(x, y) → E′(y, x))

is simply the set of answers to q∗ on the “copy” TS∗ of S∗

over {E′} with (E′)T
S∗ = {(a, a)}, that is, {a}. However,

contrary to this expectation, the certain answers to q∗ on
M∗ and S∗ are empty.

Some of these problems were solved by the CWA-solution-
based semantics in [23, 19]. The notion of CWA-solutions
has been introduced for the case of schema mappings defined
by st-tgds [23], and was extended to the more general case of
schema mappings defined by st-tgds, t-tgds and egds in [19]
(see, e.g., [10] for a definition of t-tgds). Here we consider
the case of schema mappings defined by st-tgds. Given a
schema mapping M = (σ, τ,Σ), where Σ consists of st-tgds,
and a source instance S for M , a CWA-solution for S under
M can be characterized as a universal solution T for S under
M that is a homomorphic image of CanSol(M,S) [23]. Now
a query q over τ can be answered by

certCWA(q,M, S) := cert(q, I),

where I is the set of all target instances T̂ for M for which
there is a CWA-solution T for S under M with T̂ ∈ poss(T).
This yields the certain answers semantics from [23].

One particular setting, where the CWA-solution-based se-
mantics leads to “good” answers is the setting of schema
mappings defined by full st-tgds. The following example
shows that, in general, certCWA can lead to answers that are
inconsistent with M and S:

Example 3.1. Let M = ({E}, {F,G},Σ) be the schema
mapping, where E,F,G are binary relation symbols, and Σ
consists of the st-tgd

θ := ∀x1∀x2

`

E(x1, x2) → ∃z(F (x1, z) ∧G(z, x2))
´

.

Let S be the source instance for M with ES = {(a, b)}.
Then T = CanSol(M,S) with F T = {(a,⊥)} and GT =
{(⊥, b)} is the unique CWA-solution for S under M , up to
isomorphism. For the query

q(x) := ∃z
`

F (x, z) ∧ ∀z′(F (x, z′) → z′ = z)
´

,

it follows therefore that certCWA(q,M, S) = {a}. That is,
certCWA(q,M, S) excludes the possibility that there is more
than one value z with F (a, z). However, this is inconsistent
with θ and S, which, taking the usual semantics of existential
quantification, tell us that there are one or more z with
F (a, z) and G(z, b). In particular, they explicitly state that
it is possible that there is more than one z with F (a, z).

The example can be modified to show that the mixed
world-based semantics in [24] can lead to answers that are
inconsistent with M and S.

The next example shows that certCWA does not respect
logical equivalence of schema mappings. That is, there are
logically equivalent schema mappings M1 = (σ, τ,Σ1) and
M2 = (σ, τ,Σ2), an instance S over σ and a query q over τ
such that certCWA(q,M1, S) 6= certCWA(q,M2, S):

Example 3.2. Let M1 = (σ, τ,Σ1) and M2 = (σ, τ,Σ2)
be schema mappings, where σ contains a unary relation sym-
bol P , τ contains a binary relation symbol E, and

Σ1 := {∀x(P (x) → E(x, x))},

Σ2 := Σ1 ∪ {∀x(P (x) → ∃zE(x, z))}.

146

Then M1 and M2 are logically equivalent.
Let S be an instance over σ with PS = {a}. Furthermore,

let T1 and T2 be instances over τ with ET1 = {(a, a)} and
ET2 = {(a, a), (a,⊥)}. Note that T1 is the unique CWA-
solution for S under M1, and that T2 is a CWA-solution for
S under M2. Thus, for the query

q(x) := ∃z
`

E(x, z) ∧ ∀z′(E(x, z′) → z′ = z)
´

,

we obtain different answers certCWA(q,M1, S) = {a} and
certCWA(q,M2, S) = ∅ to the same query q on logically
equivalent schema mappings M1 and M2.

Using Example 3.2, one can show that the mixed world-
based semantics in [24] do not respect logical equivalence of
schema mappings either.

4. DEDUCTIVE DATABASES AND

DATA EXCHANGE
In this section, we study query answering semantics for

deductive databases in the framework of data exchange. In
particular, we focus on the question of which of these seman-
tics leads to an appropriate semantics for answering non-
monotonic queries in data exchange.

A deductive database [14] over a schema σ is a set of FO
sentences, called clauses, of the form

∀x̄
`

¬R1(ȳ1) ∨ · · · ∨ ¬Rm(ȳm) ∨R′
1(z̄1) ∨ · · · ∨R′

n(z̄n)
´

,

where m and n are nonnegative integers with m + n ≥
1, R1, . . . , Rm, R

′
1, . . . , R

′
n are relation symbols in σ, and

ȳ1, . . . , ȳm, z̄1, . . . , z̄n are tuples containing elements of Const
and x̄. A model of a deductive databaseD over σ is a ground
instance I over σ with I |= D (i.e., I satisfies all clauses in
D), and a query q is usually answered by cert(q, I), where I
is a set of models of D that depends on the particular query
answering semantics.

Various semantics for answering non-monotonic queries
on deductive databases exist. These semantics are based on
certain assumptions on what negative data can be inferred
from a deductive database. For the purposes of data ex-
change, the most interesting of these assumptions seem to
be the closed world assumption (CWA) [27], the generalized
closed world assumption (GCWA) [26], the extended gener-
alized closed world assumption (EGCWA) [29], and also the
assumption underlying the possible worlds semantics (PWS)
[7]. What makes these semantics interesting for data ex-
change is that the definitions of these semantics apply as
well, or can be extended from sets of clauses, to more gen-
eral sets of logical sentences, such as sets

DM,S := Σ ∪ {R(t̄) | R ∈ σ, t̄ ∈ RS}

∪ {¬R(t̄) | R ∈ σ, t̄ ∈ Constar(R) \RS},

where Σ is the set of constraints of a schema mapping M =
(σ, τ,Σ), and S is a source instance for M . Note that, if Σ
consists only of full st-tgds, then DM,S is logically equivalent
to a deductive database, since any full st-tgd of the form
∀x̄(R1(ȳ1) ∧ · · · ∧ Rm(ȳm) → R′(z̄)) is logically equivalent
to the clause ∀x̄(¬R1(ȳ1) ∨ · · · ∨ ¬Rm(ȳm) ∨R′(z̄)).

In the following, we study the CWA, the GCWA, the
EGCWA and the PWS in more detail in the context of data
exchange.

4.1 The Closed World Assumption (CWA)
The closed world assumption (CWA), first formalized by

Reiter [27], assumes that every ground atom that is not im-
plied by a database is false. This is a common assumption
for relational databases.

Reiter formalized the CWA, and defined a query answer-
ing semantics for deductive databases based on the CWA,
as follows. For a deductive database D and a formula ϕ, we
write D |= ϕ if and only if for all instances I with I |= D, we
have I |= ϕ. Given a deductive database D over a schema
σ, Reiter defines the set

D := {¬R(t̄) | R ∈ σ, t̄ ∈ Constar(R), D 6|= R(t̄)},

which contains negations of all ground atoms R(t̄) that are
assumed to be false under the CWA. The models of D ∪D
are called the CWA-models of D, and a query q over σ is
answered by cert(q, I), where I is the set of all CWA-models
of D.

Translated into the data exchange framework, we obtain:

Definition 4.1. (RCWA-solution, RCWA-answers)
Let M = (σ, τ,Σ) be a schema mapping, let S be a source

instance for M , and let q be a query over τ .

1. A RCWA-solution for S under M is a ground target
instance T for M such that S∪T is a model of DM,S ∪
DM,S .

2. We call certRCWA(q,M, S) := cert(q, I), where I is the
set of the RCWA-solutions for S under M , the RCWA-
answers to q on M and S.

It is not hard to see that certRCWA coincides with certCWA

on schema mappings defined by full st-tgds.

Proposition 4.2. Let M = (σ, τ,Σ) be a schema map-
ping, where Σ consists of full st-tgds, let S be a source in-
stance for M , and let q be a query over τ . Then we have
certRCWA(q,M, S) = certCWA(q,M, S).

However, for schema mappings that contain non-full st-
tgds, certRCWA may lead to answers that are inconsistent
with M and S. This is illustrated by the following example,
which is based on Example 8 in [27].

Example 4.3. Let M = ({P}, {E},Σ), where Σ consists
of the st-tgd ∀x(P (x) → ∃zE(x, z)), and let S be the source
instance for M with PS = {a}. There is no RCWA-solution
for S under M , because for all b, c ∈ Const,

DM,S = {P (a), ∀x(P (x) → ∃zE(x, z))} 6|= E(b, c),

and therefore,

DM,S = {¬P (b) | b ∈ Const, b 6= a} ∪

{¬E(b, c) | b, c ∈ Const}.

For q(x) := ∃zE(x, z), we thus have certRCWA(q,M, S) = ∅.
In other words, certRCWA(q,M, S) tells us that there is no
value z with E(a, z). This is clearly inconsistent with M
and S, since M and S tell us that there is a value z with
E(a, z). Thus, intuitively, the set of answers should be {a}.

147

4.2 The Generalized Closed World Assump-
tion (GCWA)

Minker [26] extended the CWA to the generalized closed
world assumption (GCWA) as follows. Given a deductive
database D over a schema σ, he first defines1

D := {¬R(t̄) | R ∈ σ, t̄ ∈ Constar(R), and for all

⊆-minimal models I of D, t̄ /∈ RI},

which, as in the case of the CWA, contains negations of all
ground atoms that are assumed to be false under the GCWA.

The models of D ∪D are called GCWA-models of D, and a
query q(x̄) over σ is answered by cert(q, I), where I is the
set of all GCWA-models of D.

The intuition behind the above definitions is that each
ground atom in some ⊆-minimal model of D is in some
sense an atom that D “speaks” about. For ground atoms
that do not occur in any ⊆-minimal model of D, this means
that they are merely “invented”, and can therefore safely be
assumed to be false.

Translated into the data exchange framework, we obtain:

Definition 4.4. (GCWA-solution, GCWA-answers)
Let M = (σ, τ,Σ) be a schema mapping, let S be a source
instance for M , and let q be a query over τ .

1. A GCWA-solution for S under M is a ground target
instance T for M such that S∪T is a model of DM,S ∪

DM,S .

2. We call certGCWA(q,M, S) := cert(q, I), where I is
the set of the GCWA-solutions for S under M , the
GCWA-answers to q on M and S.

Similar to the RCWA-answers semantics, it can be shown
that certGCWA coincides with certCWA on schema mappings
defined by full st-tgds. Moreover, certGCWA leads to “good”
answers to the query in Example 4.3:

Example 4.5. Recall the schema mapping M , the source
instance S, and the query q from Example 4.3. We now have

DM,S = {¬P (b) | b ∈ Const, b 6= a} ∪

{¬E(b, c) | b, c ∈ Const, b 6= a}.

because each atom of the form E(a, c) is true in some ⊆-
minimal model of DM,S, and each atom of the form E(b, c)
with b 6= a is false in all ⊆-minimal models of DM,S. There-
fore, the GCWA-solutions for S under M are precisely the
target instances T for M for which there is a finite nonempty
set B ⊆ Const with T = TB, where ETB = {(a, b) | b ∈ B}.
It follows that certGCWA(q,M, S) = {a}, as desired.

Nevertheless, there are cases where the GCWA is still
quite unsatisfactory, as shown by the following example:

Example 4.6. Consider a slight extension of the schema
mapping from Example 4.3, namely M = ({P}, {E,F},Σ),
where Σ consists of the st-tgd

θ := ∀x
`

P (x) → ∃z1∃z2(E(x, z1) ∧ F (z1, z2))
´

.

1Recall that an instance I is ⊆-minimal in a set I of in-
stances if I ∈ I, and there is no I ′ ∈ I with I ′ ⊆ I . In the

definition of D, a ⊆-minimal model of D is a model of D
that is ⊆-minimal in the set of all models of D.

Let S be the source instance for M with PS = {a}. Then,

DM,S = {¬P (b) | b ∈ Const, b 6= a} ∪

{¬E(b, c) | b, c ∈ Const, b 6= a}.

Note that for all b, c ∈ Const we have ¬F (b, c) /∈ DM,S, since
the target instance T for M with P T = {a}, ET = {(a, b)}
and F T = {(b, c)} is a ⊆-minimal model of DM,S . So, the
GCWA-solutions for S under M are the target instances T
for M for which there is a finite nonempty set B ⊆ Const
with the following properties: (1) ET = {(a, b) | b ∈ B},
and (2) for at least one b ∈ B there is some c ∈ Const
with (b, c) ∈ F T . In particular, the target instance T ∗

with ET∗

= {(a, b)} and F T∗

= {(b, c), (d, e)} is a GCWA-
solution for S under M . For the query

q := ∀z1∀z2(F (z1, z2) → ∃xE(x, z1))

we thus have certGCWA(q,M, S) = ∅.
So, certGCWA(q,M, S) tells us that it is possible that there

is a tuple (b, c) in F for which (a, b) is not in E. However,
θ and S do not “mention” this possibility. In particular, θ
and S only tell us that there are one or more pairs (b, c) ∈
Const2 such that E(a, b) and F (b, c) occur together in a
solution. Thus, whenever E(a, b) is present for some b ∈
Const, then F (b, c) should be present for some c ∈ Const.
Similarly, whenever F (b, c) is present for some b, c ∈ Const,
then E(a, b) should be present.

4.3 Extensions of the GCWA
Various extensions of the GCWA have been proposed.

One of these extensions is the extended GCWA (EGCWA)
by Yahya and Henschen [29], which restricts the set of mod-
els of a deductive database D to the ⊆-minimal models of
D. So, given a schema mapping M = (σ, τ,Σ) and a source
instance S for M , a EGCWA-solution for S under M can
be defined as a ground ⊆-minimal solution for S under M ,
and given a query q(x̄) we can define

certEGCWA(q,M, S) := cert(q, I),

where I is the set of all EGCWA-solutions for S under M .
Then, for the schema mapping M , the source instance S for
M , and the query q in Example 4.5, certEGCWA(q,M, S) =
certGCWA(q,M, S), and for the schema mapping M , the
source instance S for M , and the query q in Example 4.6,
certEGCWA(q,M, S) 6= ∅, as desired. However, the EGCWA
seems to be too strong in the sense that it removes too many
solutions from the set of all solutions. We illustrate this by
the following example.2

Example 4.7. Let M = ({P}, {E},Σ) be a schema map-
ping, where Σ consists of

θ = ∀x(P (x) → ∃[2,3]zE(x, z)),

where ∃[2,3]zE(x, z) is an abbreviation for “there exist two
or three z such that E(x, z)”. Let S be the source instance
for M with PS = {a}. Then the ⊆-minimal solutions for S
under M have the form {E(a, b1), E(a, b2)}, where b1, b2 are
distinct constants. Thus, for

q(x) := ∃z1∃z2
`

E(x, z1) ∧E(x, z2) ∧

∀z3(E(x, z3) → (z3 = z1 ∨ z3 = z2))
´

,

2One can also use an argumentation as in Example 3.1, but
Example 4.7 seems to make our point a bit more obvious.

148

we have certEGCWA(q,M, S) 6= ∅. In other words, the an-
swer certEGCWA(q,M, S) excludes the possibility that there
are three distinct values b1, b2, b3 with E(a, bi) for each i ∈
{1, 2, 3}. But θ and S explicitly mention this possibility.
Thus, intuitively, certEGCWA is inconsistent with M and S.

To conclude this section, let us consider the possible worlds
semantics (PWS) by Chan [7]. An obvious translation of the
PWS for the case of schema mappings defined by st-tgds is
as follows: Let M = (σ, τ,Σ) be a schema mapping, where
Σ is a set of st-tgds, and let S be a source instance for
M . The definition of a PWS-solution for S under M can
be given in terms of justifications, as in [23, 19]. Given a
target instance T for M and an atom R(t̄) ∈ T , we say that
R(t̄) is justified in T under M and S if and only if there
is a st-tgd ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)) in Σ, tuples ā, b̄ over
dom(S) with S |= ϕ(ā, b̄), and a tuple ū over dom(T) such
that T |= ψ(ā, ū), and R(t̄) is one of the atoms in ψ(ā, ū).
A PWS-solution for S under M is then a ground solution T
for S under M such that all atoms in T are justified in T
under M and S. For a query q over τ , we let

certPWS(q,M, S) := cert(q, I),

where I is the set of all PWS-solutions for S underM . How-
ever, certPWS does not respect logical equivalence of schema
mappings as can easily be verified using the schema map-
ping, the source instance and the query in Example 3.2.

5. GCWA*-ANSWERS
In this section, we introduce the GCWA∗-answers seman-

tics, and argue that it is well-suited for answering non-
monotonic queries with respect to a number of schema map-
pings, including schema mappings defined by st-tgds and
egds.

As a motivating example, let us consider the schema map-
ping M and the source instance S for M from Example 4.3.
Let T be the set of all GCWA-solutions for S under M . As
shown in Example 4.5, T consists of all target instances T
for M such that there is a nonempty finite set B ⊆ Const
with T = TB , where ETB = {(a, b) | b ∈ B}. Intuitively,
T precisely reflects the information contained in M and S:
taking the usual semantics of existential quantification, M
and S just tell us that there is one b ∈ Const such that
E(a, b) holds, or there are two distinct b1, b2 ∈ Const such
that E(a, b1) and E(a, b2) hold, or there are three distinct
b1, b2, b3 ∈ Const such that E(a, b1), E(a, b2) and E(a, b3)
hold, and so on. The case that there are n distinct constants
b1, . . . , bn such that E(a, bi) holds for each i ∈ {1, . . . , n} is
captured by TB , where B := {b1, . . . , bn}. Since M and S
specify a translation of S from source to target, it seems to
be reasonable to assume that the result of the translation is
one of the instances in T . Thus, intuitively, the certain an-
swers to a query on T are based precisely on the information
contained in M and S.

Note that each instance in T is a union of ⊆-minimal so-
lutions for S under M . On the other hand, consider the
schema mapping M , the source instance S for M , and the
GCWA-solution T ∗ for S under M from Example 4.6. Then
T ∗ is not a union of ⊆-minimal solutions for S under M .
However, let T be the set of all ground target instances for
M that are unions of ⊆-minimal solutions for S under M .
That is, let T be the set of all ground target instances T for
M such that ET = {(a, b) | (b, c) ∈ F T for some c ∈ Const}

and F T 6= ∅. Then, intuitively, T precisely reflects the infor-
mation contained in M and S: taking once again the usual
semantics of existential quantification, M and S tell us that
there is one pair (b, c) ∈ Const2 such that E(a, b) and F (b, c)
hold, or there are two pairs (b1, c1), (b2, c2) ∈ Const2 such
that E(a, bi) and F (bi, ci) hold for each i ∈ {1, 2}, and so
on. Note that the certain answers to the query q from Ex-
ample 4.6 on T are nonempty, as desired.

The preceding two examples suggest that it might be a
good idea to answer queries by the certain answers over all
solutions that are unions of ground ⊆-minimal solutions. We
call such solutions GCWA∗-solutions:

Definition 5.1. (GCWA∗-solution, GCWA∗-answers)
Let M = (σ, τ,Σ) be a schema mapping, let S be a source
instance for M , and let q be a query over τ .

1. A GCWA∗-solution for S under M is a ground target
instance T for M such that T is a solution for S under
M , and T is a union of ⊆-minimal solutions for S under
M .

2. We call certGCWA∗(q,M, S) := cert(q, I), where I is
the set of the GCWA∗-solutions for S under M , the
GCWA∗-answers to q on M and S.

Note that the GCWA∗-answers are preserved under logical
equivalence.

Let us now argue for a more general class of schema map-
pings that, intuitively, GCWA∗-solutions directly reflect the
information in a schema mapping from this class and a
source instance. Let M = (σ, τ,Σ) be a schema mapping,
where Σ consists of right-monotonic L∞ω-st-tgds, which are
L∞ω-sentences of the form

θ := ∀x̄(ϕ(x̄) → ψ(x̄)),

where ϕ is a L∞ω-formula over σ, and ψ is a monotonic
L∞ω-formula over τ . We assume that the universal quan-
tifiers, and the quantifiers in ϕ are relativized to the active
domain over σ. Moreover, we assume that the quantifiers in
ψ are relativized to the active domain over τ . This ensures
that for each instance S over σ, and each instance T over τ ,
S ∪ T |= θ if and only if for all ā ∈ (dom(S) ∪ dom(θ))|x̄|,
where dom(θ) is the set of all constants in θ, S |= ϕ(ā) im-
plies T |= ψ(ā). Note that right-monotonic L∞ω-st-tgds in
particular capture st-tgds. Now, given a source instance S
for M , let

ΨM,S := {ψ(ā) | there exists ∀x̄(ϕ(x̄) → ψ(x̄)) ∈ Σ

and ā ∈ Const|x̄| with S |= ϕ(ā)}.

Then for each ground target instance T for M , it holds that
T is a solution for S underM if and only if T satisfies all sen-
tences in ΨM,S. Since all sentences in ΨM,S are monotonic,
ΨM,S is logically equivalent to the sentence

ψM,S :=
_

T0∈T0

^

R(t̄)∈T0

R(t̄),

where T0 is the set of all ⊆-minimal ground solutions for S
under M (i.e., for all ground instances T over τ , we have
T |= ψM,S if and only if T satisfies all sentences in ΨM,S).
Note that ψM,S tells us that the target contains one ground
⊆-minimal solution for S under M , or the target contains
two distinct ground ⊆-minimal solutions for S under M ,

149

and so on. So, intuitively, the information contained in
ψM,S (and thus in M and S) is directly reflected by the
set of all instances T over τ for which there is a set T with
one or more instances in T0 such that T is the union of all
the instances in T . This set corresponds to the set of all
GCWA∗-solutions for S under M . A similar argumentation
shows that, intuitively, the set of GCWA∗-solutions directly
reflects the information in M and S if M is defined by a set
of right-monotonic L∞ω-st-tgds, and egds. Furthermore, we
are not restricted to L∞ω-st-tgds and egds:

Example 5.2. Consider once again the schema mapping
M , the source instance S for M , and the query q from Ex-
ample 4.7. For each ground target instance T for M that is
the union of ⊆-minimal solutions for S under M there exists
a nonempty finite set B ⊆ Const with ET = {(a, b) | b ∈ B}.
Due to the constraint θ in M , T is a GCWA∗-solution for S
under M if and only if 2 ≤ |B| ≤ 3. Thus, intuitively, the
set of GCWA∗-solutions directly reflects the information con-
tained in M and S. It follows that certGCWA∗(q,M, S) = ∅,
as desired.

Clearly, the notion of GCWA∗-solutions generalizes the no-
tion of EGCWA-solutions in the sense that every EGCWA-
solution is a GCWA∗-solution. The following proposition im-
plies that the notion of GCWA∗-solutions is a restriction of
the notion of GCWA-solutions (since ¬R(t̄) ≡ R(t̄) →

W

∅).

Proposition 5.3. Let M = (σ, τ,Σ) be a schema map-
ping, let S be a source instance for M , and let D := DM,S.
Consider

D∗ := {R(t̄) → ϕ | R ∈ σ ∪ τ , t̄ ∈ Constar(R), ϕ is a

monotonic L∞ω sentence over σ ∪ τ

that is satisfied in every ⊆-minimal

model I of D with t̄ ∈ RI}.

Then for all ground target instances T for M we have: T is
a GCWA∗-solution for S under M if and only if S ∪ T is a
model of D ∪D∗.

The following result translates Theorem 5 in [26] from
GCWA-solutions to GCWA∗-solutions, and shows that for a
given schema mapping M and a source instance S for M ,
the set DM,S ∪D∗

M,S , where D∗
M,S is defined as in Proposi-

tion 5.3, is maximally consistent in the sense that the addi-
tion of any sentence ψ of the form R(t̄) → ϕ, where ϕ is a
monotonic L∞ω sentence and DM,S ∪D∗

M,S 6|= ψ, leads to a
set of constraints that is inconsistent with DM,S ∪D∗

M,S.

Proposition 5.4. Let M = (σ, τ,Σ) be a schema map-
ping, let S be a nonempty source instance for M , let D :=
DM,S and let D′ := D ∪D∗.

1. For all monotonic L∞ω-sentences ϕ over σ∪τ , we have
D |= ϕ if and only if D′ |= ϕ.

2. For all ground atoms R(t̄) over σ ∪ τ , all monotonic
L∞ω sentences ϕ over σ ∪ τ , and ψ ∈ {ϕ,R(t̄) → ϕ}
with D′ 6|= ψ:

(a) D′ ∪ {ψ} has no model, or

(b) there is a monotonic L∞ω-sentence χ over σ ∪ τ
such that D′ ∪ {ψ} |= χ, but D′ 6|= χ.

6. THE DATA COMPLEXITY OF

COMPUTING GCWA*-ANSWERS
In this section, we study the data complexity of comput-

ing GCWA∗-answers, where data complexity means that the
schema mapping and the query to be evaluated is fixed (i.e.,
not part of the input). We concentrate on schema mappings
defined by st-tgds only. For a schema mapping M and a
query language L, we are particularly interested in whether
there are algorithms A1,A2 with the following properties:

• A1 takes a source instance S for M as input and com-
putes a solution T for S under M , and

• A2 takes T and a query q ∈ L as input and computes
certGCWA∗(q,M, S).

The second property is particularly important, since a com-
mon assumption in data exchange is that the schema map-
ping and the source instance are not available once the data
translation has been performed, so that the query must be
answered based on a materialized solution. Ideally, both A1,
and A2 for fixed q ∈ L, run in polynomial time.

For proving lower bounds, we consider the problem

Eval(M, q)

Input: a source instance S for M , and a tuple
t̄ ∈ Const|x̄|

Question: Is t̄ ∈ certGCWA∗(q,M, S)?

for schema mappings M = (σ, τ,Σ) and queries q(x̄) over τ .
The complexity of this problem can be seen as a lower bound
on the joint complexity of finding T as above, and obtaining
certGCWA∗(q,M, S) from T . If, for example, Eval(M, q) is
co-NP-complete, then finding T is intractable, or computing
certGCWA∗(q,M, S) from T is intractable.

We first study the complexity of computing the GCWA∗-
answers to monotonic queries and existential queries in Sec-
tion 6.1, and turn to universal queries in Section 6.2.

6.1 Monotonic queries and existential queries
For monotonic queries, all results obtained for the certain

answers semantics (see, e.g., [10, 25, 3, 21, 23, 8, 4, 6]) carry
over to the GCWA∗-answers semantics:

Proposition 6.1. Let M = (σ, τ,Σ) be a schema map-
ping, let S be a source instance for M , and let q be a mono-
tonic query over τ . Then, certGCWA

∗(q,M, S) equals the set
of the certain answers to q on M and S.

In particular, for computing GCWA∗-answers to queries
preserved under homomorphisms with respect to a schema
mapping M = (σ, τ,Σ), where Σ consists of st-tgds, it suf-
fices to compute, given a source instance S for M , an arbi-
trary universal solution T for S underM such as Core(M,S),
which can be done in polynomial time by Theorem 2.1;
then for each query q(x̄) that is preserved under homomor-
phisms, the GCWA∗-answers to q on M and S coincide with
q(T)↓ = {t̄ ∈ Const|x̄| | t̄ ∈ q(T)}, which can be computed
from T in time polynomial in |T |, for fixed q.

For general monotonic queries, like unions of conjunctive
queries with inequalities, the concept of an ihom-universal
model set [8] may be useful. Let M = (σ, τ,Σ) be a schema
mapping, and let S be a source instance for M . An ihom-
universal model set for M and S is a set T of solutions for

150

S under M such that for every solution T ′ for S under M ,
there is some T ∈ T and an injective homomorphism from T
to T ′, and no proper subset of T is a ihom-universal model
set for M and S. It was shown in [8] that the certain an-
swers to a monotonic query q on M and S can be computed
using an ihom-universal model set T by computing the inter-
section of the query results q(T)↓ over all T ∈ T . However,
ihom-universal model sets can get very large: For the simple
schema mappingM = ({P}, {R},Σ), where Σ consists of the
st-tgd P (x) → ∃y∃zR(x, y, z), and any source instance S for
M with |PS | = n, it is not hard to see that there are ≫ 2n

many solutions in every ihom-universal model set for M and
S. On the other hand, ihom-universal model sets must in
general be large: as shown by Ma֒dry [25], there is a schema
mapping M defined by LAV st-tgds, and a Boolean conjunc-
tive query q with just two inequalities such that Eval(M, q)
is co-NP-hard.

What seems to be more practical is to compute a “small”
representation of the set of all relevant solutions such as
Core(M,S), and given a union q of conjunctive queries with
inequalities over τ , compute a set of solutions that is suffi-
cient for computing the certain answers to q on M and S.
For example, [10] have shown that for a Boolean query q that
is the union of conjunctive queries with at most one inequal-
ity per disjunct, the certain answers can be computed from
an arbitrary universal solution in polynomial time: First, a
new solution T is computed from the precomputed universal
solution using the chase procedure [10]. If the chase fails to
compute a solution, then the certain answers to q on M and
S are nonempty. Otherwise, the certain answers to q on M
and S are q(T).

We now turn to existential queries, which are FO queries
of the form ∃x̄ϕ, where ϕ is a quantifier-free FO query. A
particular class of existential queries are conjunctive queries
with negation (CQ¬ queries, for short), which are queries of
the form ∃x̄(L1 ∧ · · · ∧Lk) such that for each i ∈ {1, . . . , k},
we have Li ∈ {R(ū),¬R(ū)}, where R is a relation symbol,
and ū is a tuple of elements in Const and x̄. A simple reduc-
tion from the Clique problem [15] shows that Eval(M, q)
is already co-NP-hard for schema mappings M defined by
LAV tgds and CQ¬ queries with only one negated atom:

Proposition 6.2. There exists a schema mapping M =
(σ, τ,Σ), where Σ consists of two LAV tgds, and a Boolean
CQ¬ query q over τ with one negated atomic query such that
Eval(M, q) is co-NP-complete.

Even more, moving from existential queries to FO queries
with an ∃∗∀ quantifier prefix, we can show:

Proposition 6.3. There exists a schema mapping M =
(σ, τ,Σ), where Σ consists of two LAV tgds, and a Boolean
∃∗∀ FO query q over τ such that Eval(M, q) is undecidable.

6.2 Universal queries
This section presents the technically most challenging re-

sult of this article: Theorem 6.6, which states that for certain
schema mappings M defined by st-tgds, and for universal
queries q, there is a polynomial time algorithm for comput-
ing the GCWA∗-answers to q from the core of the universal
solutions. Here, a universal query is a FO query of the form
∀ȳϕ(x̄, ȳ), where ϕ is quantifier-free. Our first result is:

Proposition 6.4. Let M = (σ, τ,Σ) be a schema map-
ping, where Σ consists of st-tgds, and let q be a universal
query over τ . Then, Eval(M, q) is in co-NP.

The main result of this section is based on the following
notion of packed st-tgds:

Definition 6.5. (packed st-tgd)
A st-tgd ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)) is packed if for all dis-
tinct atomic formulas ψ1, ψ2 in ψ, there is a variable in z̄
that occurs both in ψ1 and in ψ2.

I think that the class of schema mappings defined by
packed st-tgds is an interesting class of schema mappings.
For example, consider a schema mapping M defined by st-
tgds ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)), where ψ contains at most
two atoms with variables from z̄. Then M is logically equiv-
alent to a schema mapping defined by packed st-tgds, since
every st-tgd θ in M is logically equivalent to a set Θ of
packed st-tgds, where the size of Θ is at most the number
of atomic formulas in the head of θ. An example of a st-
tgd that is not packed is ∀x(P (x) → ∃z1∃z2∃z3(E(x, z1) ∧
E(z1, z2) ∧ E(z2, z3))).

We are now ready to state the main result of this section:

Theorem 6.6. Let M = (σ, τ,Σ) be a schema mapping,
where Σ consists of packed st-tgds, and let q be a universal
query over τ . There is a polynomial time algorithm that,
given Core(M,S) for some source instance S for M , outputs
certGCWA

∗(q,M, S).

Note that Theorem 6.6 and Theorem 2.1 immediately im-
ply that for every schema mappingM specified by packed st-
tgds, and for every universal query q overM ’s target schema,
there is a polynomial time algorithm that takes a source in-
stance S for M as input, and outputs certGCWA∗(q,M, S).
Furthermore, an interesting consequence of Theorem 6.6 is
as follows. Let M be a schema mapping defined by packed
st-tgds, and let S be a source instance for M . Then the same
solution for S under M , namely Core(M,S), can be used to
efficiently compute both the certain answers to queries pre-
served under homomorphisms onM and S, and the GCWA∗-
answers to universal queries onM and S (ifM and the query
are not part of the input). If one considers to compute only
the certain answers to queries preserved under homomor-
phisms on M and S, and the GCWA∗-answers to univer-
sal queries on M and S, it suffices therefore to compute
Core(M,S), which, by Theorem 2.1, is possible in polyno-
mial time if M is not part of the input.

Let us now turn to the proof of Theorem 6.6. Note that
Theorem 6.6 follows easily from:

Theorem 6.7. Let M = (σ, τ,Σ) be a schema mapping,
where Σ consists of packed st-tgds, and let q(x̄) be a uni-
versal query over τ . Then there is a polynomial time al-
gorithm that, given Core(M,S) for some source instance

S for M , and a tuple t̄ ∈ Const|x̄|, decides whether t̄ ∈
certGCWA

∗(q,M, S).

The remainder of this section is devoted to the proof of
Theorem 6.7. Let us begin by showing how Core(M,S) can
be used to decide membership in certGCWA∗(q,M, S).

6.2.1 GCWA∗-Answers and the Core

Let M = (σ, τ,Σ) be a schema mapping, where Σ is a
set of packed st-tgds, and let q(x̄) be a universal query over

τ . Given Core(M,S) and a tuple t̄ ∈ Const|x̄|, how can we
decide whether t̄ ∈ certGCWA∗(q,M, S)?

151

Observe that t̄ /∈ certGCWA∗(q,M, S) if and only if there

is a GCWA∗-solution T̃ for S under M with T̃ |= ¬q(t̄).
By the definition of GCWA∗-solution and the fact that Σ
consists of st-tgds, the latter is the case precisely if there is
a nonempty finite set T of ground ⊆-minimal solutions for
S under M with

S

T |= ¬q(t̄). Using the following lemma,
we can reformulate this in terms of Core(M,S):

Lemma 6.8. Let M = (σ, τ,Σ) be a schema mapping,
where Σ consists of st-tgds, and let S be a source instance
for M . Then the set of all ground ⊆-minimal solutions for
S under M is precisely the set of all ⊆-minimal instances in
poss(Core(M,S)).

Given Core(M,S) and t̄, it remains to decide whether
there is a nonempty finite set T of ⊆-minimal instances in
poss(Core(M,S)) such that

S

T |= ¬q(t̄). Since q is a uni-
versal query, ¬q is logically equivalent to a query of the form
∃ȳ ϕ(x̄, ȳ). Before tackling the general case in Section 6.2.3,
the following section deals with the case that ȳ contains no
variable and ϕ consists of a single atomic FO formula.

6.2.2 Finding Atoms in Minimal Possible Worlds

Let M = (σ, τ,Σ) be a schema mapping, where Σ con-
sists of packed st-tgds, let T := Core(M,S) for some source
instance S for M , and let R(t̄) be an atom over τ . To de-
cide whether there is a ⊆-minimal instance T0 in poss(T)
with R(t̄) ∈ T0, it suffices to consider only the instances
in minC(T), where C is the set of all constants in t̄, and
minC(T) is defined as follows:

Definition 6.9. (valC(T), minC(T)) Let T be a naive
table, and let C ⊆ Const.

1. Let valC(T) be the set of all functions f : dom(T) →
dom(T) ∪ C that are legal for T .

2. Let minC(T) be the set of all instances T̂ for which

there is some f ∈ valC(T) with T̂ = f(T), and there

is no f ′ ∈ valC(T) with f ′(T) (T̂ .

Proposition 6.10. Let T be a naive table, let C ⊆ Const.

1. For each T0 ∈ poss(T), the following are equivalent:

(a) T0 is a ⊆-minimal instance in poss(T).

(b) There is an instance T ′
0 ∈ minC(T) and an injec-

tive valuation v of T ′
0 such that v(T ′

0) = T0, and
v−1(c) = c for all c ∈ dom(T0) ∩ C.

2. If T is a core, then T ∈ minC(T).

3. Each instance in minC(T) is a core. Moreover, there
is a naive table T ′ and a function f ∈ valC(T ′) such
that f(T ′) is a core, but f(T ′) /∈ minC(T ′).

The size of minC(T) can be exponential in the size of T , so
that it is not possible to enumerate all instances in minC(T)
in polynomial time, given T and R(t̄) as input. To tackle this
problem, we take advantage of a nice structural property of
T that can be described in terms of atom blocks:

Definition 6.11. (atom block) Let T be a naive table.

• The Gaifman graph of the atoms of T is the undirected
graph whose vertices are the atoms of T , and which has
an edge between two atoms A,A′ ∈ T if and only if
A 6= A′, and there is a null that occurs in A and A′.

• An atom block of T is the set of atoms in a connected
component of the Gaifman graph of the atoms of T .

The crucial property of T is:

Lemma 6.12 ([10]). For every schema mapping M =
(σ, τ,Σ), where Σ consists of st-tgds, there is a positive in-
teger bs such that if S is a source instance for M , and B is
an atom block of Core(M,S), then |nulls(B)| ≤ bs.

The following naive algorithm now seems to decide if there
is an instance T0 ∈ minC(T) with R(t̄) ∈ T0:

1. Compute the atom blocks of T .

2. Consider the atom blocks B of T in turn, and

3. if there is an instance B0 ∈ minC(B) with R(t̄) ∈ B0,
accept the input; otherwise reject it.

Since |nulls(B)| ≤ bs for each atom block B of T , we only
have to consider at most |valC(B)| = |dom(B) ∪ C|bs map-
pings in step 3 to find all the instancesB0 in minC(B). Thus,
the whole algorithm runs in polynomial time. However, Ex-
ample 6.13 below shows that this algorithm is incorrect. In
particular, the example exhibits a naive table T that is a
core, and an atom block B of T such that there is an atom
of some ⊆-minimal instance B0 ∈ poss(B) that is not an
atom of any ⊆-minimal instance in poss(T). For all sets
C ⊆ Const, this implies that there is an atom of some in-
stance B0 ∈ minC(B) that is not an atom of any instance
in minC(T).

Example 6.13. Let T be the naive table with

ET = {(a, b), (a,⊥), (b,⊥), (b,⊥′), (b,⊥′′), (⊥′,⊥′′)},

and consider the atom block

B = {E(b,⊥′), E(b,⊥′′), E(⊥′,⊥′′)}

of T . Note that T is a core. It is not hard to see that every ⊆-
minimal instance in poss(B) has one of the following forms:

1. {E(b, b)},

2. {E(b, c), E(c, c)} with c ∈ Const \ {b}, or

3. {E(b, c), E(b, c′), E(c, c′)} with c, c′ ∈ Const \ {b} and
c 6= c′.

Thus, there is a ⊆-minimal instance in poss(B) of the third
form that contains E(c, a) (substitute c′ with a).

However, there is no ⊆-minimal instance in poss(T) that
contains E(c, a): Such an instance must be obtained from T
by a valuation v of T with v(⊥′) = c and v(⊥′′) = a, since
E(⊥′,⊥′′) is the only atom in T that could be the preimage
of E(c, a)—all other atoms either have a or b as their first
value. However, let v be a valuation of T with v(⊥′) = c
and v(⊥′′) = a, and let f : dom(T) → dom(T) be such that
f(a) = a, f(b) = b, f(⊥′) = a and f(⊥) = f(⊥′′) = ⊥.
Then, for v′ := v ◦ f , we have

v′(T) = {E(a, b), E(b, a),E(a, v(⊥)),E(b, v(⊥))}

({E(a, b), E(b, a),E(a, v(⊥)),E(b, v(⊥)),

E(b, c), E(c, a)}

= v(T).

Thus, v(T) is not ⊆-minimal in poss(T).

152

Here we use a different approach: we identify a subset S
of minC(T) of size polynomial in the size of T such that it
suffices to consider only the instances in S to decide whether
R(t̄) occurs in some instance in minC(T). The set S consists
of all naive tables T0 for which there is an atom block B of T
with T0 ∈ minC(T,B), where minC(T,B) is defined below.

Definition 6.14. (minvalC(T,B), minC(T,B))
Let T be a naive table, let B be an atom block of T , let
B := T \ B, and let C ⊆ Const.

1. Let valC(T,B) be the set of all functions f ∈ valC(T)
with f(⊥) = ⊥ for all ⊥ ∈ nulls(B) such that all nulls
that occur in f(B) \ B belong to nulls(B).

2. Let minvalC(T,B) be the set of all f ∈ valC(T,B) such
that there is no f ′ ∈ valC(T,B) with f ′(T) (f(T).

3. Let minC(T,B) := {Core(f(T)) | f ∈ minvalC(T,B)}.

Using (a simplified version of) the blocks algorithm from
[11] for computing the core of a naive table, where the num-
ber of nulls in each atom block is bounded by a constant, in
polynomial time, we obtain:

Proposition 6.15. For each positive integer bs, there is
a polynomial time algorithm that, given a naive table T such
that the number of nulls in each atom block of T is at most
bs, an atom block B of T , and a set C ⊆ Dom, outputs
minC(T,B).

The following Lemma 6.16 tells us that the instances in
minC(T,B) indeed belong to minC(T). To state and to
prove the lemma, the notion of a retraction is convenient.
Given an instance I , a retraction of I is a homomorphism h
from I to I such that h(u) = u for all elements u in the range
of h. In particular, for all atoms A ∈ h(I), we have A ∈ I
and h(A) = A. It is known that a core of I is an instance
J for which there is a retraction h of I with h(I) = J , and
there is no retraction of J to a proper subinstance of J ([17]).

Lemma 6.16. Let T be a naive table, let B be an atom
block of T , let B := T \B, and let C ⊆ Const. Then for all

f ∈ minvalC(T,B) there is a retraction h of T̂ := f(T) with

1. h(⊥) = ⊥ for all ⊥ ∈ nulls(f(B) \B),

2. h(T̂) is a core of T̂ , and

3. h(T̂) ∈ minC(T).

In particular, minC(T,B) ⊆ minC(T).

Clearly, the union of the sets minC(T,B) over all atom
blocks B of T does not cover the whole set of instances
in minC(T). However, Lemma 6.20 below tells us that for
each atom A of some instance T0 ∈ minC(T) there is an
atom block B of T and an instance TB ∈ minC(T,B) that
contains an atom A′ isomorphic to A in the following sense:

Notation 6.17. We say that two atoms A1, A2 are iso-
morphic, and we write A1

∼= A2, if the instances {A1} and
{A2} are isomorphic.

Note that R(u1, . . . , ur) and R′(u′
1, . . . , u

′
r′) are isomor-

phic if and only if R = R′, r = r′, and for all i, j ∈ {1, . . . , r},
ui ∈ Const if and only if u′

i ∈ Const, ui ∈ Const implies
ui = u′

i, and ui = uj if and only if u′
i = u′

j .
Lemma 6.20 is based on the following notion of a packed

atom block:

Definition 6.18. (packed atom block) An atom block B
of a naive table is called packed if for all atoms A,A′ ∈ B
with A 6= A′, there is a null that occurs in A and A′.

Immediately from the definitions, we obtain:

Proposition 6.19. If M = (σ, τ,Σ) is a schema map-
ping, where Σ consists of packed st-tgds, and S is a source in-
stance for M , then each atom block of Core(M,S) is packed.

We are now ready to state the main result of the present
Section 6.2.2:

Lemma 6.20. Let T be a naive table such that T is a core,
and each atom block of T is packed. Let B1, . . . , Bn be the
atom blocks of T , let C ⊆ Const, and let T0 ∈ minC(T).

Then for each i ∈ {1, . . . , n}, there is a Ti ∈ minC(T,Bi)
and a homomorphism hi from Ti to T0 with hi(Ti) = T0

such that for each atom A ∈ T0 there is a j ∈ {1, . . . , n} and
an atom A′ ∈ Tj with hj(A

′) = A and A ∼= A′.

A polynomial time algorithm that, given T and R(t̄), de-
cides whether R(t̄) occurs in some ⊆-minimal instance in
poss(T) is now as follows. Let C be the set of all con-
stants in t̄. Consider each atom block B of T , and each
T0 ∈ minC(T,B) in turn, and accept the input if and only
if R(t̄) ∈ T0 for some T0. By Proposition 6.15, minC(T,B)
can be computed in polynomial time for each atom block B
of T , so the whole procedure runs in polynomial time.

6.2.3 Proof of Theorem 6.7

In this section, we sketch a proof of Theorem 6.7. Let
M = (σ, τ,Σ) be a schema mapping, where Σ consists of
packed st-tgds, and let q(x̄) be a universal query over τ . We
show that there is a polynomial time algorithm that, given
T := Core(M,S) for some source instance S for M , and a

tuple t̄ ∈ Const|x̄|, decides whether t̄ ∈ certGCWA∗(q,M, S).
As shown in Section 6.2.1, we have t̄ /∈ certGCWA∗(q,M, S)

if and only if there is a nonempty finite set T of ⊆-minimal
instances in poss(T) such that

S

T |= ¬q(t̄). Now observe
that ¬q is logically equivalent to a query q̄ of the form

q̄(x̄) =
m
_

i=1

qi(x̄),

where each qi is an existential query of the form

qi(x̄) = ∃ȳi

ni
^

j=1

ϕi,j ,

and each ϕi,j is an atomic FO formula or the negation of
an atomic FO formula. Indeed, since q is a universal query,
we have ¬q ≡ ∃ȳ ϕ(x̄, ȳ), where ϕ is quantifier-free. By
transforming ϕ into “disjunctive normal form”, we obtain a
query of the form ∃ȳ

Wm

i=1

Vni

j=1 ϕi,j , where each ϕi,j is an
atomic FO formula or the negation of an atomic FO for-
mula. By moving existential quantifiers inwards, we finally
obtain q̄. It remains therefore to decide whether there is
some i ∈ {1, . . . ,m} and a nonempty finite set T of ⊆-
minimal instances in poss(T) such that

S

T |= qi(t̄).
We are now ready to describe the algorithm. Let bs be

a constant as in Lemma 6.12. Then, for each source in-
stance S for M and each atom block B of Core(M,S), we
have |nulls(B)| ≤ bs. Furthermore, Proposition 6.19 tells
us that each atom block of Core(M,S) is packed. Given
T := Core(M,S) for some source instance S for M , and a

153

tuple t̄ ∈ Const|x̄| as input, the algorithm simply checks for
each i ∈ {1, . . . ,m}, whether there is a nonempty finite set
T of ⊆-minimal instances in poss(T) such that

S

T |= qi(t̄).
If for some i ∈ {1, . . . ,m}, there is such a set T , the algo-
rithm rejects the input; otherwise, it accepts the input. By
the following lemma, this is possible in polynomial time:

Lemma 6.21. Let q(x̄) = ∃ȳ ϕ(x̄, ȳ) be a FO query over
τ , where ϕ =

Vn

i=1 ϕi, and each ϕi is an atomic FO formula
or the negation of an atomic FO formula. For each positive
integer bs, there is a polynomial time algorithm that decides:

CoreEvalτ,bs

Input: a naive table T over τ such that T is a core
and each atom block of T is packed and con-
tains at most bs nulls; and a tuple t̄ ∈ Const|x̄|

Question: Is there a nonempty finite set T of ⊆-minimal
instances in poss(T) such that

S

T |= q(t̄)?

7. CONCLUSION
We studied query answering semantics for deductive data-

bases (based on the CWA, the GCWA, the EGCWA and the
PWS) in the context of relational data exchange. Further-
more, inspired by the GCWA, we developed the GCWA∗-
answers semantics, and argued that it is well-suited with
respect to a number of schema mappings, including schema
mappings defined by st-tgds and egds.

We also made first steps towards understanding the com-
plexity of computing GCWA∗-answers. Here, we focused on
data complexity and schema mappings specified by st-tgds.
The main result is the identification of universal queries as a
class of queries for which the GCWA∗-answers can be com-
puted in polynomial time (data complexity), provided the
schema mapping is defined by packed st-tgds. I believe that
the techniques used for proving this result can be extended
to prove the analogous result for the more general case of
schema mappings defined by st-tgds.

Acknowledgements. I am grateful to André Böhm,
Nicole Schweikardt and the anonymous referees for invalu-
able comments on earlier versions of this paper.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] F. N. Afrati and P. G. Kolaitis. Answering aggregate
queries in data exchange. In PODS, pages 129–138,
2008.

[3] M. Arenas, P. Barceló, R. Fagin, and L. Libkin.
Locally consistent transformations and query
answering in data exchange. In PODS, pages 229–240,
2004.

[4] M. Arenas, P. Barceló, and J. Reutter. Query
languages for data exchange: Beyond unions of
conjunctive queries. In ICDT, 2009.

[5] M. Arenas and L. Libkin. XML data exchange:
Consistency and query answering. JACM,
55(2):Article 7, 2008.

[6] P. Barceló. Logical foundations of relational data
exchange. SIGMOD Record, 38(1):49–58, 2009.

[7] E. P. F. Chan. A possible world semantics for
disjunctive databases. IEEE Transactions on
Knowledge and Data Engineering, 5(2):282–292, 1993.

[8] A. Deutsch, A. Nash, and J. Remmel. The chase
revisited. In PODS, pages 149–158, 2008.

[9] R. Fagin. Inverting schema mappings. In PODS, pages
50–59, 2006.

[10] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: Semantics and query answering.
Theoretical Computer Science, 336(1):89–124, 2005.

[11] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange:
Getting to the core. ACM TODS, 30(1):174–210, 2005.

[12] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan.
Composing schema mappings: Second-order
dependencies to the rescue. ACM TODS,
30(4):994–1055, 2005.

[13] A. Fuxman, P. G. Kolaitis, R. J. Miller, and W. C.
Tan. Peer data exchange. ACM TODS,
31(4):1454–1498, 2006.

[14] H. Gallaire, J. Minker, and J.-M. Nicholas. Logic and
databases: A deductive approach. ACM Computing
Surveys, 16(2):153–185, June 1984.

[15] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company,
1979.

[16] G. Gottlob and A. Nash. Efficient core computation in
data exchange. JACM, 55(2):Article 9, 2008.

[17] P. Hell and J. Nešetřil. The core of a graph. Discrete
Mathematics, 109(1–3):117–126, 1992.

[18] A. Hernich and N. Schweikardt. Logic and data
exchange: Which solutions are “good” solutions? In
Logic and the Foundations of Game and Decision
Theory (LOFT 8). To appear.

[19] A. Hernich and N. Schweikardt. CWA-solutions for
data exchange settings with target dependencies. In
PODS, pages 113–122, 2007.

[20] T. Imielinski and W. Lipski. Incomplete information
in relational databases. JACM, 31(4):761–791, 1984.

[21] P. G. Kolaitis. Schema mappings, data exchange, and
metadata management. In PODS, pages 61–75, 2005.

[22] P. G. Kolaitis, J. Panttaja, and W. C. Tan. The
complexity of data exchange. In PODS, pages 30–39,
2006.

[23] L. Libkin. Data exchange and incomplete information.
In PODS, pages 60–69, 2006.

[24] L. Libkin and C. Sirangelo. Data exchange and
schema mappings in open and closed worlds. In
PODS, pages 139–148, 2008.

[25] A. Ma֒dry. Data exchange: On the complexity of
answering queries with inequalities. Information
Processing Letters, 94(6):253–257, 2005.

[26] J. Minker. On indefinite databases and the closed
world assumption. In CADE, volume 138, pages
292–308, June 1982.

[27] R. Reiter. On closed world data bases. In Logic and
Data Bases, pages 55–76. Plenum Press, 1978.

[28] R. van der Meyden. Logical approaches to incomplete
information: A survey. In Logics for Databases and
Information Systems, pages 307–356. Kluwer, 1998.

[29] A. Yahya and L. J. Henschen. Deduction in non-horn
databases. Journal of Automated Reasoning,
1(2):141–160, 1985.

154

